ОТЗЫВ

на автореферат диссертации Плотникова Леонида Валерьевича на тему: «Повышение качества газообмена в поршневых ДВС путём совершенствования газодинамики и теплообмена потоков во впускных и выпускных каналах» представленной на соискание учёной степени доктора технических наук по специальностям 01.04.14 - Теплофизика и теоретическая теплотехника и 05.04.02 - Тепловые двигатели

Данная диссертационная работа направлена на решение актуальной научнотехнической задачи - повышение технических показателей двигателей посредством повышения качества газообмена.

В работе представлена научная новизна, которая заключается в создании методологии исследования характеристик потоков в газовоздушных трактах поршневых двигателей в условиях нестационарности, установлении закономерностей изменения локального коэффициента теплоотдачи в газовоздушных трактах, способов уменьшения локального коэффициента теплоотдачи, системного анализа влияния газодинамического совершенствования впускных и выпускных трубопроводов на технические показатели поршневых двигателей.

Достоверность исследований определяется хорошим согласованием опытных данных экспериментов с результатами других авторов, использованием апробированного прикладного программного обеспечения, использованием измерительной аппаратуры с соответствующим метрологическим обеспечением.

Результаты, полученные в диссертации, имеют практическое значение, заключающееся в разработке оригинальных решений для впускных и выпускных систем, повышающие технико-экономические показатели двигателей. Разработана и реализована электронная схема термоанемометра постоянной температуры.

В первом разделе автор провел анализ литературных источников, представил анализ степени разработанности темы исследования. Автор рассмотрел работы широкого круга ученых имевших в большей или меньшей мере отношение рассматриваемой проблеме. Это делает ему честь. На основании анализа поставлены задачи исследования.

Во второй главе проведён анализ степени газодинамической нестационарности процессов при впуске и выпуске газов в трубопроводах, конфигурация которых характерна для газовоздушных трактов поршневых ДВС, а также вводятся сопоставительные критерии оценки степени этой нестационарности. На основании проведённых экспериментов разработан метод учёта влияния тепломехничской нестационарности в инженерных расчётах.

В третьей главе описаны методики и комплекс лабораторных установок и стенд с двигателем, система сбора и обработки экспериментальных данных, приводятся особенности проведения исследований, приведены основные результаты математического моделирования и экспериментальных исследований газодинамических и расходных характеристик газовых потоков в газовоздушных трактах поршневых ДВС. Описаны способы повышения качества газообмена. Разработаны и отлажены экспериментальные установки как для двигателя с наддувом, так и без наддува. Выявлены различия в процессах между ними.

В четвёртой главе представлены результаты исследований локальной теплоотдачи во впускных и выпускных трубопроводах поршневых ДВС с турбонаддувом и без. Выполнено сравнение интенсивности локальной теплоотдачи во впускном и выпускном трубопроводах ДВС при стационарном и пульсирующем потоках газов в них. На основе экспериментальных данных предлагаются методы снижения теплонапряжённости в газовоздушных трактах.

Получены новые экспериментальные данные о характере изменения коэффициентов теплоотдачи. Выявлены численные изменения локального коэффициента теплоотдачи в зависимости от конфигурации газовоздушного тракта.

Получены эмпирические уравнения для расчёта мгновенных локальных коэффициентов теплоотдачи для впускного и выпускного трубопровода с участками разной формы поперечного сечения.

В пятой главе приведены результаты практической реализации основных научных результатов работы. Полученные патенты и предложенные технические решения свидетельствуют о значимости для практики данной работы.

Вместе с тем по работе имеются следующие замечания:

1. Автор рассматривал в своей работе только три формы конфигурации выпускного трубопровода - круглая, квадратная, треугольная. Почему только этих три. Науке известно гораздо больше геометрических фигур.
2. Автор утверждает, что треугольная форма выпускного трубопровода более надёжна (стр. 33). Это утверждение спорно, так как треугольная форма имеет концентраторы напряжений в углах. А в условиях работы дизеля действуют ещё и вибрация, которая может вызвать появление трещин как раз в этих углах.
3. Неясно как можно распространить полученные результаты и выводы на другие типы двигателей, например дизельные двигатели, малооборотные судовые дизели, так как нет обобщающих закономерностей на основе фундаментальных законом газодинамики, термодинамики, физики и т.п. Да и выпускные газы дизельных двигателей по составу, а, следовательно, по своим характеристикам отличаются от выпускных газов поршневых двигателей, работающих на бензине.

Однако указанные замечания не снижают значимость рассмотренной работы.
Работа соответствует требованиям ВАК к докторским диссертациям, а её автор Плотников Леонид Валерьевич заслуживает присвоения ему учёной степени доктора технических наук по специальностям 01.04.14 - Теплофизика и теоретическая теплотехника и 05.04.02 - Тепловые двигатели.

Профессор кафедры судовых двичатеней внутреннего сгорания МГУ им. адм. Г.И. Невельского́
д.т.н., профессор

20 февраля 2018 г.
А.Н. Соболенко

Соболенко Анатолий Николаевич
690014, г. Владивосток, проспект Красного Знамени, 90, кв. 28
Тел. 89502865703, e-mail: sobolenko_a@mail.ru
ФГБОУ ВО «Морской государственный университет им. адмирала Г.И. Невельского», доктор технических наук, профессор кафедры судовых двигателей внутреннего сгорания

