КУЗНЕЦОВ Вячеслав Маркович

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ РАЗРАБОТКИ И СОВЕРШЕНСТВОВАНИЯ ТЕХНОЛОГИИ ГЕРБИЦИДНЫХ ГЕТЕРОФАЗНЫХ ПРЕПАРАТИВНЫХ ФОРМ НА ОСНОВЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

05.17.04 – Технология органических веществ

Автореферат диссертации на соискание ученой степени доктора технических наук

Работа выполнена в государственном бюджетном учреждении Республики Башкортостан «Научно-исследовательский технологический институт гербицидов и регуляторов роста растений с опытно-экспериментальным производством Академии наук Республики Башкортостан»

Официальные оппоненты: Муринов Юрий Ильич, доктор химических наук, профессор, ФГБУН Институт органической химии Уфимского научного центра РАН, заведующий лабораторией координационной химии;

> Струнин Борис Павлович, доктор технических наук, ООО «Базис», (г.Уфа), президент

> Петров Лев Алексеевич, доктор химических наук, «Институт органического им.И.Я.Постовского» УрО РАН, ведущий научный сотрудник лаборатории органических материалов

Ведущая организация: ГУП «Институт нефтехимпереработки Республики Башкортостан»

Защита состоится «6» апреля 2015 г. в 15:00 ч на заседании диссертационного совета Д 212.285.08 на базе ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» по адресу: 620002, г. Екатеринбург, ул. Мира, 19, ауд. 420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», http://dissovet.science.urfu.ru/news2

pocues

Автореферат разослан « » 2015 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Поспелова Татьяна Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Мировой опыт сельскохозяйственного производства убедительно показывает, что применение гербицидов позволяет значительно сократить затраты труда на единицу вырабатываемой продукции и предотвратить потери урожая. В настоящее время в мире нет промышленно развитой страны, в которой бы не осуществлялось производство и применение химических средств защиты растений (XC3P), в том числе и гербицидов. Ежегодный мировой оборот пестицидов составляет 38,5 млрд долларов США, производство – 2,4 млн тонн.

Ассортимент применяемых в Российской Федерации гербицидов насчитывает около 450 препаратов. Вносимые разными способами на поверхность почвы и растений они создают дополнительную экологическую нагрузку на объекты биосферы. Широкое применение различных химических веществ требует научнообоснованного подхода к решению проблемы защиты растений. Многолетние исследования в области гербологии, проводимые как у нас в стране, так и за рубежом, достоверно подтверждают, что эффективность действия гербицидов и их экологическая безопасность зависят не только от химической структуры активного ингредиента, хотя это основной фактор, но и в значительной степени от качества препаративной формы. Поэтому сегодня приоритетным направлением в химии и технологии пестицидов вообще, и гербицидов в частности, является разработка и совершенствование их препаративных форм, обеспечивающих более эффективное использование потенциала действующего вещества.

В нашей стране концепция направления научных исследований и разработок в области препаративных форм пестицидов была определена крупной научной школой ВНИИХСЗР, где в разные годы работой по этой проблеме руководили чл.-кор. РАН, проф. Н.Н. Мельников, проф. В.К. Промоненков, проф. С.Ф. Безуглый, проф. Б.Ф. Егоров. Теоретические и прикладные работы ВНИИХСЗР в этой научной области стали хорошей основой для дальнейших исследований и разработок пестицидных препаративных форм.

С момента основания в 1964 году Уфимского филиала ВНИИХСЗР (впоследствии НИТИГ) в нем была создана лаборатория исследования и разработки препаративных форм. Под руководством основателя и организатора нашего института и первого его директора, проф. В.Д.Симонова, а позднее чл.-кор. АН РБ, проф. Р.Б. Валитова в лаборатории сформировался научный коллектив, сотрудниками которого были исследованы и разработаны сотни рецептур различных препаративных форм, многие из которых защищены авторскими свидетельствами СССР, патентами Российской Федерации, получили государственный регистрационный статус для применения, внедрены в производство.

В течение длительного времени НИТИГ проводил совместные научные исследования в содружестве с отраслевой лабораторией Уфимского государственного нефтяного технического университета (УГНТУ), где под руководством акад. АН РБ Д.Л. Рахманкулова и проф. А.З. Биккулова широко исследовались вопросы применения нефтехимического сырья и полупродуктов для производства пестицидов и их препаративных форм. К сожалению, в 90-е годы в силу известных причин это научное сотрудничество приостановилось. Однако в последние годы, благодаря усилиям ведущих специалистов УГНТУ и НИТИГ, оно было восста-

новлено, поднялось на качественно новый уровень и в настоящее время успешно развивается. Большой вклад в это развитие вносят проф. А.Ф. Ахметов, к.т.н. Б.И. Вороненко, проф. С.С. Злотский, д.х.н. С.А. Кирлан, к.х.н. А.М. Колбин, д.б.н. В.М. Крутьков и другие ученые.

Сегодня технология препаративных форм XC3P непрерывно совершенствуется. За рубежом в этом направлении работают крупнейшие химические компании США, Японии, Европейских стран. Биологическим испытаниям на пестицидную активность в мире подвергается более 500 тысяч химических соединений в год, а выделяют лишь 10-15 потенциальных пестицидов при колоссальных затратах, составляющих около 2 млрд долларов. Становится очевидным, что исследования в области технологии совершенствования гербицидных препаратов на основе известных, традиционно применяемых действующих веществ при эффективном использовании различных продуктов нефтехимических производств экономически выгодны, являются актуальными и представляют большой научный и практический интерес.

Представляемая работа выполнена в соответствии с федеральной целевой научно-технической программой РФ «Исследования и разработки по приоритетным направлениям развития науки и техники» в рамках проекта РФФИ № 06-03-96900 на 2005-2007 гг., а также республиканской отраслевой программой научно-технических исследований по созданию и освоению производства перспективных гербицидов и регуляторов роста растений на 1998-2001 гг., согласованной Кабинетом министров Республики Башкортостан и утвержденной Президентом АН РБ.

Целью работы является:

- разработка современных научно-обоснованных, физико-химических методов оптимизации рецептур гербицидных гетерофазных препаратов в форме эмульгирующихся, суспензионных и суспоэмульсионных концентратов при эффективном использовании в качестве вспомогательных компонентов различных продуктов нефтехимических производств;
- совершенствование жидких препаративных форм гербицидов, улучшение их физико-химических свойств и эксплуатационных характеристик, повышение качества рабочих жидкостей суспензий, эмульсий, суспоэмульсий, обеспечивающих более высокую биологическую активность действующих веществ гербицидных препаратов.

В соответствии с этим в работе решались следующие конкретные задачи:

- разработка рецептур и совершенствование технологии получения гербицидных суспензионных препаратов в гл. 3;
- улучшение химической технологии приготовления эмульгирующихся препаративных форм гербицидов в гл. 4;
- исследование и разработка современных способов оптимизации рецептур углеводородных эмульгирующихся концентратов гербицидов в гл. 5;
- разработка эффективных гербицидных гетерофазных препаратов в форме суспоэмульсионных концентратов в гл. 6;
- повышение гербицидного потенциала за счет применения различных адъювантов продуктов нефтехимии в гл. 7;
- отработка технологии производства эмульгирующихся и суспоэмульсионных концентратов в гл. 7.

Для решения поставленных задач диссертационная работа базировалась на следующих научных основах и положениях физической химии гетерофазных систем:

- закон Стокса влияние различных факторов на скорость седиментации частиц дисперсной фазы в гравитационном поле;
- правило Антонова взаимосвязь межфазного натяжения на границе жидкость-жидкость с поверхностным натяжением жидкости на границе с воздухом;
- правило Оствальда влияние соотношения объемов фаз на процесс образования эмульсий прямого или обратного типа;
- правило Банкрофта влияние гидрофильных или липофильных поверхностно-активных веществ на процесс стабилизации прямых или обратных эмульсий;
- правило Ребиндера адсорбция ПАВ на поверхности раздела фаз и выравнивание полярности;
- адсорбционное логарифмическое уравнение Гиббса взаимосвязь предельной адсорбции ПАВ с логарифмом его концентрации и поверхностным натяжением на границе раздела фаз;
- уравнение Шишковского зависимость поверхностного натяжения на границе жидкость-воздух от концентрации ПАВ в водных растворах;
- эмпирическое правило Траубе взаимосвязь поверхностного натяжения водных растворов ПАВ на границе с воздухом с длиной углеводородной цепи;
- теория адсорбции Ленгмюра образование и уплотнение адсорбционного слоя ПАВ на поверхности раздела фаз;
- уравнение Рэлея взаимосвязь оптической плотности гетерогенной системы с длиной волны падающего света, концентрацией и объемом частиц в нанометровом диапазоне их размеров;
- уравнение Бугера-Ламберта-Бера зависимость оптической плотности от толщины слоя гетерофазной системы;
- эмпирическое уравнение Геллера зависимость оптической плотности от длины световой волны в микрометровом диапазоне размеров частиц дисперсной фазы.

Анализ показателей гербицидных гетерофазных препаративных форм проводили при использовании следующих физико-химических методов:

- размеры частиц дисперсной фазы эмульсий, суспензий, суспоэмульсий оптическая микроскопия (микроскоп Jenaval), седиментация в центробежном поле (весовой центрифугальный седиментограф модели СВ-3), седиментация в гравитационном поле (сканирующий фотоседиментограф модели Analysette-20), турбидиметрический метод спектра мутности (фотоэлектрокалориметр ФЭК-56M);
- поверхностное натяжение на границе раздела фаз жидкость-воздух, жидкость-жидкость (метод максимального давления воздуха в пузырьке на приборе марки ППНЛ, а также сталагмометрический метод);
 - вязкость жидкостей (стеклянный капиллярный вискозиметр ВПЖ);
 - показатель преломления жидкостей (рефрактометр ИРФ-22);
 - краевой угол смачивания метод проецирования на экран контура капли.

Диспергирование гербицидных гетерофазных систем осуществляли в бисерной мельнице, электромагнитном измельчителе, вихревом аппарате.

Научная новизна. Впервые выявлена высокая поверхностная активность бифункциональных компонентов — диметилалкиламинных солей 2,4-Д, 2М-4Х, дикамбы и глифосата, снижающих поверхностное натяжение водных растворов до уровня 30-35 мН/м, что позволяет, с учетом солюбилизирующей емкости, разрабатывать эмульгирующиеся концентраты с максимально упрощенной рецептурой диметилалкиламинная соль — нефтяной растворитель;

- впервые разработаны два физико-химических метода определения синергизма бинарной системы ПАВ различного химического строения по показателям периода полураспада и дисперсности гербицидной эмульсии, что способствует повышению ее стабильности за счет выбора оптимальной комбинации ПАВ;
- на основе отмеченного нами графического сдвига изотермы межфазного поверхностного натяжения и ее логарифмической анаморфозы в процессе коагуляции эмульсии в определенном временном интервале вплоть до ее полной коалесценции впервые разработан способ определения количества поверхностно-активного вещества, десорбированного с поверхности раздела фаз жидкостьжидкость, в гербицидных дисперсных системах, что позволяет рассчитать параметры адсорбционного слоя ПАВ толщину адсорбционного слоя и площадь межфазной поверхности, приходящейся на одну молекулу эмульгатора, а также исследовать процесс распределения ПАВ в водной фазе, органической фазе и на поверхности раздела фаз гербицидных эмульсий.

Практическая значимость. По результатам исследований выданы исходные данные на проектирование производства высокоэффективных гербицидных препаратов октиген, чисталан, флютар, сурам, антигор, вигокс. Подготовлено 9 лабораторных регламентов и 19 производственных методик процесса приготовления гербицидных препаратов. На опытно-экспериментальном производстве НИТИГ за период с 1993 по 2011 г. наработано и отгружено потребителям 5195 тонн препарата чисталан, 2653 тонны препарата октапон-экстра, 2076 тонн препарата октиген, 642 тонны препарата чисталан-экстра, а также опытная партия — 8,5 тонн препарата эфилон и 4,1 тонны препарата вигосурон.

По данным Государственного унитарного предприятия по агрохимическому обслуживанию сельского хозяйства Республики Башкортостан — «Башплодородие» РБ в 2009-2010 гг. в сельскохозяйственных предприятиях Республики Башкортостан осуществлялось широкое производственное применение против сорняков в посевах зерновых культур (пшеница, рожь, овес, ячмень) гербицидных препаратов чисталан, октапон-экстра, октиген, чисталан-экстра, наработанных в цехе ОЭП НИТИГ в объеме 1039 тонн, на площади посевов 950 тыс. га. В результате производственного применения гербициды проявили высокую техническую эффективность против сорняков на уровне 90-95 %. Прибавка урожая зерна сельскохозяйственных культур составила около 3-х центнеров с гектара.

Разработка препарата чисталан отмечена Дипломом I степени на Международной специализированной выставке АГРО-2002, г. Уфа, в номинации "За освоение производства новых высокоэффективных средств защиты растений, удобрений и стимуляторов роста сельскохозяйственных культур".

Апробация работы. Отдельные результаты работы представлялись, докладывались, обсуждались на Всесоюзной научно-технической конференции «Проблемы производства и применения углеводородных растворителей», НИИНефте-

хим, (Уфа, 1987); Всесоюзном совещании «Опыт использования оксиэтилированных алкилфенолов в народном хозяйстве», ВНИИПАВ (Шебекино, 1990); XIII Международной научно-технической конференции «Реактив-2000», ТГПУ им. Л.Н.Толстого, (Тула, 2000); ІІ Всероссийском научно-производственном совещании «Состояние и развитие гербологии на пороге XXI столетия», ВНИИФ (Голицыно, 2000); II Международном симпозиуме «Наука и технология углеводородных дисперсных систем», УГНТУ (Уфа, 2000); XIV Международной научнотехнической конференции «Реактив-2001», УГНТУ (Уфа, 2001); VIII Международной научно-технической конференции «Наукоемкие химические технологии-2002» (Уфа, 2002); XVI Международной научно-технической конференции «Реактив-2003» (Москва, 2003); II Всероссийской научной интернет-конференции «Интеграция науки и высшего образования в области органической и биоорганической химии и механики многофазных систем», УГНТУ (Уфа, 2003); VI Международной научной. конференции «Современные проблемы истории естествознания в области химии, химической технологии и нефтяного дела», УГНТУ (Уфа, 2005); IV Всероссийской научной интернет-конференции «Интеграция науки и высшего образования в области био- и органической химии и биотехнологии», УГНТУ (Уфа, 2005); XXII Международной научно-технической конференции «Реактив-2009», УГНТУ (Уфа, 2009); Всероссийской научной конференции «Актуальные проблемы химии. Теория и практика», Башкирский государственный университет (Уфа, 2010); Международной научно-практической интернет-конференции «Современные проблемы и пути их решения в науке, транспорте, производстве и образовании», проект SWorld (Одесса, 2011); XXV Юбилейной Международной научно-технической конференции «Реактив-2011» (Уфа, 2011).

Публикации. По теме диссертации опубликовано 19 статей в рецензируемых научных журналах, определенных ВАК, получено 10 авторских свидетельств СССР, 32 патента Российской Федерации, опубликовано 20 материалов международных, всесоюзных, всероссийских научных конференций; одна монография объемом 320 с. (18,6 п.л., тиражом 500 экз.).

Структура и объем работы. Диссертация состоит из введения, литературного обзора (глава 1), обсуждения результатов работы (главы 2-7), экспериментальной части (глава 8), выводов, списка литературы и приложения. Работа иллюстрируется 39 таблицами и 68 рисунками. Список литературы включает 320 источников. Объем диссертации составляет 345 страниц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Первая глава (литературный обзор) посвящен основным препаративным формам применения гербицидов – смачивающимся порошкам, гранулированным препаратам, гербицидным водным растворам, препаратам для ультрамалообъемного опрыскивания, водным и масляным суспензиям, эмульгирующимся и суспо-эмульсионным концентратам. В конце обзора приводится обоснование выбора продуктов нефтехимии для разработки рецептур гербицидных препаративных форм.

Отмечено, что широкий выбор нефтехимических продуктов различного строения, их взаимная совместимость в жидких рецептурах, техническая доступность

и относительно низкая стоимость являются хорошим стимулом для их использования в качестве компонентов современных гербицидных препаратов. Такими компонентами, наряду с действующими веществами, могут быть ионогенные и неионогенные поверхностно-активные вещества, углеводородные растворители различного химического строения, нефтяные масла, сложные эфиры, одно- и многоатомные спирты, первичные, вторичные, третичные амины, хлорзамещенные парафины и полиолефины и другие вещества.

Во второй главе «Используемые в работе действующие вещества и вспомогательные компоненты гербицидных препаратов» представлены сведения по применяемым в работе действующим веществам, поверхностно-активным веществам, органическим основаниям для получения солей гербицидов, компонентам суспензионных препаратов, растворителям эмульгирующихся и суспоэмульсионных концентратов. Ниже приводятся химические формулы и краткие названия основных действующих веществ разработанных гербицидных препаратов:

В третьей главе «Разработка рецептур и совершенствование технологии получения гербицидных суспензионных препаратов» приводятся результаты разработки рецептур и совершенствования технологии получения гербицидных суспензионных препаратов. Поскольку важнейшей эксплуатационной характеристикой суспензионных препаратов является их седиментационная и агрегативная устойчивость, представляло интерес оценить влияние различных факторов на этот показатель. Представленные на рисунках 3.3 и 3.4 графики свидетельствуют о том, что тип и концентрация ПАВ заметно влияют на стабилизацию системы. Устойчивость к седиментации плавно повышается, тогда как агрегативная устойчивость суспензии существенно возрастает с увеличением содержания любого из исследованных ПАВ.

По мере возрастания содержания ПАВ в системе происходит все более полное покрытие твердых частиц ленацила молекулами ПАВ до предельного насыщения, после чего его влияние на агрегативную устойчивость суспензии заметно ослабевает (рисунок 3.4).

Другая картина наблюдается при исследовании влияния размеров частиц твердой фазы. Здесь, как и следовало ожидать, в соответствии с законом Стокса седиментационная устойчивость суспензии с уменьшением размеров ее твердых частиц резко возрастает (рисунок 3.5) независимо от марки ПАВ, в то время как агрегативная устойчивость возрастает незначительно, а при недостатке ПАВ уменьшается (рисунок 3.6). Чем меньше размер частиц, тем острее ощущается этот недостаток, так как в данном случае происходит существенное увеличение поверхности раздела фаз, что при недостатке ПАВ, так необходимого для создания надежной защитной оболочки, способствует значительному понижению агрегативной устойчивости системы. Представленные на рисунках 3.7 и 3.8 зависимости показывают существенное влияние вязкости системы на ее устойчивость. Однако если кинетическая стабилизация суспензии с повышением вязкости растет пропорционально (рисунок 3.7), то агрегативная – скачкообразно (рисунок 3.8). В определенном диапазоне изменения вязкости (120±10 мПа·с) наблюдается эффект стабилизации системы к коагуляции, после чего при дальнейшем увеличении вязкости агрегативная устойчивость растет незначительно. Критическую концентрацию структурообразования (ККС) определяли при построении кривой зависимости вязкости суспензии от концентрации в ней твердой фазы (рисунок 3.9). В данном случае ККС для водной суспензии гексилур составляет около 45%. Препарат при данной концентрации действующего вещества обладает ярко выраженной тиксотропией, что благоприятно сказывается на стабильности при длительном хранении препарата.

На рисунках 3.10 и 3.11 представлены графики зависимости устойчивости препарата *гексилур* от разности плотности дисперсной фазы и дисперсионной среды. Градиент плотности обеспечивали за счет растворения в непрерывной фазе определенного количества нитрата аммония. Как и следовало ожидать, седиментационная устойчивость препарата резко уменьшается при увеличении разности плотности фаз (рисунок 3.10) при любом варианте применения ПАВ. Иная зависимость наблюдается при изучении агрегативной устойчивости препарата. По мере увеличения разности плотности устойчивость суспензии к коагуляции сначала незначительно изменяется, а затем уменьшается (рисунок 3.11), что можно объяснить ростом седиментации твердых частиц и накоплением их в коагуляте, в результате чего последний уплотняется и создаются условия для агрегации и агломерации частиц твердой фазы.

Существенно отличающиеся результаты получены при изучении автором масляной суспензии *дуацил*. Дисперсной фазой этого препарата, как и *гексилура*, является ленацил, а дисперсионной средой – гербицид метолахлор, представляющий собой при нормальных условиях жидкость с реологическими характеристиками, аналогичными минеральным маслам.

Для суспензии *дуацил* наблюдается значительное повышение ее кинетической устойчивости с увеличением количества эмульгатора (рисунок 3.14). Здесь, в отличие от водной среды (рисунок 3.3), масляная фаза лучше стабилизирует сус-

пензию, что, помимо специфических свойств метолахлора, объясняется еще и ростом вязкости системы, так как метолахлор имеет при 20°C вязкость, равную 119 мПа·с, а вода — около 1 мПа·с. Как и в случае с *гексилуром* (рисунок 3.4) наблюдается существенное повышение агрегативной устойчивости суспензии при увеличении содержания ПАВ (рисунок 3.15), однако ОП-10, обладающий относительно высокой гидрофильностью, уступает в поверхностной активности более липофильному ОП-7.

Сравнение зависимости устойчивости суспензии к седиментации от размеров частиц в варианте применения *гексилура* (рисунок 3.5) и *дуацила* (рисунок 3.16) снова показывает их различие. Во втором случае эта зависимость выражена менее ярко, что можно объяснить стабилизирующим влиянием высокой вязкости масляной фазы, которая также способствует плавному увеличению агрегативной устойчивости суспензии при уменьшении размера ее твердых частиц (рисунок 3.17). Необходимо также отметить, что прямая зависимости кинетической устойчивости препарата дуацил от вязкости (рисунок 3.18) имеет меньший угол наклона к оси абсцисс в сравнении с прямой на рисунке 3.7, а на кривой зависимости агрегативной устойчивости от вязкости отсутствует характерный для суспензии гексилур скачок (рисунки 3.8, 3.19). В данном случае в области высокой вязкости структурообразование системы протекает постепенно.

И, наконец, разность плотности фаз, которую изменяли добавкой определенного количества четыреххлористого углерода, растворимого в метолахлоре, оказывает значительное влияние как на кинетическую (рисунок 3.20), так и агрегативную (рисунок 3.21) стабильность масляной суспензии дуацил. В обоих случаях это влияние также существенно, как и для водной суспензии гексилур (рисунки 3.10, 3.11).

Проведенные исследования позволили оптимизировать рецептуры препаратов — содержание действующих веществ, ПАВ, других вспомогательных компонентов, после чего эти хорошо сбалансированные составы были исследованы на дисперсность с применением различного размольного оборудования. В опытах по размолу суспензий гексилур и дуацил в лабораторной горизонтальной бисерной мельнице подтвердилось преимущество масляной фазы — метолахлора в сравнении с водной. Как показывают результаты исследований (рисунки 3.22, 3.23), препарат дуацил имеет более высокую дисперсность, чем гексилур, причем диапазон распределения частиц по размерам довольно узкий для обоих препаратов. Еще более узкий фракционный состав с преобладанием частиц размером менее 5 мкм получен при использовании в качестве измельчителя вихревого аппарата (рисунок 3.23).

Отмечено огромное преимущество мокрого измельчения суспензий на любом из представленных в таблице 3.1 измельчителей в сравнении с вариантом обычного перемешивания, например, с помощью якорной мешалки. Здесь полностью отсутствуют частицы размером менее 4 мкм, а количество коагулята, выпавшего в осадок из 100 см3 1%-ной суспензии после 4-х часов ее отстоя составляет 1 см3, т.е. наблюдается полная коагуляция суспензии. Количество коагулята

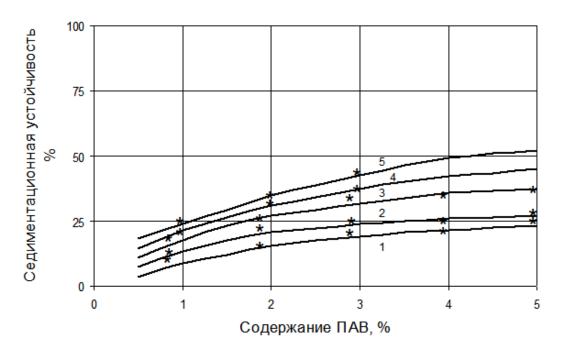


Рис. 3.3. Влияние ПАВ на седиментационную устойчивость суспензии *зексилур:* 1 - ОП-10; 2 - оксифос Б; 3 - синтанол АЛМ-10;

4 - синтанол АЛМ-10 + оксифос Б (2:1);

5 - ОП-10 + оксифос Б (2:1).

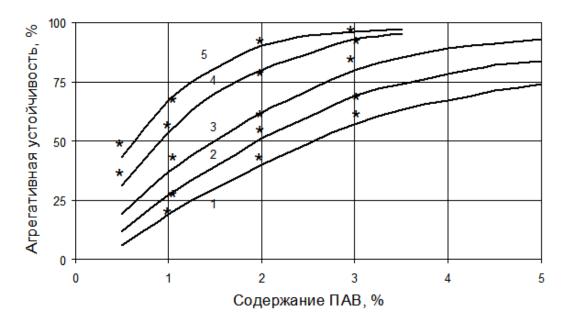


Рис.3.4. Влияние ПАВ на агрегативную устойчивость суспензии *гексилур*: обозначения как на рис.3.3

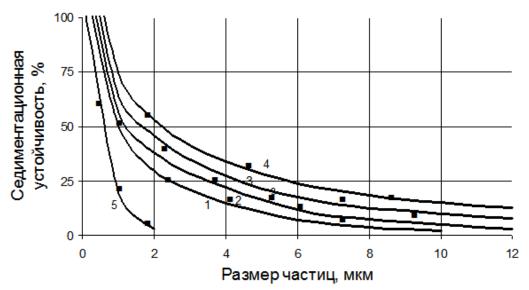


Рис.3.5. Влияние размеров частиц твердой фазы на седиментационную устойчивость суспензии гексилур:
1 - синтанол АЛМ-10 (2%); 2 - синтанол АЛМ-10 (2%) + оксифос Б (1%); 3 - синтанол АЛМ-10 (6%); 4 - синтанол АЛМ-10 (4%) + оксифос Б (2%); 5 - без ПАВ.

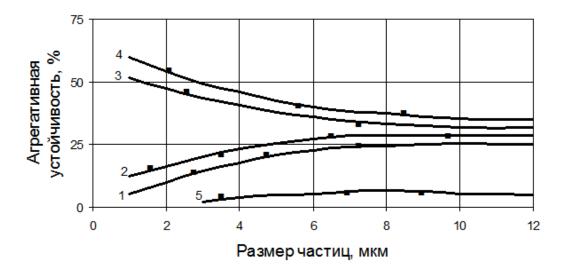


Рис. 3.6. Влияние размеров частиц твердой фазы на агрегативную устойчивость суспензии *гексипур*: обозначения - как на рис. 3.5

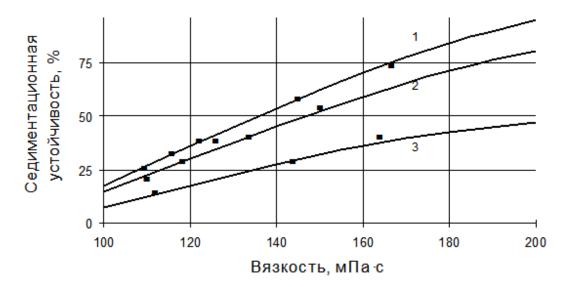


Рис.3.7. Изменение седиментационной устойчивости суспензии *гексипур* в зависимости от вязкости: 1 - синтанол АЛМ-10; 2 - ОП-10; 3 - без ПАВ.

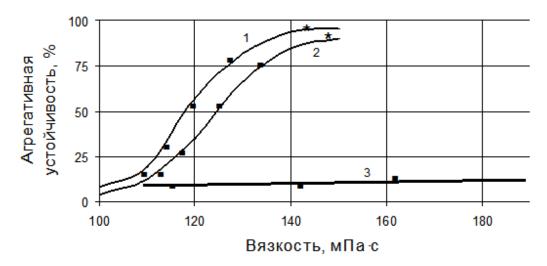


Рис. 3.8. Изменение агрегативной устойчивости суспензии *гексипур* в зависимости от вязкости: обозначения - как на рис. 3.7

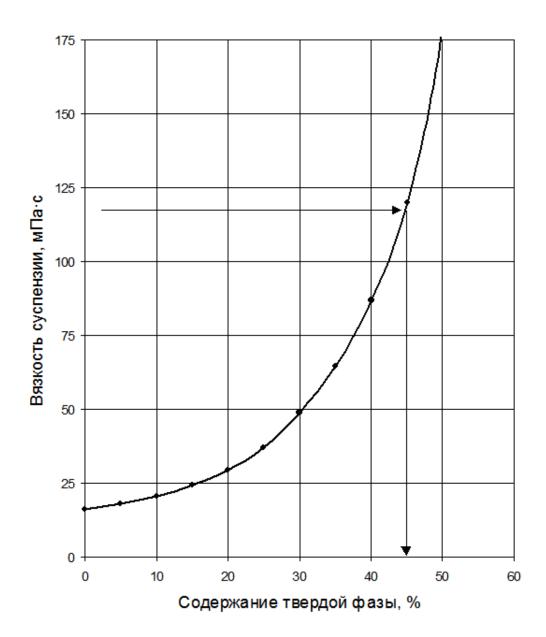


Рис.3.9. Критическая концентрация структурообразования (45%) гербицидной водной суспензии сексилур.

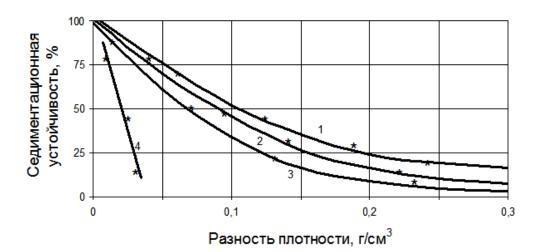


Рис. 3.10. Зависимость седиментационной устойчивости суспензии *гексипур* от разности плотности дисперсной фазы и дисперсионной среды:

1 - синтанол АЛМ-10; 2 - ОП-10; 3 - оксифос Б;
4 - без ПАВ

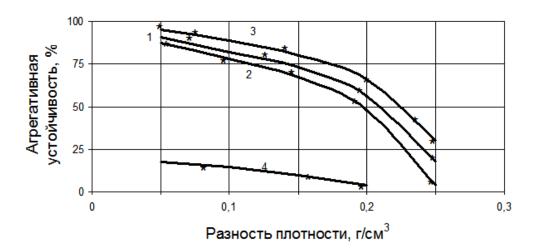


Рис. 3.11. Зависимость агрегативной устойчивости суспензии *гексипур* от разности плотности дисперсной фазы и дисперсионной среды: обозначения - как на рис. 3.10

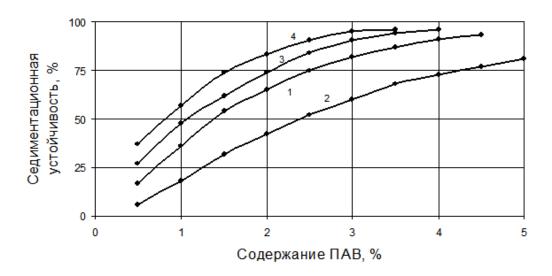


Рис. 3.14. Влияние ПАВ на седиментационную устойчивость суспензионного препарата *дуацил*: 1 - ОП-7; 2 - ОП-10; 3 - олеокс-5; 4 - синтамид-5.

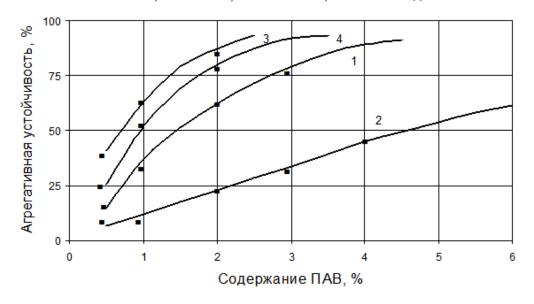


Рис. 3.15. Влияние ПАВ на агрегативную устойчивость суспензионного препарата *дуацил*: обозначения - как на рис. 3.14.

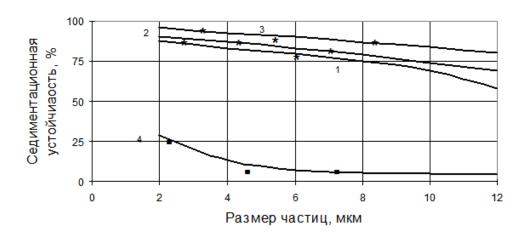


Рис.3.16. Влияние размеров частиц твердой фазы на седиментационную устойчивость суспензионного препарата *дуацил*: 1 - ОП-7 (6%); 2 - олеокс-5 (6%); 3 - синтамид-5 (6%); 4 - без ПАВ.

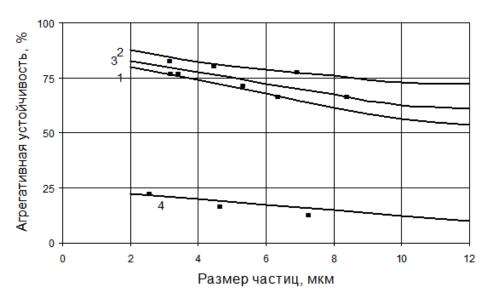


Рис.3.17. Влияние размеров частиц твердой фазы на агрегативную устойчивость суспензионного препарата дуацил: обозначения - как на рис.3.16

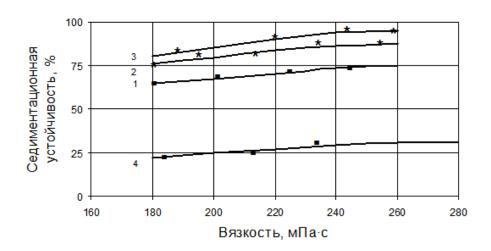


Рис.3.18. Изменение седиментационной устойчивости суспензионного препарата *дуацил* в зависимости от вязкости:
1 - ОП-7; 2 - олеокс-5; 3 - синтамид-5; 4 - без ПАВ.

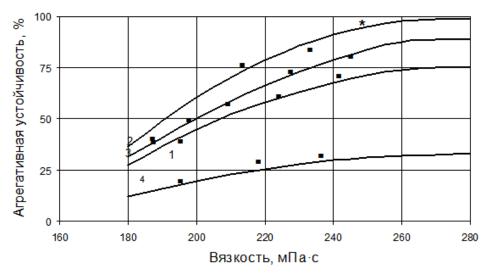


Рис. 3.19. Изменение агрегативной устойчивости суспензионного препарата *дуацил* в зависимости от вязкости: обозначения - как на рис. 3.18

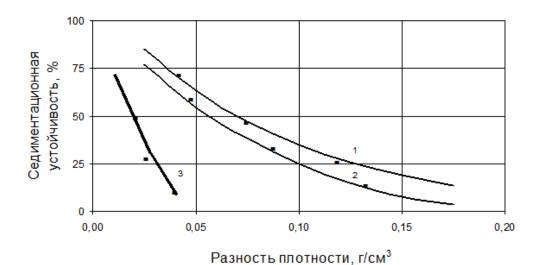


Рис.3.20. Зависимость седиментационной устойчивости суспензионного препарата *дуацил* от разности плотности дисперсной фазы и дисперсионной среды: 1 - синтамид-5; 2 - олеокс-5; 3 - без ПАВ.

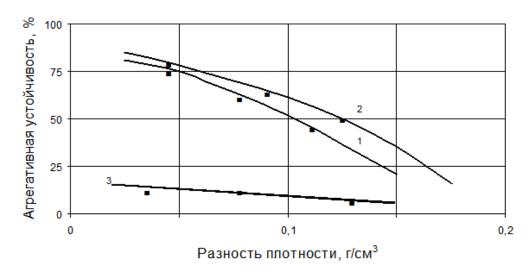


Рис.3.21. Зависимость агрегативной устойчивости суспензионного препарата дуацил от разности плотности дисперсной фазы и дисперсионной среды: обозначения - как на рис.3.20

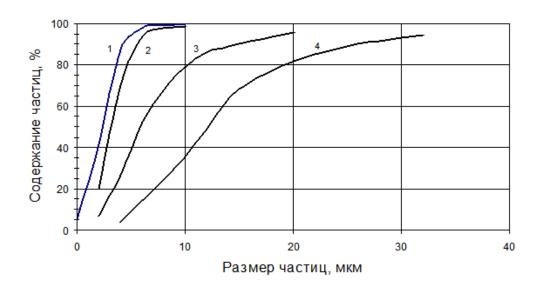


Рис. 3.22. Интегральные кривые содержания твердых частиц суспензионных препаратов после их мокрого измельчения: вихревой аппарат - 1 - дуацил; 2 - гексилур; бисерная мельница - 3 - дуацил; 4 - гексилур.

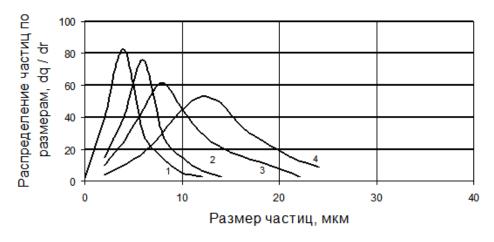


Рис. 3.23. Дифференциальные кривые распределения по размерам твердых частиц суспензионных препаратов после их мокрого измельчения: обозначения - как на рис. 3.22

Таблица 3.1 – Влияние размольного оборудования на качество 1% суспензий препаратов гексилур и дуацил

Наименование	Фракцио	нный состав дис	персной фазы суспе	нзии, %масс.	Количество коагулята через 4
оборудования	< 1 мкм	1-2 мкм	2-4 мкм	> 4 MKM	часа отстоя,
					cm ³
			Гексилур	1	
Бисерная мельница	0	28	46	26	0.4
ЭМИ	5	54	23	18	0.2
Вихревой аппарат	6	58	26	10	0.1
ЭМИ + УЗДН	8	66	19	7	0.1
Якорная мешалка	0	0	0	100	1.0
			Дуацил	1	
Бисерная мельница	3	32	45	20	0.2
ЭМИ	9	59	21	11	0.1
Вихревой аппарат	12	57	25	6	0.05
ЭМИ + УЗДН	16	64	16	4	0.05
Якорная мешалка	0	0	0	100	1.0

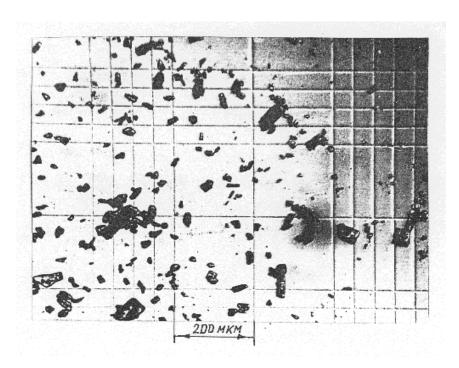


Рисунок 3.26 — Фотография суспензии ленацила, приготовленной с помощью якорной мешалки

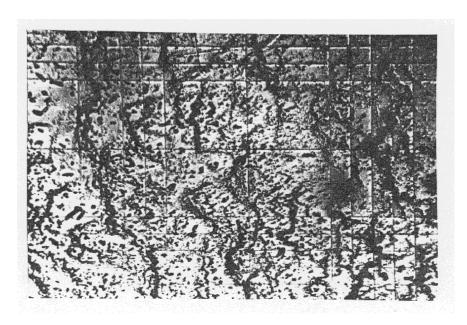


Рисунок 3.27 — Фотография суспензии ленацила после ее мокрого измельчения в бисерной мельнице

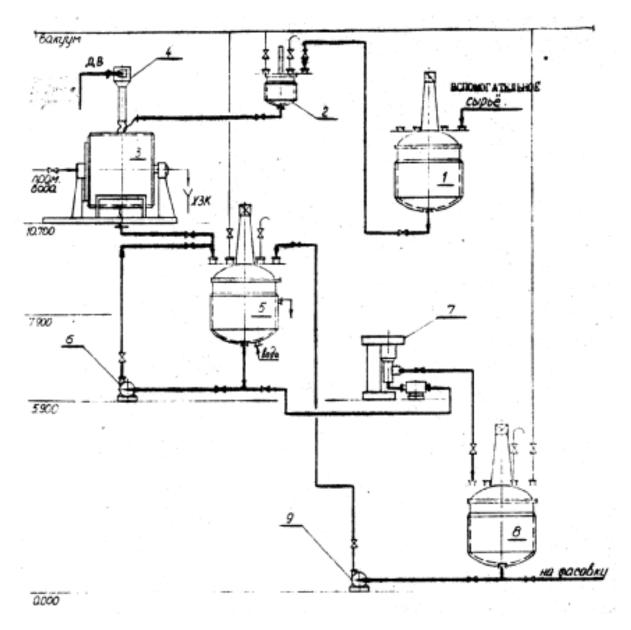


Рисунок 3.28 — Принципиальная технологическая схема производства суспензионных препаратов:

1, 5, 8 – сборник; 2 – мерник; 3 – шаровая мельница;

4 – загрузочный шкаф; 6, 9 – центробежный насос;

7 – бисерная мельница

Таблица 4.4 – Влияние различных ПАВ на показатели эмульсий препарата октапон – эстра

Концентрация ПАВ в препарате, % масс. Концентрация ПАВ в эмульсии, % масс.		Количество коагулята 2%-ной (по препарату) эмульсии объемом 100 см³через 4 часа отстоя, см³	Размер частиц ос- новной фракции дисперсной фазы, мкм	Пов. натяжение на границе с воздухом, мН/м	Межфазное натяже- ние, мН/м	
1	2	3	4	5	6	
		Неонол	АФ 9-12			
20,0	0,4	Коагулят отсутствует	1 ÷ 2	32,5	0,3	
15,0	0,3	0,05	1 ÷ 2	32,4	0,5	
10,0	0,2	0,3	4 ÷ 8	32,5	1,8	
5,0	0,1	1,0	5 ÷ 15	33,9	3,8	
		АБ	СК			
20,0	20,0 0,4		30 ÷ 35	29,5	5,6	
10,0	0,2	1,8	30 ÷ 45	33,9	6,7	
		Неонол + д	АБСК (4:1)			
15,0	0,3	Коагулят отсутствует	2 ÷ 4	31,6	0,4	
10,0	0,2	0,05	2 ÷ 4	31,8	0,6	
5,0	0,1	0,7	4 ÷ 12	33,5	1,9	
		Синтано	ол ДС-10			
20,0	0,4	0,3	3 ÷ 5	31,3	0,4	
15,0	0,3	0,6	4 ÷ 9	31,6	0,6	
10,0	0,2	1,5	12 ÷ 20	31,9	1,8	
5,0	5,0 0,1		20 ÷ 45	33,2	3,7	
	-	Синтанол +	-АБСК (4:1)	-		
15,0	0,3	0,2	3 ÷ 5	30,5	0,6	
10,0	0,2	0,7	10 ÷ 18	31,6	1,5	
5,0	0,1	1,4	15 ÷ 35	33,0	2,4	

Окончание табл. 4.4

1	2	3	4	5	6						
	Berol 9927										
15,0	0,3	Коагулят отсутствует	1 ÷ 2	30,1	0,3						
10,0	0,2	То же	1 ÷ 2	30,9	0,3						
7,0	0,14	0,8	3 ÷ 10	32,5	0,9						
5,0	0,1	1,2	3 ÷ 15	33,9	1,5						
		Berol	9968								
15,0	0,3	0,3	20 ÷ 40	29,5	3,6						
10,0	0,2	1,0	25 ÷ 55	30,7	5,8						
5,0	0,1	2,0	25 ÷ 55	30,1	7,2						

Таблица 4.5 – Влияние ПАВ и растворителей на показатели эмульсий препарата эфилон

Концентрация	Концентрация	Количество коагулята 2%-ной	Размер частиц основ-	Поверхностное натяже-	Межфазное
ПАВ в препарате, % масс.	ПАВ в эмуль- сии, % масс.	эмульсии объемом 100 см ³ через 4 часа отстоя, см ³	ной фракции дис-	ние на границе с возду- хом, мН/м	натяже- ние, мН/м
70 Macc.	сии, % масс.	ПАВ – неонол, раство	персной фазы, мкм	XOM, MIT/M	ние, мп/м
20.0	0.4	/ !	• • • • • • • • • • • • • • • • • • • •	22.4	0.4
20,0	0,4	Коагулят отсутствует	1-2	32,4	0,4
15,0	0,3	0,05	2-3	32,4	0,5
10,0	0,2	0,1	3-4	32,6	0,6
5,0	0,1	1,0	15-20	33,3	1,5
2,5	0,05	1,4	40-50	33,9	2,1
1,25	0,025	1,8	50-70	34,9	3,4
		ПАВ – Berol, раствор	11		
20,0	0,4	Коагулят отсутствует	Менее 1	28,7	0,5
15,0	0,3	То же	1-2	28,7	0,5
10,0	0,2	0,05	1-3	29,3	O,5
5,0	0,1	0,5	5-10	31,7	2,4
2,0	0,04	1,0	10-20	35,4	6,1
1,0	0,02	2,0	10-20	43,5	14,2
		ПАВ – неонол, растворит	ель - циклогексанон		
20,0	0,4	0,05	2-3	31,7	0,7
15,0	0,3	0,1	3-4	32,1	1,6
10,0	0,2	0,3	5-10	32,4	3,0
5,0	0,1	1,5	20-25	33,1	3,9
2,5	0,05	1,8	50-70	33,1	5,4
1,25	0,025	1,8	50-70	37,1	6,2
		ПАВ – Berol, растворите.	ль - циклогексанон		
20,0	0,4	0,05	1-3	33,1	0,5
15,0	0,3	0,15	3-5	32,4	0,7
10,0	0,2	0,2	5-10	33,8	1,8
5,0	0,1	0,3	5-10	35,4	2,9
2,0	0,04	0,8	15-20	38,8	5,5
1,0	0,02	1,5	20-50	39,0	17,1

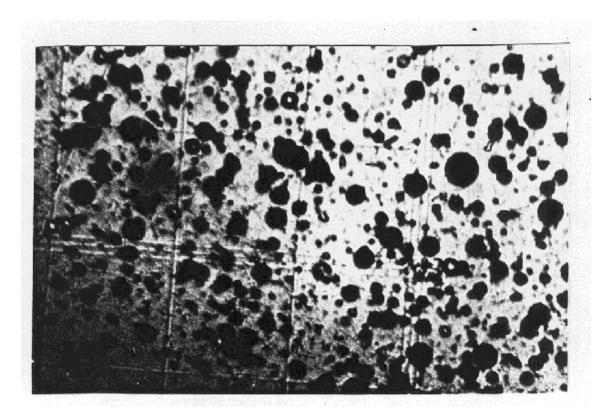


Рисунок 4.14 – Фотография эмульсии препарата октапон

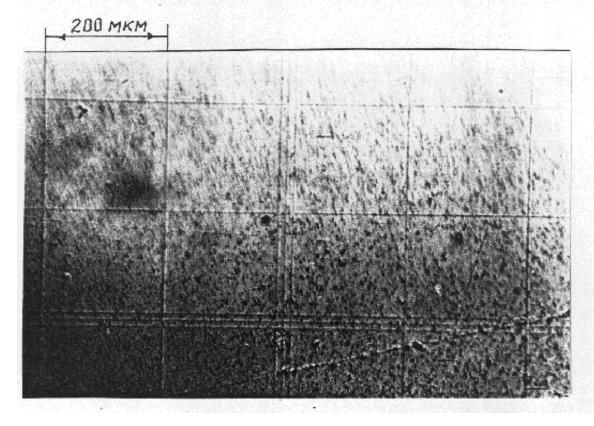


Рисунок 4.15 – Фотография эмульсии препарата октапон-экстра

уменьшается в 2,5 раза при использовании в качестве размольного оборудования бисерной мельницы, в 5 раз - электромагнитного измельчителя, в 10 раз — вихревого аппарата. Преимущество мокрого измельчения наглядно подтверждается фотографическими снимками суспензии *гексилур* под микроскопом. Как видно на фотографиях, частицы ленацила после обычного перемешивания суспензии имеют размеры в поперечнике до 80-100 мкм (рисунок 3.26). Применение измельчителя позволяет в несколько десятков раз уменьшить их размеры (рисунок 3.27).

На опытно-экспериментальном производстве НИТИГ был освоен процесс приготовления суспензионных препаратов, который в дальнейшем был усовершенствован исключением из технологической схемы узла сухого размола технических гербицидов, ухудшающего за счет пыления санитарно-гигиенические условия процесса. Вместо этого в схему был включен еще один узел мокрого измельчения — шаровая мельница (рисунок 3.28). Таким образом, сочетание предварительного измельчения в шаровой мельнице и завершающего (тонкого) мокрого диспергирования препаратов в бисерной мельнице позволило, во-первых, полностью предотвратить пыление твердых компонентов, во-вторых, более, чем в 2 раза увеличить степень измельчения гербицидных суспензий.

В **четвертой главе** «Химическая технология разработки и совершенствования углеводородных препаративных форм гербицидов» изложена химическая технология разработки и совершенствования углеводородных препаративных форм гербицидов, включающая разработку гербицидных составов на основе

2,4-Д, применение аппаратов для получения концентрированных эмульсий, изучение процесса мицеллообразования ПАВ в гербицидных микроэмульсиях. Усовершенствована методология выбора ПАВ и углеводородных растворителей для эмульгирующихся концентратов гербицидов. Изучено влияние ПАВ и растворителей различного химического строения на физико-химические свойства эмульсий препаратов эфилон и октапон-экстра.

В отличие от суспензионных препаратов, обеспечение хорошего качества которых требует использования, наряду с ПАВ, подходящего диспергирующего оборудования, для эмульгирующихся составов тип и концентрация ПАВ имеют определяющее значение. Подбираемый эмульгатор должен обеспечить однородность концентрата и высокие эксплуатационные характеристики эмульсии, полученной на его основе.

При исследовании препаратов эфилон и октапон-экстра наряду с отечественными ПАВ нами испытывались импортные эмульгаторы — Berol 9927 и Berol 9968. Выбор препаратов эфилон и октапон-экстра обусловлен простотой их компонентного состава, представляющего собой классическую комбинацию гербицидной препаративной формы: действующее вещество — ПАВ — растворитель. Как правило, данные, полученные при изучении этих препаратов совпадают с результатами исследования эмульгирующихся концентратов на основе других действующих веществ — эфиров дикамбы, 2М-4Х и др. Полученные данные показали, что с уменьшением концентрации ПАВ в препарате и в эмульсии количество коагулята увеличивается, размер частиц дисперсной фазы увеличивается. поверхностное натяжение на границе с воздухом и межфазное натяжение также увеличиваются (таблица 4.4).

Комбинирование неонола или синтанола с АБСК способствует уменьшению расхода ПАВ. Такой же результат дает использование эмульгатора Berol 9927, в этом варианте расход ПАВ минимальный и составляет 7÷10 % масс.

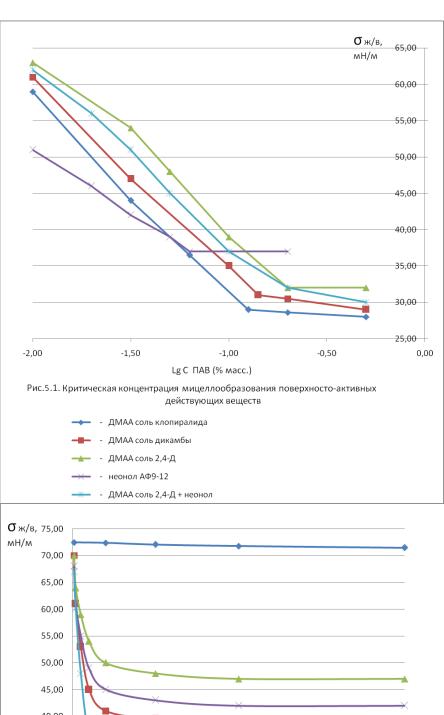
Следует отметить, что Berol 9968 не подходит для разработки гербицидных препаративных форм. Основная причина — плохая растворимость этого эмульгатора в воде. Такие ПАВ обычно применяются в обратных эмульсиях типа «вода в масле», что соответствует правилу Банкрофта. По этой же причине АБСК, примененный индивидуально, также не подходит для разработки рецептур гербицидных препаратов. Этот эмульгатор может быть использован в рецептуре только в комбинации с неионогенными ПАВ. Преимущество хорошо сбалансированной рецептуры препарата октапон-экстра перед препаратом октапон подтверждают фотографии эмульсий под микроскопом (рисунки 4.14, 4.15). Следует добавить, что циклогексанон уступает нефрасу по показателю межфазного натяжения — в варианте применения нефраса, при прочих равных условиях, этот показатель меньше, что благоприятствует стабилизации гербицидной эмульсии (таблица 4.5).

В пятой главе «Современные способы оптимизации рецептур углеводородных эмульгирующихся концентратов гербицидов» приводятся результаты исследований автора в области современных способов оптимизации рецептур углеводородных формуляций, базирующихся на определении синергизма ПАВ, его адсорбции и десорбции с поверхности раздела органической и водной фаз, определении параметров адсорбционного слоя эмульгаторов, а также на процессе распределения ПАВ в гербицидных эмульсиях и эффективном влиянии бифункциональных компонентов на показатели поверхностного натяжения, дисперсности эмульсии, времени спонтанного эмульгирования концентрата и критической концентрации мицеллообразования (ККМ) в рабочих жидкостях.

При изучении физико-химических свойств первичных, вторичных, третичных аминных солей гербицидов в НИТИГ была установлена высокая поверхностная активность диметил- C_{12} - C_{14} -алкиламинной (ДМАА) соли 2,4-Д, дикамбы, глифосата, клопиралида. Представленные на рисунке 5.1 логарифмические анаморфозы хорошо подчиняются адсорбционному уравнению Гиббса и позволяют определить ККМ ДМАА соли 2,4-Д — 0,14% масс., ДМАА соли клопиралида — 0,12% масс., ДМАА соли дикамбы — 0,13% масс., а также ККМ неонола АФ 9-12 — 0,05 % масс. ККМ смесей этих солей с неонолом определить этим методом не удалось, так как изотерма в координатах «поверхностное натяжение — логарифм концентрации ПАВ» имеет вид плавной S-образной кривой, не разделенной четко на участки (рисунок 5.1).

В качестве третичных аминных солей гербицидов для определения их поверхностной активности нами также использовалась диметилэтаноламинная (ДМЭА) соль клопиралида и комбинации солей с неонолом АФ9-12. Представленные на рисунке 5.2 изотермы поверхностного натяжения водных растворов компонентов на границе с воздухом убедительно показывают отсутствие поверхностно-активных свойств у ДМЭА соли клопиралида, что соответствует правилу Траубе. На графике наблюдается постоянное поверхностное натяжение водного раствора этой соли, не зависящее от ее концентрации. Чем больше содержание ДМЭА соли клопиралида в комбинации с неонолом, тем выше поверхностное натяжение раствора ПАВ.

Существенно отличные результаты наблюдаются при использовании ДМАА соли клопиралида. Изотерма поверхностного натяжения водного раствора этой соли


значительно сдвинута в область его меньшего значения (рисунок 5.3). Чем больше содержание ДМАА соли в комбинации с неонолом, тем больше смещение изотермы в эту область. Появление минимума на кривых и отклонение от уравнения Шишковского можно объяснить наличием примеси диметилалкиламина, не вступившего в реакцию солеобразования с 3,6-дихлорпиридин-2-карбоновой кислотой.

При определении ККМ по изменению показателя преломления в качестве бифункционального компонента в работе использовали ДМАА соль клопиралида, на основе которой нами разработана рецептура гербицидного препарата битолакс, в качестве растворителей — нефрас А 130/150, соляровый дистиллят, циклогексанон, изооктиловый спирт (димерол). Представленная на рисунке 5.4 зависимость показателя преломления водных растворов ДМАА соли клопиралида показывает различное влияние на показатель ККМ исследуемых растворителей. Если циклогексанон практически не изменяет этот показатель, то три другие растворителя способствуют увеличению ККМ в такой последовательности: соляровый дистиллят, изооктиловый спирт, нефрас. Слабое влияние на ККМ циклогексанона можно оъяснить его растворимостью в воде, которая составляет 2,4%.

Как показано выше, хорошие результаты по стабилизации гербицидных эмульсий дает использование комбинации эмульгаторов, один из которых является неионогенным, а другой анионоактивным. В связи с этим нами было выдвинуто предположение о возможном синергистическом эффекте комбинации двух ПАВ. Для подтверждения этого предположения нами экспериментально определялся период полураспада эмульсии (ППЭ) при использовании в ней каждого эмульгатора в отдельности, а также их смеси с последующим расчетом синергистического взаимодействия комбинации двух ПАВ по разработанному нами и защищенному патентом РФ способу. Представленные в таблице 5.4 данные свидетельствуют о том, что комбинации синтанола ДС-10 и АБСК, неонола АФ 9-12 и ДМАА обладают синергизмом как при использовании в качестве гербицида эфира 2,4-Д, так и при использовании эфира дикамбы. Также установлено, что комбинации ДМАА и АБСК, неонола и синтанола обладают слабым синергизмом.

С целью расширения экспериментальных возможностей определения синергистического взаимодействия поверхностно-активных веществ различного химического строения нами разработан метод определения синергизма по другому показателю гербицидных эмульсий — по их дисперсности. Результаты опытов (таблица 5.5) подтвердили полученные нами данные по синергизму комбинаций ПАВ различного химического строения. Комбинации синтанол-АБСК, неонол-АБСК, синтанол-АДМА, неонол-АДМА обладают синергизмом, а составы АБСК-АДМА и синтанол-неонол его не проявляют. Этот метод также защищен патентом РФ.

При исследовании зависимости межфазного натяжения, которое определяли расчетным (правило Антонова) и экспериментальным методами, от концентрации ПАВ в эмульсии через определенные промежутки времени, а именно, в момент приготовления эмульсии, в момент ее полураспада и при завершении коалесцен

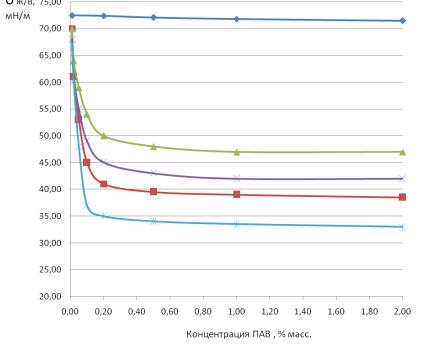


Рис.5.2. Изотермы поверхностного натяжния на границе с воздухом водных растворов ПАВ на основе ДМЭА соли клопиралида

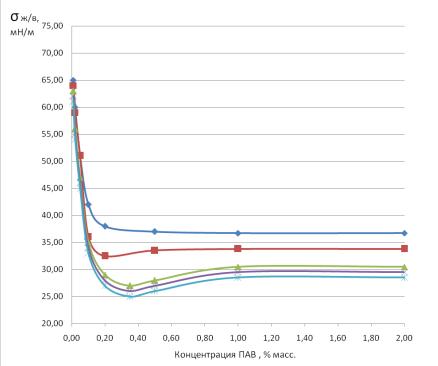
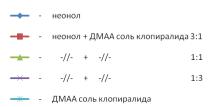



Рис. 5.3. Изотермы поверхностного натяжния на границе с воздухом водных растворов ПАВ на основе ДМАА соли клопиралида

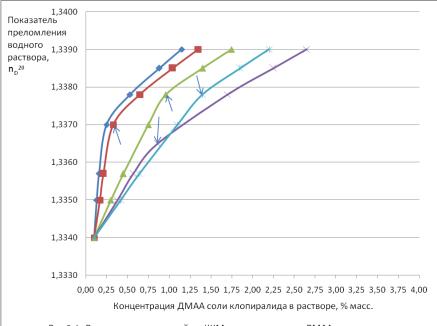


Рис.5.4. Влияние растворителей на ККМ водного раствора ДМАА соли клопиралида

- без растворителя
- циклогексанон
- изооктиловый спирт
- соляровый дистиллят
- нефрас

Таблица 5.4 – Определение синергизма комбинаций ПАВ по показателю периода полураспада эмульсии

NºNº		ующее веще- ство, 6 масс.]		стно-активі во, % масс.		Раство- ри-	ппэ,		ергизм смеси двух ПАВ	
примеров	Эфир 2,4-Д	Эфир дикамбы	Син- танол	АДМА	Неонол	АБСК	тель, % масс.	час.	%фа- ктич.	% расч.	+ -
1	2	3	4	5	6	7	8	9	10	11	12
1.	75					5	20	1,6	18,0		
2.	75		15				10	2,0	22,5		
3.	75		15			5	5	5,3	59,5	36,5	+23,0
4.	75					5	20	1,6	25,8		
5.	75			15			10	1,8	29,0		
6.	75			15		5	5	2,8	45,2	47,3	-2,1
7.	75					5	20	1,6	14,5		
8.	75				15		10	2,8	25,5		
9.	75				15	5	5	6,6	60,0	36,3	+23,7
10.		75				5	20	1,2	14,1		
11.		75	15				10	1,9	22,4		
12.		75	15			5	5	5,4	63,5	33,3	+30,2
13.		75				5	20	1,2	21,1		
14.		75		15			10	1,8	31,6		
15.		75		15		5	5	2,7	47,3	46,0	+1,3
16.		75				5	20	1,2	11,8		
17.		75			15		10	2,5	24,5		
18.		75			15	5	5	6,5	63,7	33,4	+30,3
19.	75			5			20	1,4	16,1		
20.	75		15				10	2,1	24,1		
21.	75		15	5			5	5,2	59,8	36,3	+23,5
22.	75		20				5	3,6			

Таблица 5.5 – Определение синергизма комбинаций ПАВ по показателю дисперсности эмульсии

NºNº		ействующ вещество, % масс.		П	веще	но-активн ество, ласс.	oe	Раство	Усредненный размер частиц	Дисперсность	Синерги	ізм смеси 2	смеси 2-х ПАВ	
при- меров	Эфир 2,4-Д	Эфир клопи- ралида	Эфир дикам бы	Син- танол	АДМА	Неонол	АБСК	ритель, % масс	дисперсной фазы (Р), мкм	$(\underline{\Pi} = 1/P),$ MKM^{-1}	% фак- тич.	% расчет.	±	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1.	65	10					5	20	25	0,04	21			
2.	65	10		15				10	20	0,05	26			
3.	65	10		15			5	5	10	0,1	53	41,5	+11,5	
4.	65	10					5	20	25	0,04	39,2			
5.	65	10			15			10	35	0,029	28,4			
6.	65	10			15		5	5	30	0,033	32,4	54,9	-22,5	
7.	65	10					5	20	25	0,04	13			
8.	65	10				15		10	15	0,067	21,8			
9.	65	10				15	5	5	5	0,2	65,2	32	+33,2	
10.	65		10				5	20	30	0,033	19			
11.	65		10	15				10	25	0,04	23,1			
12.	65		10	15			5	5	10	0,1	57,9	37,7	+20,2	
13.	65		10				5	20	30	0,033	32,4			
14.	65		10		15			10	35	0,029	28,4			
15.	65		10		15		5	5	25	0,04	39,2	52,4	-13,2	
16.	65		10				5	20	30	0,033	18			
17.	65		10			15		10	20	0,05	27,3			
18.	65		10			15	5	5	10	0,1	54,7	40,4	+14,3	

ции эмульсии нами было отмечено смещение изотермы в сторону более высокого значения межфазного натяжения (рисунок 5.5). Такой сдвиг изотермы можно объяснить десорбцией ПАВ с поверхности раздела фаз, что, в соответствии с правилом Ребиндера, приводит к увеличению поверхностного натяжения на границе органической и водной фаз. Поскольку десорбция ПАВ с межфазной поверхности способствует коагуляции и коалесценции эмульсии, то становится очевидным вывод: чем больше ПАВ десорбируется с поверхности раздела фаз, тем больше сдвиг изотермы межфазного натяжения в сторону его более высокого значения.

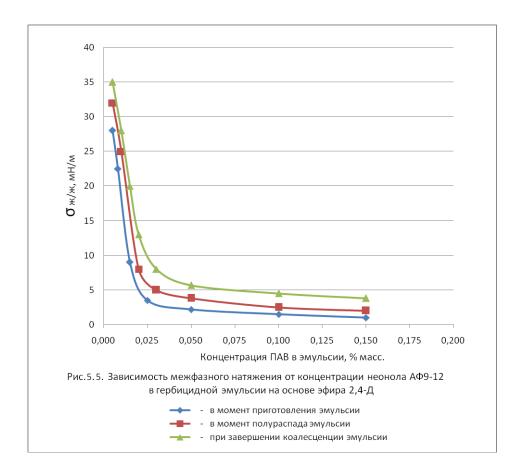
При завершении коалесценции эмульсии смещение изотермы межфазного натяжения прекращается, так как эмульгатор практически полностью десорбируется с поверхности раздела фаз жидкость-жидкость, что подтверждают данные таблицы 5.8. Удельная поверхность частиц, образуемых из 1 г препарата, составляет $0.47 - 3.75 \text{ м}^2/\Gamma$ в зависимости от их диаметра, тогда как площадь поверхности 1 г коагулята равна 4.6 см², то есть в тысячу раз меньше. Этот факт позволяет сделать допущение: сколько ПАВ адсорбировалось на межфазной поверхности в момент приготовления эмульсии, почти столько же его и десорбировалось при завершении коалесценции эмульсии. Разница содержания ПАВ при одинаковом межфазном натяжении (рисунок 5.5) позволяет определить количество десорбированного, а значит ранее адсорбированного ПАВ (% масс.), через плотность перевести его массу в объем и делением на суммарную площадь поверхности частиц дисперсной фазы эмульсии определить толщину адсорбционного слоя эмульгатора. Последующий расчет позволяет определить количество молекул ПАВ в адсорбционном слое и площадь поверхности раздела фаз, приходящуюся на одну молекулу эмульгатора. Данные таблицы 5.9 показывают, что оптимальное содержание неонола АФ 9-12 в гербицидном препарате на основе эфира 2,4-Д составляет 17.5-20%. Толщина адсорбционного слоя ПАВ равна 0.0069 мкм для значения 17.5% и более не увеличивается при содержании 20%. Площадь межфазной поверхности, приходящаяся на одну молекулу неонола, составляет 1.74·10⁻⁷мкм² при значении 17.5% и практически такая же $-1.75\cdot10^{-7}$ мкм² для варианта 20%. Процесс насыщения адсорбционного слоя наглядно иллюстрируется рисунками 5.9 и 5.10. С повышением содержания эмульгатора происходит увеличение толщины адсорбционного слоя и уменьшение площади межфазной поверхности, приходящейся на одну молекулу по нелинейной зависимости до определенного значения, после чего эти показатели стабилизируются. Таким образом, можно заключить, что защитный слой ПАВ на поверхности раздела фаз гербицидной эмульсии сформировался, «частокол» Ленгмюра устойчив.

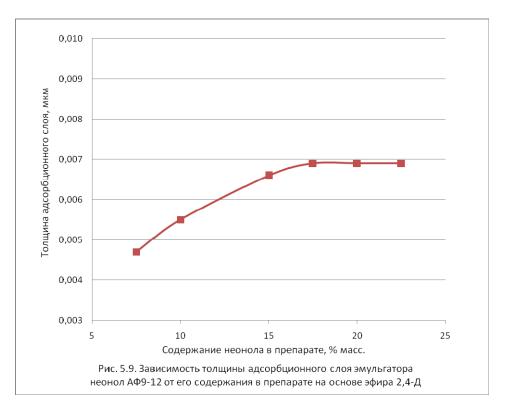
Впоследствии оказалось, что этот разработанный и запатентованный нами метод графического сдвига изотермы межфазного поверхностного натяжения и ее логарифмической анаморфозы позволяет определять не только толщину адсорбционного слоя эмульгаторов и площадь межфазной поверхности, приходящуюся на одну молекулу, но и исследовать процесс распределения ПАВ в водной фазе, органической фазе и на поверхности раздела фаз гербицидных эмульсий.

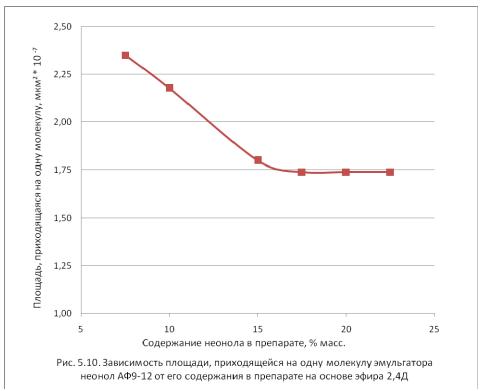
Таблица 5.8 – Удельная поверхность частиц дисперсной фазы гербицидной эмульсии на основе эфиров 2,4-Д или дикамбы

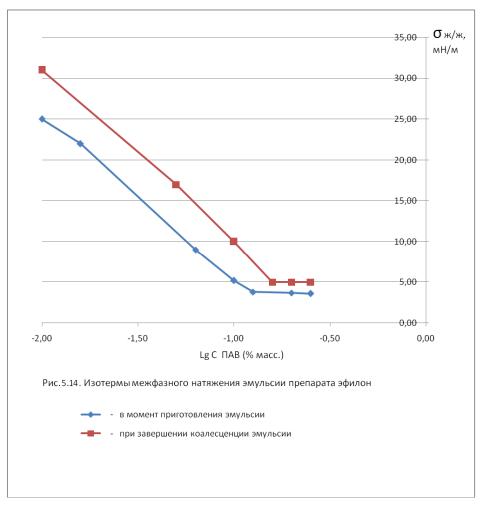
Наименование показателей	Значение показателей									
Усредненный размер одной частицы дисперсной фазы эмульсии, мкм	1.5	2.0	5.0	7.0	10.0	12.0				
Объем 1г препарата при его плотности, равной 1.07г/cm^3 , cm^3	0.935	0.935	0.935	0.935	0.935	0.935				
Объем 1г препарата, мкм ³	$0.935 \cdot 10^{12}$									
Объем одной частицы дисперсной фазы эмульсии, мкм ³	1.767	4.189	65.45	179.59	523.6	904.78				
Количество частиц, образуемых из 1г препарата, шт.	$0.53 \cdot 10^{12}$	$2.23 \cdot 10^{11}$	1.43·10 ¹⁰	5.21·10 ⁹	1.78·10 ⁹	1.03·10 ⁹				
Площадь поверхности одной частицы, мкм ²	7.07	12.57	78.54	153.94	314.16	452.39				
Суммарная площадь поверхности частиц, образуемых из 1г препарата, мкм ²	$3.75 \cdot 10^{12}$	$2.81 \cdot 10^{12}$	$1.12 \cdot 10^{12}$	$0.80 \cdot 10^{12}$	$0.56 \cdot 10^{12}$	$0.47 \cdot 10^{12}$				
Удельная поверхность частиц, образуемых из 1 г препарата, м^2 /г	3.75	2.81	1.12	0.80	0.56	0.47				
Площадь поверхности 1г коагулята в форме шара объемом 0.935 cm^3 , cm^2	4.6	4.6	4.6	4.6	4.6	4.6				

Таблица 5.9 — Ориентировочный расчет параметров адсорбционного слоя неонола $A\Phi$ 9-12 в эмульсии гербицидного препарата на основе эфира 2,4-Д.


Наименование показателей	Значение показателей			
Количество неонола в препарате, % масс.	10	15	17.5	20
Усредненный размер частиц дисперсной фазы эмульсии, мкм	12	5	2	1.5
Объем одной частицы, мкм ³	904.78	65.45	4.189	1.767
Доза препарата на обработку 1 га, мл	700	700	700	700
Объем препарата на 1см ² площади обработки, мкм ³	7·10 ⁶	7·10 ⁶	7·10 ⁶	7·10 ⁶
Количество частиц на 1см ² , шт.	7737	1.07·10 ⁵	1.67·10 ⁶	3.96·10 ⁶
Площадь поверхности одной частицы, мкм ²	452.39	78.54	12.57	7.07
Суммарная площадь поверхности частиц, мкм ²	$3.5 \cdot 10^6$	8.4 ·10 ⁶	2.1·10 ⁷	2.8·10 ⁷
Объем эмульсии на обработку 1га, л	100	100	100	100
Объем эмульсии на 1 см 2 площади обработки, мкм 3	10 ⁹	10 ⁹	10 ⁹	10 ⁹
Вес эмульсии на 1см ² площади обработки, мкг	10 ³	10 ³	10 ³	10^{3}
Количество неонола, адсорбированного на межфазной поверхности, % масс.	0.002	0.0058	0.015	0.02
Вес адсорбированного неонола, мкг	0.02	0.058	0.15	0.2
Объем адсорбированного неонола, мкм ³	$1.92 \cdot 10^4$	5.57·10 ⁴	14.42·10 ⁴	19.2·10 ⁴
Толщина адсорбционного слоя неонола, мкм	0.0055	0.0066	0.0069	0.0069
Вес одного моля неонола, мкг	748·10 ⁶	748·10 ⁶	748·10 ⁶	748·10 ⁶
Количество молей неонола	0.267·10 ⁻¹⁰	$0.775 \cdot 10^{-10}$	2.0·10 ⁻¹⁰	2.66·10 ⁻¹⁰
Количество молекул неонола	1.607·10 ¹³	4.66·10 ¹³	12.04·10 ¹³	$16.01 \cdot 10^{13}$
Площадь, приходящаяся на одну молекулу, мкм ²	2.178·10 ⁻⁷	1.80·10 ⁻⁷	1.74·10 ⁻⁷	1.75·10 ⁻⁷


По величине сдвига (рисунок 5.14) определяли количество ПАВ, адсорбированного на межфазной поверхности, и сравнивали с его общим количеством, вносимым с препаратом. Разница этих значений дает вес ПАВ, растворенного в органической и водной фазах (таблица 5.13,). Содержание эмульгатора, растворенного в органической и водной фазах гербицидной эмульсии, зависит от соотношения объемов фаз. При увеличении объема препарата происходит рост количества неонола, растворенного в органической и водной фазах (таблица 5.13).


Для определения количества эмульгатора, растворенного в органической фазе — 2-этилгексиловом эфире 3,6-дихлорпиридин-2-карбоновой кислоты, нами использовался косвенный метод, основанный на определении поверхностного натяжения на границе с воздухом жидких неонола АФ 9-12, синтанола ДС-10 и указанного эфира, а также их комбинаций при различном соотношении эфир: ПАВ (рисунок 5.15). Пропорциональное увеличение поверхностного натяжения при росте содержания эмульгатора дает возможность определить его долю в органической фазе, которая составляет не более 1-2% масс. при поверхностном натяжении, равном 29.7 мН/м. Таким образом, содержание ПАВ, растворенного в органической фазе, многократно меньше, чем в дисперсионной среде.


Шестая глава «Разработка эффективных гербицидных препаратов в форме суспоэмульсионных концентратов» содержит результаты исследования эффективных гербицидных препаратов в форме суспоэмульсионных концентратов, включающие изучение химической стабильности замещенных арилсульфонилгетерилмочевин в рецептурах препаратов, способы разработки суспоэмульсионного концентрата вигосурон и его аналогов, а также взаимосвязь показателей гербицидных эмульсий и суспоэмульсий с величиной расхода воды, необходимой для их приготовления.

В ходе проведения научных работ по формуляции высокоэффективных гербицидов - триасульфурона и хлорсульфурона в комбинации с эфиром 2,4-Д или эфиром дикамбы в виде суспоэмульсионного концентрата, автором было сделано предположение, что стабилизация химической структуры замещенных арилсульфонилгетерилмочевин связана с их адсорбцией на поверхности инертного наполнителя. Для подтверждения этого предположения нами были проведены исследования динамики содержания гербицида в суспоэмульсионном концентрате при его длительном хранении, а также процесса распределения триасульфурона между жидкой и твердой фазами препаративной формы. В качестве жидкой фазы использовали 2-этилгексиловый эфир 2,4-Д или 2-этилгексиловый эфир дикамбы, растворитель нефрас, эмульгаторы неонол АФ 9-10 и АФ 9-12, а также 2этилгексанол. Твердой фазой служили аэросил, белая сажа, каолин, лаурилсульфат натрия, лигносульфонаты. Полученные результаты (таблица 6.2) показали более высокое содержание триасульфурона на поверхности твердой фазы (0.34г), чем в растворе (0.16 г), т.е. гербицид значительно сконцентрирован на поверхности инертного наполнителя. Анализ содержания триасульфурона и хлорсульфурона в образцах концентратов при их длительном хранении подтвердил наше

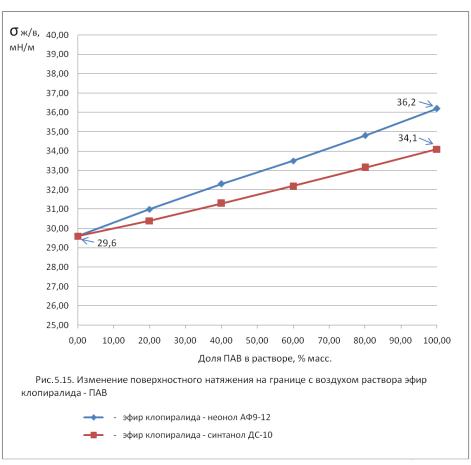


Таблица 5.13 – Распределение неонола АФ 9-12 в эмульсии препарата эфилон

Наименование показателей Значение показателей			елей		
Объем препарата на обработку 1 га, мл	100	150	200	250	300
Вес препарата на обработку 1 га, г	107	160.5	214	267.5	321
Количество ПАВ, вносимое с препаратом на 1 га, г	21.4	32.1	42.8	53.5	64.2
Объем воды на обработку 1 га, л	200	200	200	200	200
Вес воды на обработку 1 га, г	2×10 ⁵				
Количество ПАВ, адсорбированного на межфазной поверхности, % масс.	0.005	0.007	0.011	0.015	0.015
Вес адсорбированного ПАВ, г	10	14	22	30	30
Вес ПАВ, растворенного в органической и водной фазах, г	11.4	18.1	20.8	23.5	34.2

предположение о значительной стабилизации их химической структуры при формуляции совместно с эфиром 2,4-Д (препарат *октиген-Т*) или эфиром дикамбы (препарат uafah) в виде суспоэмульсионного концентрата по сравнению с эмульгирующимся концентратом (рисунки 6.1 и 6.2).

С точки зрения эффективного применения гербицидов очень важен оптимальный расход воды, необходимой для приготовления рабочей жидкости. В таблице 6.10 приведены данные взаимосвязи размера частиц дисперсной фазы эмульсии, поверхностного натяжения на границе с воздухом и количества коагулята с величиной расхода воды для гербицидного препарата чисталан. Как видно из таблицы, уменьшение расхода воды, то есть повышение концентрации препарата в эмульсии, способствует коагуляции эмульсии, а значит и увеличению размера частиц дисперсной фазы. Низкая концентрация препарата в эмульсии (таблица 6.10) свидетельствует о том, что все эти эмульсии прямого типа (правило Оствальда).

Наблюдается уменьшение поверхностного натяжения на границе с воздухом при снижении расхода воды, что объясняется увеличением концентрации ПАВ в эмульсии. Оптимальный объем воды, обеспечивающий хорошие физико-химические показатели эмульсии, составляет 80 - 107 л / га.

В **седьмой главе** «Повышение гербицидного потенциала, технология производства, экономика применения препаративных форм» представлены результаты работы по повышению гербицидного потенциала за счет применения различных адъювантов — продуктов нефтехимии в рецептурах гербицидных препаратов (таблица 7.1), приводятся сведения по технологии производства и экономике применения препаративных форм, представлен перечень препаратов, в разработке которых автор принимал непосредственное участие.

Производство суспоэмульсионных и эмульгирующихся концентратов осуществляют по единой технологической схеме (рисунок 7.1). Жидкие сырьевые компоненты из сборников 2,3,4 соответствующими насосами перекачивают в мерники 5,6,7, откуда подают в смеситель 8. Туда же загружают твердые сырьевые компоненты, а также, если это предусмотрено рецептурой, адьюванты. Полученный суспоэмульсионный концентрат направляют на диспергирование в бисерную мельницу 11 и далее в сборник 12, а эмульгирующийся концентрат пропускают через фильтр 9 в сборник 10. При неудовлетворительном качестве концентратов предусмотрен их возврат на доработку в смеситель 8.

В таблице 7.2 представлен ориентировочный расчет экономической эффективности препарата чисталан в посевах пшеницы и препарата эфилон в посевах сахарной свеклы.

Таблица 6.2 — Распределение компонентов суспоэмульсионного концентрата *октиген-Т* по фазам

Наименование компонентов	Содержание, г	Жидкая фаза, г	Твердая фаза, г
2-этилгексиловый эфир 2,4-Д	63.2	42.9	20.3
Триасульфурон	0.5	0.16	0.34
ПАВ	20	13.1	6.9
Наполнитель	6.8	1.2	5.6
Остальные компоненты (2-этилгексанол, нефрас и проч.)	9.5	7.1	2.4
Итого:	100.00	64.46	35.54

Таблица 6.10 – Взаимосвязь показателей дисперсной фазы эмульсии препарата чисталан с величиной расхода воды

Концентрация препарата в	W7		· · · · · · · · · · · · · · · · · · ·	л/га при норме препарата	Размер частиц дисперсной фазы эмульсии под микроскопом, мкм		Усредненный размер частиц,	
эмульсии, % масс.	эмульсии	σ _{ж/в} , мН/м	0,75 л/га	1,0 л/га	80% дисп. фазы	20% дисп. фазы	полученный расчетным пу- тем, мкм	
0,25	Следы коагулята	41,9	322	428	3÷4	4÷25	5,7	
0,5	Следы коагулята	38,9	161	214	3÷4	4÷30	6,2	
1,0	Следы коагулята	34,7	80	107	3÷4	4÷40	7,2	
2,0	Коагулят 0,3 см ³	33,9	40	53,5	3÷4	4÷50	8,2	
4,0	Коагулят 0,9 см ³	33,9	20	26,8	3÷4	4÷70	~10	

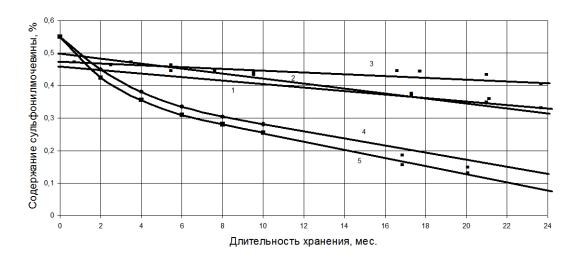


Рис.6.1. Динамика содержания сульфонилмочевин в суспоэмульсионном (1,2,3) и эмульгирующемся (4,5) концентратах при формуляции с эфиром 2,4-Д: 1,4 - триасульфурон, концентрат приготовлен в лабораторных условиях; 2,5 - триасульфурон, опытное производство концентрата; 3 - хлорсульфурон.

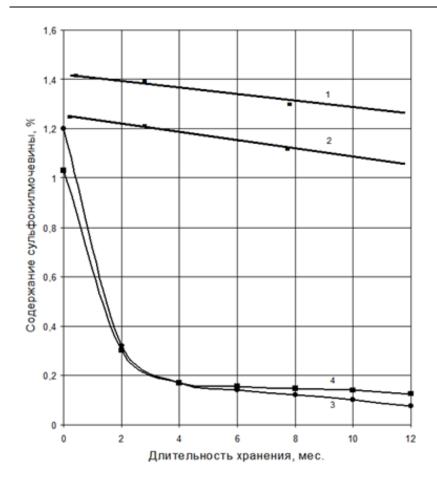


Рис. 6. 2. Динамика содержания сульфонилмочевин в суспоэмульсионном (1,2) и эмульгирующемся (3,4) концентратах при формуляции с эфиром дикамбы: 1,3 - триасульфурон; 2,4 - хлорсульфурон.

В восьмой главе (экспериментальная часть) приводится описание методик приготовления препаративных форм, определения физической стабильности эмульсий и суспензий, оценки их дисперсности с применением дисперсионного анализа с помощью оптической микроскопии (микроскоп Jenaval), седиментации в центробежном поле (весовой центрифугальный седиментограф модели СВ-3), седиментации в гравитационном поле (сканирующий фотоседиментограф модели Analysette-20), турбидиметрического метода спектра мутности (фотоэлектроколориметр ФЭК-56М). Там же приводятся методы определения поверхностного натяжения на границе жидкость – жидкость и жидкость – воздух с помощью сталагмометра и прибора Ребиндера в современной модификации марки ППНЛ-1, а также методы определения вязкости, коэффициента рефракции и краевого угла смачивания. Приведены методики расчета синергизма комбинаций ПАВ, удельной поверхности частиц дисперсной фазы эмульсии, параметров адсорбционного слоя ПАВ, а также экономической эффективности применения гербицидных препаратов. Завершают экспериментальную часть методики проведения вегетационных и полевых испытаний гербицидных препаратов.

В **приложении** представлены Заключение ГУП «Башплодородие», Акт внедрения препаратов в производство, а также нормативно-техническая документация на препараты — титульные листы лабораторных регламентов, производственных методик, исходных данных на проектирование производства, тарные наклейки.

Таблица 7.1 — Применение различных адьювантов — продуктов нефтехимии в гербицидных препаратах

		- ·	D 1 1		-
Наименование	Наименование	Действующее	Эффект	Внедрение	Правовая
адьюванта	препарата	вещество	действия	в производство	зашита
Димерол –	Октапон-	2,4-Д	Повышает дис-	Промышленное	Пат.
смесь спиртов	экстра		персность	производство	2163759
C_8			эмульсии		РΦ
Спиртовая	Сурам	2,4-Д	Повышает мо-	Опытное про-	Пат.
фракция про-		Дикамба	розостойкость	изводство	2212795
изводства ка-			препарата		РΦ
пролактама					
Кубовый ос-	Ацетал	Ацетохлор	Улучшает рас-	Промышленное	A.c.
таток произ-			творимость	производство	1485463
водства бута-			ацетохлора		CCCP
нола			•		
Минеральное	Карахол	Бензоилпроп-	Улучшает про-	Опытно-	A.c.
масло И-12А		тил	ницаемость ДВ	промышленное	1497786
				производство	CCCP
Минеральное	Дуацил	Ленацил	Повышает ста-	Опытное про-	Пат.
масло С-9		Метолахлор	бильность пре-	изводство	2226826
		1	парата		РΦ
Полигликоли	Флютар	Триаллат	Повышают	Опытное про-	Пат.
	1	Трифлуралин	стабильность	изводство	2094986
		1 1 11	эмульсии		РΦ
Полистирол	Мезокс-ПС*	Метоксихлор	Улучшает	Опытное про-	A.c.
1		1	удерживание	изводство	1566526
			ДВ на листе		CCCP
			7,		
Хлорзаме-	Мезокс-ХП*	Метоксихлор	Улучшают	Опытное про-	A.c.
щенные по-			удерживание	изводство	1476635
лиолефины			ДВ на листе		CCCP
Этиленгли-	Гексилур	Ленацил	Повышает мо-	Промышленное	Пат.
коль			розостойкость	производство	2071256
			препарата	_	РΦ
			_		
Метиловый,	Миодан	Сетоксидим	Улучшают	Опытное про-	A.c.
этиловый,			проницаемость	изводство	1515428
пропиловый,			ДВ		CCCP
изопропило-			, ,		
вый эфиры					
карбоновых					
кислот фрак-					
ции С ₇ -С ₉					
ции с / су	l				

Примечание: * инсектицид.

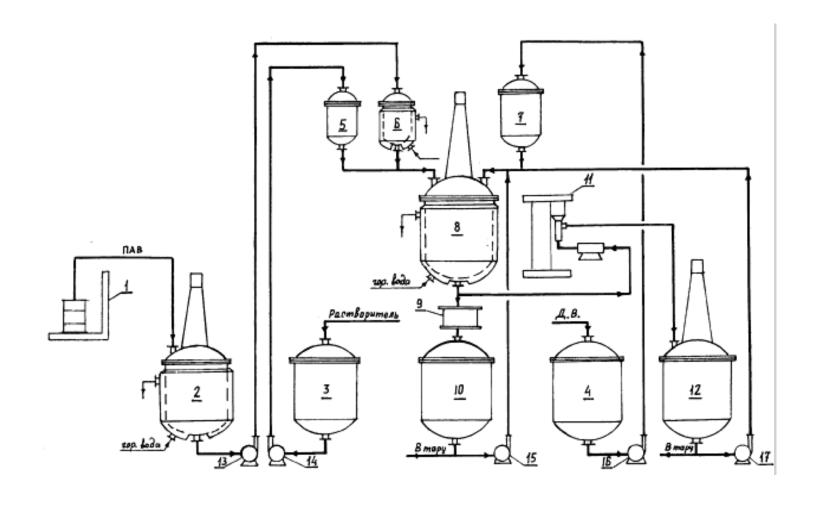


Рисунок 7.1 – Принципиальная технологическая схема производства эмульгирующихся и суспоэмульсионных концентратов:

1 – плавитель; 2, 3, 4, 10, 12 – сборник; 5, 6, 7 – мерник; 8 – смеситель;

9 – фильтр; 11 – бисерная мельница; 13, 14, 15, 16, 17 – насос

Таблица 7.2 — Экономическая эффективность применения препарата чисталан, 430 г/л ЭК в посевах пшеницы и препарата эфилон,450 г/л ЭК в посевах сахарной свеклы

Наименование показателей	Единица измерения	Значение показателей		
1.03.1.03.1	13 Q	Чисталан	Эфилон	
Норма расхода на однократную обработку по ДВ	кг/га	0,35	0,2	
Норма расхода на однократную обработку по препарату	л/га	0,8	0,44	
Норма расхода на однократную обработку по препарату	кг/га	0,84	0,46	
Кратность обработки		1	1	
Цена 1 т препарата	тыс. руб.	210	350	
Стоимость препарата для обработки 1 га	руб.	176	161	
Стоимость внесения	руб.	90	90	
Накладные расходы	руб.	17	17	
Затраты на уборку сохраняемого урожая	руб.	53	70	
Прочие расходы	руб.	35	35	
Суммарная стоимость обработки 1 га	руб.	371	373	
Сохраняемый урожай с 1 га	ц	3	10	
Стоимость 1 ц урожая	руб.	450	185	
Стоимость сохраняемого урожая с 1 га	руб.	1350	1850	
Экономическая эффективность препарата с 1 га	руб.	979	1477	
Посевная площадь, обработанная 1 т препарата	га	1190	2174	
Экономическая эффективность от применения 1 т препарата	тыс. руб.	1165	3211	

Выводы

- 1. С целью оптимизации рецептур гербицидных суспензионных препаратов дуацил и гексилур исследована зависимость их седиментационной и агрегативной устойчивости от содержания ПАВ, размеров частиц твердой фазы, вязкости дисперсионной среды, разности плотности дисперсной фазы и дисперсионной среды. Отмечен пропорциональный рост седиментационной устойчивости и скачкообразный агрегативной устойчивости при увеличении вязкости суспензии гексилур. Для препарата дуацил структурообразование системы протекает постепенно.
- 2. Исследовано влияние поверхностно-активных веществ синтанол АЛМ-10, ОП-7, ОП-10, олеокс-5, синтамид-5 в двух дисперсионных средах органической и водной на распределение по размерам частиц дисперсной фазы суспензионных препаратов. Установлено более эффективное влияние метолахлора, выполняющего функцию дисперсионной среды, на фракционный состав твердой фазы суспензии дуацил в сравнении с водной суспензией гексилур.
- 3. Разработаны и усовершенствованы методы подбора ПАВ и углеводородных растворителей в рецептурах гербицидных эмульгирующихся концентратов октапон-экстра, чисталан, октиген, чисталан-экстра, на основе эфиров 2,4-дихлорфеноксиуксусной кислоты, 3,6-дихлор-2-метоксибензойной кислоты и их комбинаций, позволяющие получать физически стабильные эмульсии и микро-эмульсии с размером частиц дисперсной фазы 1 мкм и менее.
- 4. В сравнении с другими вспомогательными компонентами выявлено главенствующее влияние химической структуры ПАВ и его количества на качество концентрата и физико-химические характеристики гербицидной эмульсии, такие как фракционный состав дисперсной фазы, поверхностное натяжение, время спонтанного эмульгирования, краевой угол смачивания, количество коагулята. В качестве жидких компонентов рекомендовано применение эмульгообразующих углеводородных ароматических растворителей нефрас марки A130/150, AP 120/200, A 150/330, изомерных ксилолов, ароматических нефтяных сольвентов.
- 5. Впервые выявлена высокая поверхностная активность бифункциональных компонентов диметилалкиламинных солей 2,4-Д, 2М-4Х, дикамбы и глифосата, снижающих поверхностное натяжение водных растворов до уровня 30-35 мН/м, что позволяет, с учетом солюбилизирующей емкости, разрабатывать эмульгирующиеся концентраты с максимально упрощенной рецептурой диметилалкиламинная соль нефтяной растворитель без применения поверхностно-активного вещества промышленного производства.
- 6. Впервые разработаны два физико-химических способа определения синергизма бинарной системы ПАВ различного химического строения по показателям периода полураспада и дисперсности гербицидной эмульсии, что позволяет на практике повысить ее стабильность за счет выбора оптимальной комбинации ПАВ. Из шести исследованных бинарных систем отмечен синергизм четырех комбинаций неонол-АБСК, синтанол-АБСК, неонол-диметилалкиламин, синтанол-диметилалкиламин. Выявлено отсутствие синергизма двух комбинаций синтанол-неонол, АБСК-диметилалкиламин.
 - 7. На основе отмеченного нами графического сдвига изотермы межфазного

поверхностного натяжения и ее логарифмической анаморфозы в процессе коагуляции эмульсии в определенном временном интервале вплоть до ее полной коалесценции впервые разработан физико-химический метод определения количества поверхностно-активного вещества, десорбированного с поверхности раздела фаз жидкость-жидкость в гербицидных дисперсных системах.

- 8. С целью оптимизации содержания ПАВ в рецептурах эмульгирующихся концентратов проведено определение параметров адсорбционного слоя эмульгаторов неонол АФ 9-12, синтанол ДС-10, синтанол ОС-20 на поверхности раздела органической и водной фаз гербицидной эмульсии. Показано, что с повышением содержания ПАВ происходит увеличение толщины его адсорбционного слоя и уменьшение площади межфазной поверхности, приходящейся на одну молекулу эмульгатора, по нелинейной зависимости до определенного предела, после чего параметры остаются постоянными. Установлена более высокая толщина адсорбционного слоя эмульгатора синтанол ОС-20, что связано с большей степенью его этоксилирования.
- 9. Исследован процесс распределения эмульгаторов неонол АФ 9-12 и синтанол ДС-10 в водной фазе, органической фазе и на поверхности раздела фаз гербицидных эмульсий. Отмечено влияние на этот процесс соотношения объемов фаз. Установлено, что количество ПАВ, растворенного в органической фазе, многократно меньше, чем в дисперсионной среде.
- 10. Проанализировано влияние растворителей циклогексанон, нефрас А 130/150, соляровый дистиллят, изооктиловый спирт на показатель критической концентрации мицеллообразования диметилалкиламинной соли 3,6-дихлорпиридин-2-карбоновой кислоты. Показано, что нефрас, изооктиловый спирт и соляровый дистиллят при солюбилизации в мицеллы способствуют росту критической концентрации мицеллообразования с 0,2% до 1,5%, тогда как циклогексанон практически не изменяет ее значение.
- 11. Разработан способ повышения химической стабильности замещенных арилсульфонилгетерилмочевин, связанный с их адсорбцией на поверхности инертного наполнителя в рецептурах гербицидных суспоэмульсионных концентратов. Проведено исследование динамики содержания гербицидов триасульфурон и хлорсульфурон в суспоэмульсионном концентрате при его длительном хранении, а также процесса распределения триасульфурона между жидкой и твердой фазами препаративной формы. Установлена взаимосвязь показателей гербицидных эмульсий и суспоэмульсий с величиной расхода воды, необходимой для их приготовления.
- 12. Проведена техническая оценка эффективности размольного оборудования бисерной мельницы, электромагнитного измельчителя, вихревого аппарата при диспергировании гербицидных суспензионных составов. Показано большое влияние эффективности этого оборудования на фракционный состав дисперсной фазы суспензии, ее физическую стабильность при длительном хранении. В сравнении с якорной мешалкой количество коагулята рабочей жидкости уменьшается в 2,5 раза при использовании бисерной мельницы, в 5 раз электромагнитного измельчителя, в 10 раз вихревого аппарата.

- 13. Усовершенствована технологическая схема производства суспензионных препаратов за счет исключения из нее узла сухого размола технических гербицидов и включения узла предварительного мокрого диспергирования препаратов. Сочетание предварительного и завершающего тонкого мокрого диспергирования позволило полностью предотвратить пыление твердых компонентов и более, чем в 2 раза увеличить степень измельчения гербицидных суспензий.
- 14. Для обеспечения более эффективного использования гербицидного потенциала действующего вещества рекомендовано применение ряда адъювантов продуктов нефтехимических производств, таких, как кубовый остаток производства бутанола, полигликоли, метиловый, этиловый, пропиловый, изопропиловый эфиры карбоновых кислот фракции C_7 - C_9 , минеральные масла марки И-12A и С-9, спиртовая фракция производства капролактама, хлорзамещенные полиолефины, изооктиловый спирт, полистирол, этиленгликоль.
- 15. В результате проведенных исследований разработаны и усовершенствованы рецептуры и технология получения 38 гербицидных препаратов, из которых 6 защищены авторскими свидетельствами СССР и 18 патентами Российской Федерации. На опытно-экспериментальном производстве НИТИГ за период с 1993 г. по 2011 г. наработано и отгружено потребителям 5195 тонн препарата чисталан, 2653 тонны препарата октапон-экстра, 2076 тонн препарата октиген, 642 тонны препарата чисталан-экстра, а также опытная партия 8,5 тонн препарата эфилон и 4,1 тонны препарата вигосурон. Широкое производственное применение на площади посевов зерновых культур 950 тыс. га показало техническую эффективность гербицидов против сорняков на уровне 90 95 %. Прибавка урожая зерна около 3-х центнеров с гектара. Экономический эффект от применения одной тонны препарата чисталан составляет 1165 тыс. руб., препарата эфилон 3211 тыс.руб.

По теме диссертации опубликованы следующие работы:

Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК:

- 1. *Кузнецов В.М.* Влияние антистатиков на процесс сухого размола атразина / В.М. Кузнецов, М.М. Арасланова, А.А. Кашин, З.М. Минуллин, Т.И. Кузнецова, Р.Р. Исрафилова, В.Ю. Фатьянов // Химическая промышленность. − 1989. − № 4. − С. 77-78 (0,12 п.л. / 0,06 п.л.).
- 2. *Кузнецов В.М.* Октиген и октапон-экстра против двудольных сорняков / А.М. Давыдов, Р.Г. Гильманов, В.М. Кузнецов, Р.М. Ишбулатов // Защита и карантин растений. -2001. -№ 6. C. 28 (0.06 п.л. / 0.03 п.л.).
- 3. *Кузнецов В.М.* К выбору ингредиентов смесевых композиций пестицидов на основе математического моделирования. 1. Определение комбинаций действующих веществ гербицидных композиций / Л.А. Тюрина, Т.С. Соломинова, А.М. Колбин, В.М. Кузнецов, Р.Б. Валитов // Башкирский химический журнал. − 2007. Т. 14. № 3. С. 26-31 (0,68 п.л. / 0,34 п.л.).
- 4. *Кузнецов В.М.* К выбору ингредиентов смесевых композиций пестицидов на основе математического моделирования. 2. Подходы к формированию реше-

- ний при подборе растворителей для действующих веществ гербицидов / Т.С. Соломинова, Ю.Е. Сапожников, В.М. Кузнецов, А.М. Колбин, Р.М. Ахметшина // Башкирский химический журнал. 2008. T. 15. № 4. C. 23-27 (0,58 п.л. / 0,29 п.л.).
- 5. Кузнецов В.М. Гербицидная и биологическая активность гемдихлорциклопропанов на основе арилаллиловых эфиров / Э.Р. Ганиуллина, Б.И. Вороненко, В.М. Кузнецов, Р.М. Мазитов, С.С. Злотский, Т.Ф. Дехтярь // Башкирский химический журнал. -2008. Т. 15. № 3. С. 53-56 (0,46 п.л. / 0,23 п.л.).
- 6. *Кузнецов В.М.* Снижение экологической нагрузки путем комбинирования действующих веществ при применении гербицидов на основе 2,4-Д / Л.М. Мрясова, Р.Н. Галиахметов, В.М. Кузнецов // Башкирский химический журнал. − 2009. Т. 16. № 1. С. 103-105 (0,34 п.л. / 0,17 п.л.).
- 7. Кузнецов В.М. Гербицидная активность некоторых кислородсодержащих соединений / А.А. Богомазова, А.Р. Шириазданова, Н.Н. Михайлова, В.М. Кузнецов, С.С. Злотский // Башкирский химический журнал. 2010. —Т. 17. № 3. С.33-35 (0,34 п.л. / 0,17 п.л.).
- 8. *Кузнецов В.М.* Влияние типа и концентрации ПАВ на физико-химические свойства эмульсий гербицидной препаративной формы / В.М. Кузнецов, Т.С. Соломинова, Л.М. Мрясова, Р.М. Ахметшина // Башкирский химический журнал. − 2010. T.17. № 2. C.169-172 (0,46 п.л. / 0,23 п.л.).
- 9. *Кузнецов В.М.* Определение синергистического эффекта ПАВ на основе показателя периода полураспада гербицидной эмульсии / В.М. Кузнецов, Т.С. Соломинова, Л.М. Мрясова, Р.М. Ахметшина, Р.М. Ишбулатов // Башкирский химический журнал. -2010.-T.17.- № 5. -C. 76-78 (0,34 п.л. / 0,17 п.л.).
- 10. *Кузнецов В.М.* Гербицидная активность ряда замещенных циклических ацеталей / С.А. Тимофеева, Э.Х. Гиниятуллина, В.М. Кузнецов, Е.А. Удалова, С.Ю. Шавшукова, С.С. Злотский // Башкирский химический журнал. − 2011. − Т. 18. − № 3. − С.71-73 (0,34 п.л. / 0,17 п.л.).
- 11. *Кузнецов В.М.* Синтез биологически активных триалкилаллиламмониевых солей 2,4-Д кислоты, клопиралида и дикамбы / Е.В. Климакова, В.М. Кузнецов, Ю.Е. Сапожников, Г.Е. Чикишева, А.П. Золотарев // Башкирский химический журнал. − 2011. Т. 18. № 3. С. 136-138 (0,34 п.л. / 0,17 п.л.).
- 12. *Кузнецов В.М.* Определение параметров адсорбционного слоя ПАВ в гербицидных эмульсиях на основе эфиров 2,4-Д и дикамбы / В.М. Кузнецов // Башкирский химический журнал. -2011.-Т. 18.-№ 3.-С.22-26 (0,58 п.л.).
- 13. *Кузнецов В.М.* Распределение неионогенных ПАВ в гербицидных эмульсиях на основе эфира клопиралида / В.М. Кузнецов // Башкирский химический журнал. -2011.-T.18.-№ 4.-C.14-17 (0,46 п.л.).
- 14. *Кузнецов В.М.* Поверхностная активность и мицеллообразование гербицидных бифункциональных компонентов / В.М. Кузнецов // Башкирский химический журнал. -2012. -T. 19. -№ 1. -C. 158-161 (0,46 п.л.).
- 15. Кузнецов В.М. Прогнозирование критической концентрации мицеллообразования ионогенных поверхностно-активных веществ на основе количественных отношений структура-свойство / Т.С. Соломинова, В.М. Кузнецов, Ю.Е. Сапожников,

- А.М. Колбин, Р.М. Ахметшина // Башкирский химический журнал. -2012.-T.19. -No 1.-C.79-84 (0,68 п.л. / 0,34 п.л.).
- 16. *Кузнецов В.М.* Синергизм комбинаций ПАВ и его определение на основе показателя дисперсности гербицидной эмульсии / В.М. Кузнецов // Башкирский химический журнал. -2012. -T. 19. -№ 1. -C. 61-64 (0,46 п.л.).
- 17. *Кузнецов В.М.* Синтез и исследование гербицидной активности новых дигидроксипентильных производных хлорфенолов / К.Р. Хуснитдинов, В.М. Кузнецов, Л.М. Мрясова, В.М. Крутьков, А.Г. Мустафин, Р.Н. Хуснитдинов, А.М. Колбин, И.Б. Абдрахманов // Вестник Башкирского университета. − 2012. − Т. 17. − № 4. − С.1735-1738 (0,25 п.л. / 0,12 п.л.).
- 18. Кузнецов В.М. Гербицидная активность замещенных гемдихлорциклопропанов / А.Н. Казакова, В.М. Кузнецов, Л.Р. Мусавирова, Н.Н. Михайлова, А.А. Богомазова, Т.П. Мудрик, С.С. Злотский // Башкирский химический журнал. -2013.- Т. 20.- № 1.- С. 8-10 (0,34 п.л. / 0,17 п.л.).
- 19. *Кузнецов В.М.* Исследование гербицидной активности новых гидроксипропильных производных хлорфенолов / В.М. Кузнецов, К.Р. Хуснитдинов, Л.М. Мрясова, Р.Н. Хуснитдинов, А.М. Колбин, А.Г. Мустафин, И.Б. Абдрахманов // Башкирский химический журнал. -2013.-T.20.-N 2.-C.110-114 (0,58 п.л. / 0,29 п.л.).

Патенты и авторские свидетельства:

- 20. Пат. 1653211 Российская Федерация. Гербицидный состав / В.М. Кузнецов, Р.А. Рахметова, Г.П. Пряхина, А.А. Кашин, Н.Н. Пустовит, Р.Б. Валитов, А.М. Давыдов, П.И. Фёдоров, В.В. Базыльчик. 1991. Бюл. № 20.
- 21. Пат. 1788607 Российская Федерация. Гербицидный состав / А.М. Давыдов, Р.Б. Валитов, В.М. Кузнецов, А.А. Кашин, В.Е. Антипанова, А.А. Петунова, Г.В. Михайлова. 1993. Бюл. \mathbb{N} 2.
- 22. Пат. 2071256 Российская Федерация. Гербицидная водная суспензия на основе 3-циклогексил-5,6-триметиленурацила / В.М. Кузнецов, А.А. Кашин, В.Ю. Фатьянов, А.М. Давыдов, П.М. Астафьев. 1997. Бюл. № 1.
- 23. Пат. 2072226 Российская Федерация. Гербицидный состав / В.М. Кузнецов, Р.А. Рахметова, Г.П. Пряхина, А.А. Кашин, С.А. Маннанова, Р.Б. Валитов, А.М. Давыдов. 1997. Бюл. № 3.
- 24. Пат. 2073973 Российская Федерация. Гербицидный состав для борьбы с многолетними корнеотпрысковыми сорняками / В.М. Кузнецов, А.М. Давыдов, Р.А. Рахметова, Г.П. Пряхина, А.А. Кашин, Р.Б. Валитов. − 1997. − Бюл. № 6.
- 25. Пат. 2073974 Российская Федерация. Гербицидный состав / В.М. Кузнецов, А.М. Давыдов, Р.А. Рахметова, Г.П. Пряхина, А.А. Кашин, Р.Б. Валитов. 1997. Бюл. N 6.
- 26. Пат. 2094986 Российская Федерация. Гербицидный состав / А.М. Давыдов, В.М. Кузнецов, Р.А. Рахметова, В.М. Трюпина, Р.Б. Валитов, А.А. Кашин, А.М. Нестеренко, А.С. Шинкаренко. 1997. Бюл. № 31.
- 27. Пат. 2163759 Российская Федерация. Гербицидный состав / В.М. Кузнецов, А.М. Давыдов, Р.Б. Валитов, В.С. Пилюгин, В.К. Капорский. 2001. Бюл. N27.

- 28. Пат. 2171575 Российская Федерация. Способ стабилизации действующего вещества в гербицидном суспоэмульсионном концентрате / В.М. Кузнецов, А.М. Давыдов, Ю.Е. Сапожников, Р.Б. Валитов, В.С. Пилюгин, В.К. Капорский. 2001. Бюл. № 22.
- 29. Пат. 2171578 Российская Федерация. Гербицидный суспоэмульсионный концентрат / В.М. Кузнецов, Т.А. Смолина, А.М. Давыдов, В.С. Пилюгин, Р.Б. Валитов. 2001. Бюл. № 22.
- 30. Пат. 2209547 Российская Федерация. Гербицидная концентрированная эмульсия / В.М. Кузнецов, А.М. Давыдов, Р.Б. Валитов. 2003. Бюл. № 22.
- 31. Пат. 2209548 Российская Федерация. Гербицидная концентрированная эмульсия / В.М. Кузнецов, А.М. Давыдов, Р.Б. Валитов. 2003. Бюл. № 22.
- 32. Пат. 2212795 Российская Федерация. Гербицидный состав / В.М. Кузнецов, Р.Б. Валитов, А.М. Давыдов. -2003. Бюл. № 27.
- 33. Пат. 2217913 Российская Федерация. Гербицидный суспоэмульсионный концентрат / В.М. Кузнецов, А.М. Давыдов, Р.Б. Валитов. 2003. Бюл. № 34.
- 34. Пат. 2226826 Российская Федерация. Гербицидная суспензия / В.М. Кузнецов, А.М. Давыдов, Р.Б. Валитов. 2004. Бюл. № 11.
- 35. Пат. 2228618 Российская Федерация. Способ уменьшения летучести трифлуралина / В.М. Кузнецов, Р.Б. Валитов, А.М. Давыдов. 2004. Бюл. № 14.
- 36. Пат. 2251845 Российская Федерация. Гербицидный состав / А.М. Давыдов, Т.А. Смолина, Р.Б. Валитов, В.С. Пилюгин, В.М. Кузнецов. 2005. Бюл. N 14.
- 37. Пат. 2258366 Российская Федерация. Гербицидный состав и способ повышения химической стабильности хлорсульфурона / В.М. Кузнецов, Ю.Е. Сапожников, А.М. Давыдов, Р.Б. Валитов, Л.М. Мрясова. − 2005. Бюл. № 23.
- 38. Пат. 2260947 Российская Федерация. Гербицидный состав и способ его получения / В.М. Кузнецов, А.М. Давыдов, Р.М. Ишбулатов, Р.М. Валитов, Н.И. Русинова. 2005. Бюл. № 27.
- 39. Пат. 2290810 Российская Федерация. Гербицидный водорастворимый порошок / В.М. Кузнецов, Ю.В. Бадиков, В.С. Пилюгин, Р.Б. Валитов, А.М. Давыдов, С.М Мухаметов. 2007. Бюл. № 1.
- 40. Пат. 2290811 Российская Федерация. Гербицидный эмульгирующийся концентрат / В.М. Кузнецов, Ю.В. Бадиков, Н.И. Русинова, А.М. Давыдов, Р.Б. Валитов. 2007. Бюл. № 1.
- 41. Пат. 2296467 Российская Федерация. Гербицидный суспоэмульсионный концентрат и способ его получения / В.М. Кузнецов, Ю.В. Бадиков, Л.М. Мрясова, Р.Б. Валитов, А.М. Давыдов. 2007. Бюл. № 10.
- 42. Пат. 2313219 Российская Федерация. Гербицидное средство и способ его получения (варианты) / В.М. Кузнецов, А.М. Давыдов, Ю.В. Бадиков, А.М. Колбин, Р.Б. Валитов. -2007. Бюл. № 36.
- 43. Пат.2320170 Российская Федерация. Гербицидный состав / В.М. Кузнецов, Р.М. Ишбулатов, Р.Б. Валитов, А.М. Колбин, В.Г. Яковлев. 2008. Бюл. № 9.
- 44. Пат. 2326534 Российская Федерация. Гербицидные средства и способ борьбы с сорной растительностью / Р.Б. Валитов, А.М. Колбин, В.М. Кузнецов, Р.М. Ишбулатов. 2008. Бюл. № 17.

- 45. Пат. 2340183 Российская Федерация. Гербицидный состав / В.М. Кузнецов, Р.М. Ишбулатов, Р.Б. Валитов, Ю.В. Бадиков. 2008. Бюл. № 34.
- 46. Пат. 2347365 Российская Федерация. Гербицидный состав / Р.Б. Валитов, А.М. Колбин, В.М. Кузнецов, Ю.Е. Сапожников, Н.И. Русинова, Ю.В. Бадиков. -2009. Бюл. № 21.
- 47. Пат. 2356229 Российская Федерация. Гербицидное средство и способ его получения / Р.Б. Валитов, А.М. Колбин, В.М. Кузнецов Ю.В. Бадиков, Н.И. Русинова. -2009. Бюл. № 15.
- 48. Пат. 2389184 Российская Федерация. Способ определения синергистического эффекта ПАВ в гербицидных дисперсных системах / В.М. Кузнецов, Л.М. Мрясова, Т.С. Соломинова, А.М. Колбин, Р.М. Ишбулатов. − 2010. − Бюл. № 14.
- 49. Пат. 2402906 Российская Федерация. Способ определения количества ПАВ, десорбированного с поверхности раздела фаз жидкость-жидкость, в гербицидных дисперсных системах / В.М. Кузнецов, Л.М. Мрясова, Р.М. Ишбулатов, Т.С. Соломинова, А.М. Колбин. − 2010. − Бюл. № 31.
- 50. Пат. 2436302 Российская Федерация. Способ определения синергистического эффекта поверхностно-активных веществ в гербицидных гетерогенных системах / В.М. Кузнецов, Р.М. Ишбулатов, В.М. Крутьков, Т.С. Соломинова, А.С. Колбин. − 2011. Бюл. № 35.
- 51. Пат. 2461194 Российская Федерация. Гербицидный водорастворимый концентрат / В.М. Кузнецов, А.М. Колбин. 2012. Бюл. № 26.
- 52. А. с. 1455406 СССР. Гербицидный состав / А.М. Давыдов, П.С. Балеста, Н.И. Чепелова, В.М. Кузнецов, Г.А. Камалтдинова. 1989. Бюл. № 4.
- 53. А. с. 1476635 СССР. Концентрат эмульсии 1, 1, 1-трихлор-2,2-ди(4-метоксифенил)этана / В.Д. Симонов, Ю.А. Сангалов, Р.Б. Валитов, А.А. Кашин, Ю.Б. Ясман, В.М. Кузнецов, Р.А. Рахметова, Т.Н. Вечтомова, Л.Н. Чернова. 1989. Бюл. № 16.
- 54. А. с. 1485462 СССР. Гербицидный состав / В.М. Трюпина, Г.Г. Базунова, Т.И. Кузнецова, А.З. Биккулов, Е.И. Соломина, А.А. Кашин, В.М. Кузнецов. 1989. Бюл. № 21.
- 55. А. с. 1485463 СССР. Гербицидный состав / В.Д. Симонов, Р.Б. Валитов, В.М. Кузнецов, Р.А. Рахметова, А.А. Кашин, А.М. Давыдов, Г.Г. Базунова, А.З. Биккулов, В.М. Трюпина, Л.Н. Чернова. 1989. Бюл. № 21.
- 56. А. с. 1487205 СССР. Гербицидный состав / А.М. Давыдов, П.С. Балеста, Н.И. Чепелова, В.М. Кузнецов, В.А. Крицина. 1989. Бюл. № 22.
- 57. А. с. 1497786 СССР. Гербицидный состав / Г.В. Михайлова, А.М. Давыдов, Н.И. Чепелова, Т.В. Гаева, Р.А. Рахметова, В.М. Кузнецов. 1989. Бюл. № 28.
- 58. А. с. 1515428 СССР. Гербицидный состав / В.Д. Симонов, В.М. Кузнецов, А.М. Давыдов, Ф.А. Лахвич, Л.Г. Лис, Р.А. Рахметова, А.А. Кашин, Р.Б. Валитов, Т.И. Ботина, Л.И. Ухова, А.И. Быховец, Г.Г. Базунова. 1989. Бюл. № 38.
- 59. А. с. 1554162 СССР. Гербицидный состав / В.Д. Симонов, В.М. Кузнецов, А.М. Давыдов, Ф.В. Линчевский, Р.А. Рахметова, Н.И. Мирошниченко, Г.И. Стеценко, А.А. Кашин. 1990. Бюл. № 12.

- 60. А. с. 1566526 СССР. Состав для защиты растений от жесткокрылых насекомых / В.Д. Симонов, Р.Б. Валитов, А.А. Кашин, Ю.А. Сангалов, Р.А. Рахметова, В.М. Кузнецов, Ю.Б. Ясман, Т.Н. Вечтомова, Л.Н. Чернова. 1990. Бюл. N 19.
- 61. А. с. 1814202 СССР. Состав для регулирования роста растений / В.М. Кузнецов, А.А. Кашин, Г.П. Пряхина, Р.А. Рахметова, А.М. Давыдов. 1993. Бюл. № 17.

Монография

62.Кузнецов В.М. Химико-технологические основы разработки и совершенствования гербицидных препаративных форм / В.М. Кузнецов. — М.: Химия, 2006. — 320 с. (18,6 п.л., тираж 500 экз.).

Другие публикации:

- 63. *Кузнецов В.М.* Применение растворителей нефрас в препаративных формах пестицидов / В.М. Кузнецов, Р.А. Рахметова, А.А. Кашин // Проблемы производства и применения углеводородных растворителей: материалы Всесоюзн. науч.-техн. конф. Уфа: НИИНЕФТЕХИМ, 1987. С. 58.
- 64. *Кузнецов В.М.* Применение неонолов АФ-9n в производстве химических средств защиты растений / В.М. Кузнецов, Р.А. Рахметова, Г.П. Пряхина, А.А. Кашин, Т.И. Кузнецова // Опыт использования неонолов АФ-9n оксиэтилированных алкилфенолов в народном хозяйстве: сб. науч. тр. Всесоюзн. совещания. Белгород, Шебекино: НПО СинтезПАВ, 1990. С. 44-45.
- 65. *Кузнецов В.М.* Гербицидные составы на основе 2,4-Д и клопиралида / В.М. Кузнецов, Т.А. Смолина, А.М. Давыдов // Химические реактивы, реагенты и процессы малотоннажной химии: тез. докл. XIII Международ. науч.-техн. конф. Тула: Изд-во ТГПУ им. Л.Н. Толстого, 2000. С. 20-21.
- 66. *Кузнецов В.М.* Экологические аспекты применения препаративных форм гербицидов на основе 2,4-Д / В.М. Кузнецов, А.М. Давыдов, Т.А. Смолина // Химические реактивы, реагенты и процессы малотоннажной химии: материалы XIII Международ. науч.-техн. конф. Тула: Изд-во ТГПУ им. Л.Н. Толстого, 2000. Вып. 3. С. 211-213.
- 67. *Кузнецов В.М.* Экологически безопасные гербицидные препараты в форме суспоэмульсионных концентратов / В.М. Кузнецов, Т.А. Смолина, А.М. Давыдов // Химические реактивы, реагенты и процессы малотоннажной химии: материалы XIII Международ. науч.-техн. конф. Тула: Изд-во ТГПУ им. Л.Н. Толстого, 2000. Вып. 3. С. 204-206.
- 68. *Кузнецов В.М.* Эмульгирующиеся концентраты эфиров 2,4-Д кислоты и комбинированные гербициды на их основе в борьбе с корнеотпрысковой сорной растительностью в посевах зерновых культур / А.М. Давыдов, В.М. Кузнецов // Состояние и развитие гербологии на пороге XXI столетия: материалы II Всерос. науч.-произв. совещания. Голицыно: ВНИИФ, 2000. С. 255-258.
- 69. Кузнецов В.М. Влияние углеводородных растворителей на устойчивость гербицидных дисперсных систем / В.М. Кузнецов, Г.К. Земченкова, А.М. Давы-

- дов, Р.Б. Валитов // Наука и технология углеводородных дисперсных систем: материалы II Международ. симпозиума.— Уфа: Гос. изд-во науч.-техн. лит-ры «Реактив», 2000. T. 2. C. 99-100.
- 70. *Кузнецов В.М.* Применение неионогенных эмульгаторов для стабилизации комбинированных дисперсных систем / В.М. Кузнецов, Г.К. Земченкова, А.М. Давыдов, Р.Б. Валитов // Наука и технология углеводородных дисперсных систем: материалы II Международ. симпозиума.— Уфа: Гос. изд-во науч.-техн. лит-ры «Реактив», 2000. Т. 2. С.97-98.
- 71. *Кузнецов В.М.* Влияние различных эмульгаторов на эксплуатационные показатели и экологическую безопасность гербицида антигор / В.М. Кузнецов, А.М. Давыдов, Р.Б. Валитов // Химические реактивы, реагенты и процессы малотоннажной химии: материалы XIV Международ. науч.-техн. конф. Уфа: Гос. изд-во науч.-техн. лит-ры «Реактив», 2001. Вып. 5. С. 86-89.
- 72. *Кузнецов В.М.* Совершенствование препаративной формы трифлуралина как фактор повышения его экологической безопасности / В.М. Кузнецов, Т.А. Смолина, Г.К. Земченкова, А.М. Давыдов // Химические реактивы, реагенты и процессы малотоннажной химии: материалы XIV Международ. науч.-техн. конф. Уфа: Гос. изд-во н.-техн. лит-ры «Реактив», 2001. С. 128-129.
- 73. *Кузнецов В.М.* Влияние различных ПАВ и других факторов на седиментационную и агрегативную устойчивость гербицидных суспензионных препаратов / В.М. Кузнецов, Р.Б. Валитов // Реактив: материалы XV Международ. науч.техн. конф. Уфа: Гос. изд. науч.техн. лит-ры «Реактив», 2002. Т. 2. С. 166-170.
- 74. *Кузнецов В.М.* Гербицидная концентрированная эмульсия на основе 2,4-Д и клопиралида / В.М. Кузнецов, С.М. Мухаметов, А.М. Давыдов // Химические реактивы, реагенты и процессы малотоннажной химии: материалы XVI Международ. науч.-техн. конф. Уфа: Изд-во Реактив, 2003. С.94.
- 75. Кузнецов В.М. Дисперсные системы комбинированных гербицидов с использованием N,N-диметил-N- $(C_{12}$ - $C_{14})$ -алкиламинной соли 2,4-дихлорфеноксиуксусной кислоты / Л.М. Мрясова, Н.И. Русинова, С.М. Мухаметов, В.М. Кузнецов, А.М. Давыдов, Л.А. Тюрина // Интеграция науки и высшего образования в области органической и биоорганической химии и механики многофазных систем: материалы II Всерос. науч. INTERNET-конф. Уфа: УГНТУ, 2003. С. 120.
- 76. Кузнецов В.М. Влияние степени оксиэтилирования неонолов на их поверхностную активность в эмульгирующихся концентратах гербицидов / С.М. Мухаметов, Л.М. Мрясова, Н.И. Русинова, В.М. Кузнецов, А.М. Давыдов // Интеграция науки и высшего образования в области органической и биоорганической химии и механики многофазных систем: материалы II Всерос. науч. INTERNET-конф..-Уфа: УГНТУ, 2003. С. 121.
- 77. *Кузнецов В.М.* Начальный этап разработки препаративных форм / Н.И. Русинова, Л.М. Мрясова, С.М. Мухаметов, В.М. Кузнецов, А.М. Давыдов // Современные проблемы истории естествознания в области химии, химической технологии и нефтяного дела. История науки и техники-2005: материалы VI Международ. науч. конф. Уфа: Изд-во Реактив, 2005. Т. 1. С. 152.

- 78. *Кузнецов В.М.* Стабилизация химической структуры сульфонилмочевин в гербицидном суспоэмульсионном концентрате / Л.В. Яковлева, Л.М. Мрясова, Н.И. Русинова, С.М. Мухаметов, Р.Р. Абдрашитов, В.М. Кузнецов, А.М. Давыдов // Интеграция науки и высшего образования в области био- и органической химии и биотехнологии: материалы IV Всерос. науч. INTERNET-конф. Уфа, 2005. С. 99.
- 79. *Кузнецов В.М.* Определение параметров адсорбционного слоя поверхностно-активных веществ в гербицидных дисперсных системах / В.М. Кузнецов, Л.М. Мрясова, Т.С. Соломинова, Р.М. Ахметшина // Реактив-2009: материалы XXII Международ. науч.-техн. конф. Уфа: Изд-во Реактив, 2009. С. 151-152.
- 80. *Кузнецов В.М.*Снижение токсической нагрузки при применении гербицидов / Л.М. Мрясова, В.М. Кузнецов / Актуальные проблемы химии. Теория и практика: материалы Всерос. науч. конф. Уфа: Баш. гос. ун-т, 2010. С. 74.
- 81. *Кузнецов В.М.* Исследование процесса солюбилизации эфира 2,4-Д в присутствии мицеллообразующих ПАВ / В.М. Кузнецов, Л.М. Мрясова, Р.Д. Давлетов // Современные проблемы и пути их решения в науке, транспорте, производстве и образовании-2011: материалы Международ. науч.-практ. интернетконф. Проект SWorld. Одесса, 2011.
- 82. *Кузнецов В.М.* Применение различных адъювантов продуктов нефтехимии в гербицидных препаративных формах В.М. Кузнецов, Л.М. Мрясова, Р.Д. Давлетов // Химические реактивы, реагенты и процессы малотоннажной химии. Реактив-2011: материалы XXV Юбилейной Международ. науч.-техн. конф.УГНТУ Уфа, 2011. С. 44-46.