На правах рукописи

Урусова Анастасия Сергеевна

ФАЗОВЫЕ РАВНОВЕСИЯ, СТРУКТУРА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ В СИСТЕМАХ Y-Ba-Me-Me'-O (Me, Me'=Co, Fe, Ni, Cu)

02.00.04 – физическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2015

Работа выполнена на кафедре физической химии Института естественных наук ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель	доктор химических наук, профессор Черепанов Владимир Александрович	
Официальные оппоненты:	Курумчин Эдхем Хурьятбекович, доктор химических наук, ФГБУН Институт высокотемпературной электрохимии УрО РАН, заведующий лабораторией электрохимического материаловедения	
	Марков Алексей Александрович , кандидат химических наук, ФГБУН Институт химии твердого тела УрО РАН, старший научный сотрудник лаборатории оксидных систем	
Ведущая организация:	: ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»	

Защита состоится 03 марта 2015 года в 14.00 на заседании диссертационного совета Д 212.285.23 на базе ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» по адресу: 620000, Екатеринбург, пр. Ленина, 51, Зал диссертационных советов, комн. 248.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», http://dissovet.science.urfu.ru/news2/

Автореферат разослан ____ 2015 года

Ученый секретарь диссертационного совета, кандидат химических наук, доцент

May

Л.К. Неудачина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы</u>

Сложные оксиды со структурой перовскита $ABO_{3\pm\delta}$, содержащие в узлах A P3Э или Щ3Э, в узлах B – 3d-металл (Cu, Ti, Cr, Mn, Fe, Co, Ni) являются перспективными материалами для использования в качестве электродов высокотемпературных топливных элементов, катализаторов окислительно-восстановительных реакций и дожигания выхлопных газов, кислородных мембран [1]. Такое широкое применение этих соединений обусловлено высокой стабильностью структуры перовскита, что позволяет в широких пределах варьировать состав по кислороду и проводить легирование катионами в A- и/или B-позициях решетки с минимальным изменением структуры и целенаправленным изменением требуемых целевых свойств.

Сравнительно недавно было обнаружено, что частичное замещение РЗЭ на катионы бария не приводит к образованию твердых растворов с общей формулой при x = 0.5происходит $A_{1-x}A'_{x}BO_{3-\delta}$ а упорядочение ИОНОВ лантаноила И щелочноземельного металла в А подрешетке, ведущее к появлению плоскостей содержащих только лантаноид, либо барий, и как следствие, формированию слоистых структур состава АА'B₂O_{5+δ} [2]. В настоящее время слоистые перовскитоподобные фазы LnBaB₂O_{5+δ} вызывают повышенный интерес исследователей, вследствие высокой электронно-ионной проводимости и подвижности ионов кислорода, что позволяет рассматривать их в качестве потенциальных материалов для катодов среднетемпературных топливных элементов и кислородных мембран [2].

Физико-химические свойства оксидов, образующихся в системах Y-Ba-Co-Me-O (Me = Fe, Ni, Cu), существенно зависят от их кристаллической структуры, на формирование которой, в свою очередь, заметное влияние оказывает содержание кислорода [2].

Поэтому разработка методов синтеза, информация о функциональных свойствах и стабильности оксидов, образующихся в подобных системах при варьировании химического состава и внешних термодинамических условий, сведения о фазовых равновесиях систем, образующих изучаемые оксиды, является актуальной задачей, так как представляет собой физико-химическую основу получения и использования таких материалов.

Актуальность работы также подтверждается и тем, что она проводилась в рамках тематики грантов и конкурсов: «Термодинамика наноразмерных упорядоченных и слоистых перовскитоподобных оксидных фаз: стабильность, фазовые переходы, дефектные структуры», РФФИ (грант № 09-03-00620); «Термодинамическая стабильность кислороддефицитных оксидных фаз с перовскитоподобной структурой», РФФИ (грант № 13-03-00958); «Развитие научных основ создания целевых нанокомпозитных функциональных катодных материалов для среднетемпературных и протон-проводящих твердооксидных топливных элементов», РФФИ (грант № 12-03-91663-ЭРА а); конкурсов на проведение научных исследований аспирантами, молодыми учеными и кандидатами наук Уральского федерального университета в 2013 и 2014 годах в рамках реализации программы развития УрФУ.

Степень разработанности темы:

На момент начала выполнения работы в литературе была информация о методах синтеза, кристаллической структуре и некоторых свойствах различных бинарных оксидов,

образующихся в системах Y-Me-O (где Me=Fe, Co), Ba-Me-O, а также информация о некоторых тройных оксидах, например, YBaCo₂O_{5+ δ}, YBaFe₂O_{5+ δ} и некоторых других. Однако, сведения, касающиеся областей гомогенности твердых растворов на их основе и кислородной нестехиометрии, довольно не систематичны и зачастую противоречивы. В литературе полностью отсутствовала информация, касающаяся фазовых равновесий в системах Y-Ba-Me-O (Me=Co, Fe).

Цели и задачи работы

Целью настоящей работы явилось определение фазовых равновесий и установление взаимосвязи между кристаллической структурой, кислородной нестехиометрией, электротранспортными и термомеханическими свойствами сложных оксидов с перовскитоподобной структурой, образующихся в системах Y-Ba-Co-Me-O (Me = Fe, Ni, Cu). Для достижения поставленной цели решены следующие конкретные задачи:

1. Определены фазовые равновесия в квазитройных системах Y-Ba-Fe-O и Y-Ba-Co-О и построение изобарно-изотермических разрезов диаграмм состояния при 1373 К на воздухе;

2. Исследовано влияние температуры на кристаллическую структуру и параметры элементарной ячейки сложных оксидов YBaCo₂O_{5+δ} и BaFe_{0.8}Y_{0.1}Co_{0.1}O_{3-δ} на воздухе;

3. Установлены области гомогенности и кристаллическая структура твердых растворов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me=Fe, Ni, Cu), $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ на воздухе;

4. Получены функциональные зависимости кислородной нестехиометрии сложных оксидов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu), $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ от температуры на воздухе;

5. Получены зависимости общей электропроводности оксидов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu) от температуры;

6. Исследована термическая и химическая совместимость сложных оксидов, YBaCo_{2-x}Me_xO_{5+ δ} (Me = Fe, Ni, Cu), BaCo_{1-y-z}Y_yNi_zO_{3- δ} и BaFe_{0.9-*a*}Y_{0.1}Co_{*a*}O_{3- δ} с материалами твердого электролита топливного элемента.

<u>Научная новизна</u>

1. Впервые проведены систематические исследования фазовых равновесий и построены изобарно-изотермические разрезы диаграмм состояния в квазитройных системах Y-Ba-Fe-O, и Y-Ba-Co-O при 1373 К на воздухе;

2. Установлено влияние температуры на кристаллическую структуру и параметры элементарной ячейки перовскитоподобных соединений состава YBaCo₂O_{5+δ} и BaFe_{0.8}Y_{0.1}Co_{0.1}O_{3-δ} на воздухе;

3. Получены неописанные ранее ряды твердых растворов $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ и BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta} на воздухе и определены области гомогенности твердых растворов YBaCo_{2-x}Me_xO_{5+ δ} (Me=Fe, Ni, Cu) на воздухе;

4. Впервые получены зависимости кислородной нестехиометрии сложных оксидов YBaCo_{2-*x*}Me_{*x*}O_{5+ δ} (Me = Fe, Ni, Cu), BaCo_{1-*y*-*z*}Y_{*y*}Ni_{*z*}O_{3- δ} и BaFe_{0.9-*a*}Y_{0.1}Co_{*a*}O_{3- δ} от температуры на воздухе;

5. Впервые получены зависимости общей электропроводности сложных оксидов YBaCo_{2-x}Me_xO_{5+ δ} (Me = Fe, Ni, Cu) от температуры; 6. Впервые исследована термическая и химическая совместимость сложных оксидов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu), $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ с материалом твердого электролита ($Ce_{0.8}Sm_{0.2}O_2$ и $Zr_{0.85}Y_{0.15}O_2$) от температуры на воздухе.

Практическая ценность:

Построенные изобарно-изотермические разрезы диаграмм состояния систем Y-Ba-Fe-O и Y-Ba-Co-O являются фундаментальным справочным материалом и могут быть использованы при анализе других возможных сечений.

Полученные в работе результаты могут быть использованы при выборе конкретного химического состава и условий синтеза сложных оксидов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu), $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ для создания электродов высокотемпературных топливных элементов, катализаторов дожига выхлопных газов, газовых сенсоров и др.

Результаты исследования электротранспортных свойств, КТР оксидов YBaCo_{2-x}Me_xO_{5+ δ} (Me = Fe, Ni, Cu) и BaFe_{0.9-a}Y_{0.1}Co_aO_{3- δ}, а также их химической совместимости с электролитами могут быть использованы для оценки их возможного применения в различных электрохимических устройствах.

Синтез образцов для исследования осуществляли по стандартной керамической и глицерин-нитратной технологиям. Определение фазового состава образцов проводили методом рентгенофазового анализа на дифрактометрах Дрон-6 (Cu_{Ka}-излучение, в интервале углов $2 \Theta = 20^{\circ} - 120^{\circ}$, с шагом $0.01 - 0.04^{\circ}$, с выдержкой в точке 10 сек) и Equinox-3000 $2 \Theta = 10^{\circ} - 90^{\circ}$, 0.012°). (СиК_α-излучение, В интервале углов шагом Высокотемпературный рентгеноструктурный анализ проводили на дифрактометре Equinox 3000, снабжённом высокотемпературной камерой HTK 16N (Anton Paar, Австрия), в интервале температур 298 – 1373 К на воздухе. Идентификацию фаз осуществляли при помощи картотеки ICDD и программного пакета "Fpeak" (ИЕН, УрФУ). Уточнение структуры анализируемых образцов проводили методом полнопрофильного анализа Ритвелда с помощью программы "Fullprof 2011". С целью уточнения структуры определенной методами рентгеновского анализа, и в частности выявления возможных сверхструктурных упорядочений, а также дефектной структуры материала, элементного использовался метод просвечивающей анализа сложных оксидов электронной микроскопии (ПЭМ), включая методы высокоразрешающей ПЭМ и электроннодифракционные (ЭД), а также методы энергодисперсионной рентгеновской спектроскопии (EDX). Исследования проводились на микроскопе Tecnai G2 30 UT производства фирмы FEI с гексаборидовым термоэмиссионным катодом при ускоряющем напряжении 300кВ и оснащенным EDAX EDX детектором. Электронная микроскопия в лаборатории CRISMAT, Кан, Франция. Термогравиметрические выполнена исследования проводили на термовесах STA 409 PC фирмы Netzsch Gmbh. в интервале температур 298-1373 К на воздухе. Определение индекса кислородной нестехиометрии проводили методами прямого восстановления образцов в токе водорода и окислительновосстановительного титрования. Измерения общей электропроводности проводили 4-х контактным методом на постоянном токе в интервале температур 298-1273 К. Измерения термического расширения керамических образцов проводились на дилатометре DIL 402 С фирмы Netzsch Gmbh на воздухе в интервале температур 298-1373 К со скоростью нагрева и охлаждения 2°С/мин. Химическую совместимость сложных оксидов по отношению к

5

материалу электролита изучали методом контактных отжигов в температурном интервале 1073-1373 К на воздухе.

На защиту выносятся:

1. Изобарно-изотермические сечения диаграмм состояния квазитройных систем Y-Ba-Fe-O и Y-Ba-Co-O при 1373 К на воздухе;

Влияние температуры на кристаллическую 2. структуру И параметры перовскитоподобных элементарных ячеек соединений состава YBaCo₂O_{5+δ} И ВаFe_{0.8}Y_{0.1}Co_{0.1}O_{3-б} на воздухе

3. Значения ширины областей гомогенности и параметры элементарных ячеек твердых растворов $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$, $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ и $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu);

4. Функциональные зависимости кислородной нестехиометрии от температуры для сложных оксидов $BaCo_{1-y-z}Y_yNi_zO_{3-\delta_3}$ BaFe_{0.9-a} $Y_{0.1}Co_aO_{3-\delta}$ и $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu);

5. Зависимости общей проводимости сложных оксидов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu) с перовскитоподобной структурой от температуры;

6. Значения КТР и результаты исследования химической совместимости сложных оксидов, образующихся в системах Y-Ba-Co-Me-O (Me = Fe, Ni, Cu) с материалами твердого электролита топливного элемента.

<u>Публикации</u>

По материалам диссертации опубликовано 4 статьи и 30 тезисов Международных и Всероссийских конференций.

<u>Апробация работы</u>

Основные результаты, полученные в работе, доложены и обсуждены на всероссийских и международных конференциях: Российская молодежная научная конференция «Проблемы теоретической и экспериментальной химии», Екатеринбург, 2009-2014; «XVII международная конференция по химической термодинамике». Казань 2009; 12-й международный симпозиум «Порядок, беспорядок и свойства оксидов», г. Ростов-на-Дону – пос. Лоо 2009; Молодежная конференция «Международный год химии», Казань, 2011; V Всероссийская конференция студентов и аспирантов «Химия в современном мире», Санкт-Петербург, 2011; 2011 MRS Fall Meeting & Exhibit. Symposium В: Advanced Materials for Fuel Cells. Boston, USA, 2011; Всероссийская конференция функциональные материалы», твердого тела И Екатеринбург, 2012; «Химия «Nonstoichiometric Compounds V» Taormina, Sicily, Italy, 2012; «14th European conference on Solid State Chemistry» Bordeaux, France, 2013; 1-ая научно-практическая конференция «Химия в федеральных университетах», Екатеринбург, 2013г; Ш Информационная школа молодого ученого, Екатеринбург, 2013; Х Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», Москва, 2013; Всероссийская научная конференция с международным участием «Теоретическая и экспериментальная химия глазами молодежи», Иркутск, 2013-2014; International Symposium on the Reactivity of Solids, Saint Petersburg, 2014; 11th Conference on Solid State Chemistry, Trenčianske Teplice, Slovak Republic, 2014; 13th International Symposium on Advancing on Chemical Sciences (ISACS13) "Challenges in Inorganic and Materials Chemistry", Dublin, Ireland, 2014.

Структура и объём работы:

Диссертационная работа состоит из введения, четырех глав, выводов и списка литературы. Материал изложен на 131 странице, работа содержит 49 таблиц, 92 рисунка, список литературы из 150 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулированы цель и задачи исследования, дается краткая характеристика изучаемых объектов, отмечены новизна, практическое и научное значение работы.

В первой главе приведен анализ литературных данных по фазовым равновесиям в подсистемах составляющих систему Y-Ba-Fe-Co-O; приведены известные сведения об условиях получения, областях гомогенности, кристаллической структуре, кислородной нестехиометрии, электротранспортным и термомеханическим свойствам сложных оксидов со структурой слоистого перовскита состава YBaMe_{2-x}Me'_xO_{5+ δ} (Me, Me' = Fe, Co, Ni, Cu). Конкретизированы поставленные перед настоящим исследованием задачи.

Во второй главе представлены характеристики исходных материалов, методы и условия получения образцов и экспериментальные методы исследования физикохимических свойств оксидов.

<u>Синтез образцов</u> для исследования осуществляли по стандартной керамической и глицерин-нитратной технологиям, а так же методом соосаждения. Заключительный отжиг проводили при 1273–1373 К на воздухе в течение 120–240 часов с промежуточными перетираниями в среде этилового спирта и последующим медленным охлаждением (со скоростью 100°/час) или закалкой на комнатную температуру, в зависимости от поставленных задач.

<u>Определение фазового состава</u> образцов проводили на дифрактометрах Дрон-6 (Си_{*K*α}-излучение, в интервале углов $2\Theta = 20^{\circ} - 120^{\circ}$, с шагом 0.01-0.04°, с выдержкой в точке 10 сек) и Equinox-3000 (Си_{*K*α}-излучение, в интервале углов $2\Theta = 10^{\circ} - 90^{\circ}$, шагом 0.012°). Высокотемпературный рентгеноструктурный анализ проводили на дифрактометре Equinox 3000, снабжённом высокотемпературной камерой НТК 16N (Anton Paar, Австрия), в интервале температур 298 – 1373 К на воздухе. Идентификацию фаз осуществляли при помощи картотеки ICDD и программного пакета "Fpeak" (ИЕН, УрФУ). Параметры элементарных ячеек были рассчитаны в программе «Celref 3» и уточнены методом полнопрофильного анализа Ритвелда в программе «Fullprof 2011».

<u>Уточнения структуры</u>, определенной методами рентгеновского анализа, и в частности выявления возможных сверхструктурных упорядочений, а также дефектной структуры материала, элементного анализа сложных оксидов использовался метод просвечивающей электронной микроскопии (ПЭМ), включая методы высокоразрешающей ПЭМ и электронно-дифракционные (ЭД), а также методы энергодисперсионной рентгеновской спектроскопии (EDX). Исследования проводились на микроскопе Tecnai G2 30 UT производства фирмы FEI, оснащенным EDAX EDX детектором. Элементный состав был получен методом EDX с 15 разных кристаллитов (исследования проведены в лаборатории CRISMAT, Кан, Франция).

<u>Термогравиметрические исследования</u> проводили на термовесах STA 409 PC фирмы Netzsch Gmbh., позволяющих фиксировать изменения массы образца в зависимости от парциального давления кислорода и температуры.

<u>Определение содержания кислорода</u> в образцах проводили методами восстановления образцов в токе водорода и йодометрического титрования. Фиксирование конечной точки титрования осуществляли потенциометрически с использованием автоматического потенциометрического титратора Аквилон АТП-02.

<u>Измерения относительного расширения</u> керамических брусков с увеличением температуры проводили на дилатометре DIL 402 С фирмы Netzsch Gmbh на воздухе в температурном интервале 298 – 1373 К со скоростью нагрева и охлаждения 5°К/мин.

<u>Общую электрическую проводимость</u> измеряли на керамических брусках четырехконтактным методом на постоянном токе в интервалах 298-1373 К на воздухе.

<u>Химическую совместимость</u> сложных оксидов с материалами твердого электролита топливного элемента ($Ce_{0.8}Sm_{0.2}O_{2-\delta}$ и $Zr_{0.85}Y_{0.15}O_{2-\delta}$) изучена методом контактных отжигов в температурном интервале1073 – 1373 К.

Основные результаты исследований и их обсуждение содержатся в третьей и четвертой главах.

В третьей главе приведены результаты изучения фазовых равновесий в системах Y-Ba-Co-Fe-O.

Фазовые равновесия в системе Y-Ba-Fe-O

Изучение фазовых равновесий в системе Y-Ba-Fe-О проводили при 1373 К на воздухе. Для этого было приготовлено 58 образцов с различным соотношением металлических компонентов.

В системе Y-Fe-O при 1373 К на воздухе подтверждено образование двух бинарных соединений: YFeO₃ и Y₃Fe₅O₁₂. Феррит иттрия состава YFeO_{3-δ} имеет перовскитоподобную структуру с орторомбическими искажениями, параметры элементарной ячейки: a=5.586(1) Å, b=7.595(1) Å, c=5.275(1) Å (пр. гр. *Pbnm)*. Рентгенограмма оксида Y₃Fe₅O₁₂, полученного по реакции твердофазного синтеза, была проиндексирована в рамках кубической структуры с параметром a=12.363(1) Å (пр. гр. *Ia3d*).

В системе Y-Ba-O при 1373 К на воздухе подтверждено образование двух бинарных оксидов: BaY₂O₄ (*a*=10.396(1) Å, *b*=12.116(1) Å, *c*= 3.431(1) Å, пр. гр. *Pnab*) и Ba₃Y₄O₉ (*a*=6.169(1) Å, *c*=25.476(1) Å, пр. гр. *R-3M*).

В системе Ва-Fe-O установлено существование трех бинарных соединений ВаFe₁₂O₁₉ (a= 5.890(1) Å, c=23.208(1) Å, пр. гр. *P63/mmc*), ВаFe₂O₄ (a=19.015(1) Å, b=5.374(1) Å, c=8.435(1) Å, пр. гр. *Pnma*) и ВаFeO_{3-δ}. Кристаллическая структура ВаFeO_{3-δ} существенно зависит от содержания кислорода, т.е. от условий термической обработки. При закалке с 1373 К была получена фаза ВаFeO_{3-δ} с кубической элементарной ячейкой (a=4.139(1) Å пр. гр. *Pm3m*). По данным ТГА при 1373 К на воздухе состав этого сложного оксида соответствовал формуле ВаFeO_{2.54}.

Согласно результатам РФА закаленных образцов в системе Y-Ba-Fe-O при 1373 К на воздухе образуется лишь один тип твердых растворов на основе феррита бария в котором иттрий замещает ионы железа $BaFe_{1-x}Y_xO_{3-\delta}$, область гомогенности которого лежит в интервале составов $BaFe_{1-x}Y_xO_{3-\delta}$ 0.75<x<0.125 (пр. гр.*Pm3m*).

По данным РФА образец YBa₃Fe₂O_{7.65} (x=0.33), закаленный с 1373 К, кристаллизуется в орторомбической ячейке с параметрами a=18.448(1) Å, b=8.029(1) Å, c=6.167(1) Å (пр. гр. *Рттт*).

По результатам РФА всех исследуемых образцов, закаленных на комнатную температуру, построена проекция изобарно-изотермической диаграммы состояния системы Y-Ba-Fe-O при 1373 К на воздухе (рисунок 1).

Рисунок 1 - Изобарноизотермический разрез диаграммы состояния системы Y-Ba-Fe-О при 1373 К на воздухе

Фазовые равновесия в системе Y-Ba-Co-O изучали при 1373 К на воздухе. Было приготовлено 52 состава с различным соотношением металлических компонентов

В системе Y-Co-O на воздухе подтверждено, что температура разложения YCoO₃ находится ниже 1373 К и других сложных оксидов не существует.

В квазибинарной системе Ва-Со-О установлено существование двух бинарных соединений Ва₂CoO₄ (a=10.426(1) Å, b=7.629(1) Å, c=5.911(1) Å, β =91.1°, пр. гр. *Р* 21/*n*) и ВаСоО_{3-δ}. Кристаллическая структура ВаСоО_{3-δ} существенно зависит от содержания кислорода, т.е. от условий термической обработки. При закалке с 1373 К была получена фаза ВаСоО_{3-δ} с орторомбической элементарной ячейкой.

Согласно данным РФА единственный оксид состава YBaCo₂O_{5+ δ} был получен однофазным. Сложный оксид YBaCo₂O_{5+ δ} кристаллизуется в тетрагональной ячейке (пр. гр. *P4/mmm*): a = b = 11.616 Å, c = 7.494 Å. Рентгенограмма кобальтита иттрия-бария, обработанная методом Ритвелда представлена на рисунке 2.

Рисунок 2 - Рентгенограмма YBaCo₂O_{5+δ}, обработанная по методу Ритвелда:

точки – экспериментальные данные; сплошная линия – теоретический спектр; сплошная нижняя линия – разница между экспериментальными данными и расчетным спектром

Исследования методом электронной микроскопии подтвердили наличие суперячейки $3a_p \times 3a_p \times 2a_p$ (a_p – параметр ячейки кубического перовскита) в YBaCo₂O_{5+δ} при температуре 298 К за счет упорядочения вакансий кислорода (рисунок 3).

Рисунок 3 - (а), (г) микроскопия высокого разрешения образца YBaCo₂O_{5.41} вдоль осей зоны [001]. (б), (в) – электронная дифракция вдоль осей зоны [001] и [110] соответственно, иллюстрирующие утроение *а*_{*p*}. (г) – увеличенный прямоугольный фрагмент области (а) с ЗархЗар суперструктурой. Врезка – структурная модель в [001] плоскости, где колонки (Ва, Ү) изображены синим цветом, Со желтым, апикальные кислородные узлы синих октаэдров заполнены, голубых - вакантны

Утроение параметров *a* и *b* происходит в результате упорядочения кислородных вакансий в слое YO_{δ} , приводящее к сосуществованию ионов кобальта в октаэдрическом и пирамидальном окружении, удвоение параметра *c* происходит вследствие чередования ионов иттрия и бария в разных плоскостях.

Исследование поведения данной фазы на воздухе показало, что с увеличением температуры из слоев [YO_{δ}] постепенно уходит кислород, и при 1123 К состав сложного оксида можно представить формулой YBaCo₂O_{5.06}. Данные высокотемпературной рентгеновской дифракции в диапазоне температур 298-1123 К на воздухе, показали, что тетрагональная симметрия двойного перовскита, в частности, удвоение параметра *с* сохраняется во всем исследованном диапазоне температур. Сверхструктурные рефлексы, соответствующие утроению параметра *а* слишком слабы, чтобы быть обнаруженными на основании данных рентгеноструктурного анализа *in situ*.

Исследования образца YBaCo₂O_{5.41} при помощи электронного микроскопа показали, что угроение параметра *а* исчезает уже даже при длительном воздействии пучка электронов на образец (рисунок 3 б, в), что связано с нагреванием оксида и выходом кислорода с поверхности образца в газовую фазу, приводящее к образованию $a_p \times a_p \times 2a_p$

структуры (пр. гр. *P4/mmm*). Данной структуре отвечает состав «O5» или малое отклонение от этой стехиометрии со статистически распределенным кислородом и вакансиями кислорода в YO_δ слое.

Сложный оксид YBaCo₄O_{7+ δ} кристаллизуется в гексагональной ячейке с параметрами a = 6.299(1) Å, c = 10.240(1) Å (пр.гр. $P6_3mc$). *Твердые растворы* $BaCo_{1-y}Y_yO_{3-\delta}$

Согласно результатам рентгенофазового анализа закаленных образцов в системе Y-Ba-Co-O при 1373 K на воздухе подтверждено образование твердых растворов на основе кобальтита бария состава $BaCo_{1-y}Y_yO_{3-\delta}$ [3]. Введение иттрия в подрешетку кобальта приводит к образованию $BaCo_{1-y}Y_yO_{3-\delta}$ в интервале составов ($0.1 \le y \le 0.4$), стабилизируя кубическую перовскитовую структуру (пр. гр. *Рm3m*).

Увеличение содержания иттрия, замещающего кобальт в сложных оксидах, приводит к линейному увеличению параметра *a* и объема элементарной ячейки, что можно связать с размерными эффектами: $r_{\rm Y}^{3+} = 0.9$ Å (к.ч. = 6) и $r_{\rm Co}^{3+}$ (с. $^{4+}$ = 0.61 / 0.53 Å (к.ч. = 6) [4].

По результатам РФА всех исследуемых образцов, закаленных на комнатную температуру, диаграмма состояния системы Y-Ba-Co-O при 1373 К на воздухе была разбита на 14 фазовых полей.

Необходимо отметить, что систематического исследования границ поля расплавов в данной работе не проводили. Поле 14 (рисунок 4) схематически показывает область появления фазы расплава на диаграмме состояния системы Y-Ba-Co-O при 1373 К на воздухе.

В четвертой главе приведены результаты комплексного исследования кристаллической структуры, кислородной нестехиометрии и физико-химических свойств сложных оксидов, образующихся в системах Y-Ba-Me-Me'-O (Me, Me'=Fe, Ni, Cu). Кислородная нестехиометрия и термические свойства твердых растворов BaCo_{1-v}Y_vO_{3-δ}

На рисунке 5 приведены зависимости изменения содержания кислорода в сложных оксидах состава BaCo_{1-v}Y_vO_{3-δ}.

Рисунок 5 - Зависимости изменения содержания кислорода в BaCo_{1-y}Y_yO_{3-δ} от температуры на воздухе

При постепенном замещении кобальта на иттрий в BaCo_{1-y}Y_yO_{3-δ} в рамках кубической структуры при температурах < 700 К наблюдается монотонное уменьшение содержания кислорода.

Из рисунка 5 видно, что форма зависимостей для образцов с y = 0.1 и 0.2 похожи друг на друга, но отличаются от таковых для образцов с y = 0.3 и 0.4 (которые, в свою очередь, похожи друг на друга). На всех зависимостях можно выявить изгибы при температурах около 590 и 790-820 К. Характер первого изгиба может быть связан с началом выхода кислорода из образца. Характер второго изгиба не столь очевиден, но, вероятно, может быть связан с особенностью изменений кристаллической структуры с изменениями содержания кислорода. При температурах ниже 600 К значения содержания кислорода постепенно уменьшается с увеличением количества иттрия, а при температурах, превышающих 1100 К, данная зависимость исчезает.

Зависимости относительного линейного расширения $BaCo_{1-y}Y_yO_{3-\delta}$ (*x*=0; 0.1; 0.2 и 0.3) от температуры в интервале 298 – 1200 К на воздухе, полученные в режиме нагревания и охлаждения, полностью совпадают и представлены на рисунке 6 (а, б).

Рисунок 6 - Зависимости относительного линейного расширения BaCo_{1-y}Y_yO_{3-δ} от температуры на воздухе: (a) y=0.0; (б) y=0.1; 0.2; 0.3

Монотонный характер зависимостей $\Delta L/L = f(T)$ для $BaCo_{1-y}Y_yO_{3-\delta}$ (y=0.1; 0.2; 0.3) (рисунок 6 б) свидетельствует об отсутствии фазовых переходов. На зависимости $\Delta L/L = f(T)$ для кобальтита бария $BaCoO_{3-\delta}$ (рисунок 6 а) при 1200 К наблюдается излом, который, по-видимому, может быть интерпретирован как фазовый переход I рода, связанный с изменением структуры, вызванный потерей кислорода при нагревании.

Изобарические зависимости $\Delta L/L = f(T)$ для BaCo_{1-у}Y_уO_{3-δ} были статистически обработаны линейным уравнением в температурном интервале 298 – 1200 К. Значения

средних коэффициентов термического расширения (КТР), рассчитанных из дилатометрических данных, приведены в таблице 1.

Таблица 1 - Значения средних коэффициентов термического расширения $BaCo_{1-y}Y_yO_{3-\delta}$ в

у	KTP×10 ⁶ , K ⁻¹	y	KTP×10 ⁶ , K ⁻¹
0.0	24.14	0.2	17.65
0.1	18.60	0.3	13.68

интервале температур 298 – 1200 К

<u>Кристаллическая структура, кислородная нестехиометрия, термические свойства и</u> <u>химическая совместимость сложных оксидов BaCo_{1-y-z}Y_yNi_zO_{3-δ}</u>

Из рентгенографических данных установлено, что замещение кобальта на железо или медь в указанных условиях не приводит к образованию твердых растворов состава $BaCo_{1-y-z}Y_yMe_zO_{3-\delta}$ с $0.1 \le y \le 0.4$, где Me = Fe, Cu.

Замещение кобальта на никель приводит к образованию однофазных оксидов $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$: при содержании иттрия $0.1 \le y \le 0.2$ область гомогенности сложных оксидов по содержанию никеля *z* простирается до 0.2. Подобно незамещенным твердым растворам $BaCo_{1-y}Y_yO_{3-\delta}$, кристаллическая структура оксидов $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ была описана в рамках кубической ячейки, пространственная группа *Pm3m*.

При введении никеля в подрешетку кобальта в BaCo_{1-y}Y_yO_{3-δ} наблюдается монотонное увеличение параметров и объема ячеек твердых растворов BaCo_{1-y-z}Y_yNi_zO_{3-δ}, что связано с размерным эффектом.

Внедряемый в В-подрешетку никель облегчает вакансионное разупорядочение кислородной подрешетки, так как становится полностью или частично акцептором электронов (Ni_{Co}^{\prime}) ($\Theta_{Ni} = 1.75$, $\Theta_{Co} = 1.70$) [5]. Для компенсации избыточного отрицательного заряда акцепторных дефектов в структуре оксида появляется эквивалентное количество положительных зарядов – кислородных вакансий ($V_{o}^{\bullet\bullet}$) и/или электронных дырок. На рисунке 7 представлены зависимости содержания кислорода от содержания никеля в твердых растворах BaCo_{1-y-z}Y_yNi_zO_{3-δ.}

Рисунок 7 - Зависимость содержания кислорода от содержания никеля в BaCo_{1-y-z}Y_yNi_zO_{3-δ}

Зависимости относительного линейного расширения $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ от температуры в интервале 298 – 1273 К на воздухе, полученные в режиме нагревания и охлаждения, полностью совпадают. Монотонный характер зависимостей $\Delta L/L=f(T)$ для $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ свидетельствует об отсутствии фазовых переходов.

Уменьшение КТР с увеличением содержания иттрия и никеля связано с уменьшением количества 3*d*-металла, имеющего переменную степень окисления (в предположении того, что преимущественная степень окисления никеля 2+).

<u>Структура, кислородная нестехиометрия и термические свойства твердых растворов</u> состава BaFe_{0.9-a}Y_{0.1}Co_aO_{3-δ}

Было установлено, что введение иттрия в подрешетку железа приводит к образованию твёрдого раствора $BaFe_{1-x}Y_xO_{3-\delta}$, стабилизируя кубическую перовскитовую структуру при температуре 298 К на воздухе.

По результатам РФА, установлено, что образуются единственный сложный оксид состава BaFe_{0.9}Y_{0.1}O_{3-δ} (пр. гр. *Pm3m*).

Феррит бария, замещенный иттрием $BaFe_{0.9}Y_{0.1}O_{3-\delta}$ устойчив на воздухе в широком температурном интервале. Согласно данным высокотемпературного РФА *in situ* в интервале 298 $\leq T$, K \leq 1273 и $Po_2 = 0.21$ атм кристаллическая структура не изменяется и во всех случаях хорошо описывается кубической ячейкой (пр. гр. Pm3m).

В температурном интервале 200 - 600 К параметр элементарной ячейки *а* остаётся практически постоянным, тогда как в интервале температур 600 - 1373 К – увеличивается. Такое поведение в области температур < 600К не вполне понятно. Даже при отсутствии потерь кислорода в этой области температур, как правило, наблюдается увеличение параметров решетки за счет физического термического расширения. Плато на зависимости параметра *a* от T, может быть связано с изменением спинового состояния (магнитных свойств) ионов железа в исследуемом образце. Если предположить что в этом температурном интервале ионы железа из высокоспинового переходят в низкоспиновое состояние, то это может компенсировать эффект термического расширения, хотя данное предположение требует дополнительных экспериментальных подтверждений.

Для определения возможности замещения железа на другие 3d-переходные металлы и образования твёрдых растворов состава $BaFe_{0.9-a}Y_{0.1}Me_aO_{3-\delta}$, где Me = Co, Ni, Cu методом твердофазного синтеза были приготовлены образцы в интервале составов $0.0 \le a \le 0.2$ с шагом 0.05. Из рентгенографических данных установлено, что замещение железа на никель или медь в указанных условиях не приводит к образованию твердых растворов состава $BaFe_{0.9-x}Y_{0.1}Me_xO_{3-\delta}$, где Me = Ni, Cu.

Замещение железа на кобальт привело к образованию твердых растворов состава Область гомогенности сложных оксидов ВаFe_{0.9-а}Y_{0.1}Co_aO_{3-δ} BaFe_{0.9-a} $Y_{0.1}$ Co_aO_{3-\delta}. простирается до содержания кобальта а=0.15 (пр. гр. Рт3т). Для всех однофазных образцов из рентгенографических данных были вычислены параметры кристаллической решётки. При введении кобальта в подрешётку железа в ВаFe_{0.9}Y_{0.1}O_{3-б} наблюдается объёма монотонное уменьшение параметров И ячеек твёрдых растворов BaFe_{0.9-a}Y_{0.1}Co_aO_{3-δ}.

Основываясь на результатах восстановления образцов $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ в атмосфере водорода и йодометрического титрования оксидов $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$, были рассчитаны абсолютные значения δ для всех твёрдых растворов во всем исследованном интервале температур на воздухе.

Внедряемый в В-подрешетку кобальт облегчает вакансионное разупорядочение кислородной решетки, так как становится полностью или частично акцептором электронов (Co'_{Fe}) ($\Theta_{Fe} = 1.64$; $\Theta_{Co} = 1.7$) [5]. Для компенсации избыточного отрицательного заряда акцепторных дефектов в структуре оксида появляется

эквивалентное количество положительных зарядов – кислородных вакансий ($V_o^{\bullet\bullet}$) и/или электронных дырок.

На зависимости содержания кислорода от температуры для BaFeO_{3-δ} при 900 К наблюдается излом, связанный с переходом первого рода (изменение структуры из орторомбической в кубическую). Эти данные неплохо согласуются с результатами, полученными высокотемпературной рентгенографией.

На зависимости $\Delta L/L=f(T)$ для феррита бария BaFeO_{3-δ} при 706 K и 1070 K наблюдаются изломы. Сопоставление дилатометрической кривой с термогравиметрическими данными дают возможность предположить, что излом на зависимости относительного линейного расширения при температуре около 700 K связан с началом активной потери кислорода образцом (т.е. появляется вклад так называемого «химического расширения»), а излом при 1070 соответствует упомянутому выше структурному переходу. При T <700 K зависимость $\Delta L/L=f(T)$ для BaFeO_{3-δ} имеет линейный характер со средним значением KTP для орторомбической структуры 12.5×10⁻⁶, K⁻¹, а при T > 1070 K 23.6×10⁻⁶, K⁻¹ – для кубической структуры. Значение KTP в интервале температур 607<T, K<1070 составляет 22.5×10⁻⁶, K⁻¹.

Зависимости относительного линейного расширения $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ от температуры в интервале 298 – 1273 К на воздухе, полученные в режимах нагревания и охлаждения, полностью совпадают. Немонотонный характер зависимостей $\Delta L/L = f(T)$ для $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ может быть связан с изменением спинового состояния ионов железа. При этом структура сложных оксидов остается кубической, что подтверждено высокотемпературным РФА *in situ* в интервале температур (298 – 1273 К). Интересно отметить, что зависимость относительного удлинения образца $BaFe_{0.8}Y_{0.1}Co_{0.1}O_{3-\delta}$ от температуры, построенная из значений параметров элементарной ячейки по данным высокотемпературной рентгеновской дифракции, хорошо совпадает с результатами дилатометрических измерений.

По результатам РФА установлено, что все исследуемые оксиды не взаимодействуют с $Ce_{0.8}Sm_{0.2}O_{2-\delta}$ во всем интервале температур (1073 – 1373 К). При контакте оксидов $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ с $Zr_{0.85}Y_{0.15}O_{2-\delta}$, начиная с 1173 К, на воздухе происходит образование продуктов химического взаимодействия.

<u>Кристаллическая структура и физико-химические свойства YBaCo_{2-x}Me_xO_{5+ δ} (Me = Fe, Ni, Cu) и YBaFe_{2-x}Cu_xO₅</u>

Было установлено, что однофазные сложные оксиды YBaCo_{2-x}Fe_xO_{5+ δ} образуются в интервале составов 0.0 $\leq x \leq 0.7$. Область гомогенности медь-замещенных кобальтитов иттрия—бария YBaCo_{2-x}Cu_xO_{5+ δ} простирается до x = 0.6. При замещении кобальта на никель был получен единственный сложный оксид состава YBaCo_{1.9}Ni_{0.1}O_{5+ δ}.

Подобно незамещенному YBaCo₂O_{5+δ}, кристаллическая структура оксидов YBaCo_{2-x}Me_xO_{5+δ} с 0<x<0.2 была описана в рамках тетрагональной ячейки $3a_p \times 3a_p \times 2a_p$ (пр. гр. *P4/mmm*). Медь- и железо-замещенные твердые растворы с большим содержанием допанта (x>0.2) имеют тетрагональную ячейку $a_p \times a_p \times 2a_p$ (пр. гр. *P4/mmm*), что подтверждено методом электронной микроскопии.

Структура железо-замещенных оксидов в рамках полиэдрического представления может быть описана в виде сочлененных вершинами октаэдров с вакансиями кислорода, распределенными хаотически в [YO] слоях (с формулой YBa(Co,Fe)₂O_{6-δ}), в то время как

структура медь-замещенных перовскитов может быть представлена в виде сочлененных вершинами пирамид, но с избытком кислорода, распределенным случайным образом в слоях [Y] (с формулой YBa(Co,Fe)₂O_{5+δ}).

Интересно отметить, что никель-замещенный кобальтит состава YBaCo_{1.9}Ni_{0.1}O_{5.32} показывает также отсутствие суперячейки $3a_p \times 3a_p \times 2a_p$, несмотря на низкий уровень замещения кобальта никелем, и достаточно близким значением содержания кислорода к идеально требуемому для возникновения суперячейки с утроением параметра *a*, равного 5.44.

Таким образом, формирование $3a_p \times 3a_p \times 2a_p$ суперячейки очень чувствительно к замещению кобальта на другие 3*d*-металлы, влияющие как на содержание кислорода, так и на упорядочение кислорода/вакансий кислорода в плоскости (001).

При введении железа или меди в подрешетку кобальта в YBaCo₂O_{5+δ} наблюдается монотонное увеличение параметров и объема ячеек твердых растворов YBaCo_{2-x}Me_xO_{5+δ}. Такие зависимости можно объяснить с точки зрения размерных эффектов.

<u>Кристаллическая структура и физико-химические свойства YBaFe_{2-x}Cu_xO₅</u>

Упорядоченное распределение Y и Ba в разных слоях делает менее выгодным формирование октаэдров FeO₆, по сравнению с пирамидальным окружением FeO₅. В свою очередь это приводит к тому, что кислородный индекс в двойном перовските стремиться к 5, а средняя степень окисления железа к значению 2.5+, что не характерно для железа в условиях воздушной атмосферы. Поэтому фазы состава LnBaFe₂O₅ получаются только при очени низких давлениях кислорода [6]. Введение меди Cu²⁺ в количестве близком 50% подрешетку железа в YBaFe₂O_{5+δ} делает возможным большей части ионов железа сохранить степень окисления равной 3+, тем самым, стабилизируя фазу со структурой двойного слоистого перовскита.

По данным РФА установлено, что однофазные сложные оксиды YBaFe_{2-x}Cu_xO_{5+ δ} образуются в интервале составов $1.0 \le x \le 1.1$ ($a_p \times a_p \times 2a_p$ (пр. гр. *P4mm*)). В качестве примера, на рисунке 8 представлена рентгенограмма YBaFeCuO_{5+ δ}, обработанная по методу полнопрофильного анализа Ритвелда.

Рисунок 8 - Рентгенограмма YBaFeCuO_{5+δ}, обработанная по методу Ритвелда: точки – экспериментальные данные; сплошная линия – теоретический спектр; сплошная нижняя линия – разница между экспериментальными данными и расчетным спектром

<u>Кислородная нестехиометрия YBaCo_{2-x}Me_xO_{5+ δ} (Me = Fe, Ni, Cu)</u>

При постепенном замещении кобальта на железо содержание кислорода в образцах увеличивается. Это связано с тем, что железо как более электроположительный элемент по сравнению с кобальтом (ЭО_{Fe} = 1.64; ЭО_{Co} = 1.7) [5] является полностью или частично донором электронов (Fe_{Co}^{\bullet}) и, следовательно, удерживает кислород в структуре оксида,

препятствуя образованию дополнительного количества вакансий кислорода $(V_o^{\bullet\bullet})$. Внедряемый в В-подрешетку никель (или медь) облегчает вакансионное разупорядочение кислородной решетки, так как становится полностью или частично акцептором электронов (Ni'_{Co}, Cu'_{Co}) (ЭО_{Ni} = 1.75; ЭО_{Cu} = 1.75) [5]. Для компенсации избыточного отрицательного заряда акцепторных дефектов в структуре оксида появляется эквивалентное количество положительных зарядов – кислородных вакансий ($V_o^{\bullet\bullet}$) и/или электронных дырок. На рисунке 9 представлена зависимость содержания кислорода и средней степени окисления 3*d*-переходных металлов в YBaCo_{2-x}Me_xO_{5+δ} (Me=Fe, Cu).

На рисунке 10 представлены зависимости содержания кислорода от температуры для $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me=Fe, Ni, Cu). Выделение кислорода из исследуемых образцов начинается на воздухе при температуре выше 600 К.

Рисунок 10 - Зависимости изменения содержания кислорода от температуры на воздухе для $YBaCo_{2-x}Me_xO_{5+\delta}$: (а) Me=Fe и (б) Me = Ni, Cu

Каждая экспериментальная кривая $(5+\delta) - f(T)$ может быть разделена на три части (рисунок 10). Первый участок: значения содержания кислорода остаются практически неизменными от комнатной температуры до приблизительно 600 К, по-видимому, данное поведение связано с кинетикой. Второй участок: значительные потери кислорода для всех образцов наблюдаются в диапазоне температур, начиная с ~ 600 К до 830-955 К. Дальнейшее увеличение температуры приводит к возникновению перегиба на кривых и наблюдется тенденция к насыщению. Как видно из рисунка 10, замещение кобальта на железо увеличивает содержание кислорода, в то время как замещение кобальта на никель

или медь уменьшает. Такое поведение было объяснено выше. В результате, средняя степень окисления 3*d*-переходных металлов возрастает для железо-замещенных оксидов и уменьшается для медь- и никель-легированных перовскитов.

Анализируя окислительно-восстановительное равновесие в сложных оксидах YBaCo_{2-x}Me_xO₅₊₈:

$$Co^{3+} + Me^{2+} \Leftrightarrow Me^{3+} + Co^{2+}$$
, где Me=Cu, Ni (1),

можно предположить, что оно существенным образом смещено влево, то есть степень окисления ионов 2+ для ионов меди и никеля в присутствии кобальта (Co²⁺/Co³⁺) более стабильно по сравнению с 3+. Так как средняя степень окисления 3*d*-металлов при комнатной температуре в данных оксидах не более 3+, то можно предположить, что практически все ионы меди и никеля будут находиться в степени окисления 2+, и следовательно, можно оценить среднюю степень окисления кобальта в оксидах $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me=Cu, Ni) (рисунок 10). Полученные результаты показывают, что, при условиях когда индекс содержания кислорода заметно больше 5.0, независимо от природы и концентрации легирующей примеси (Ni, Cu) средняя степень окисления кобальта и доля Co^{2+} остаются практически неизменными: ионов средняя степень окисления приблизительно 2.8, доля Co²⁺ около 14%. Иными словами, введение акцепторной примеси (Me'_{CO}) компенсируется изменением содержания кислорода при сохранении средней степени окисления кобальта.

Для железо-замещенных твердых растворов при комнатной температуре значения содержания кислорода больше, чем 5.5, следовательно, средняя степень окисления 3*d*-переходных металлов выше 3+, что соответствует присутствию ионов со степенями окисления 3+ и 4+. Поскольку кобальт является более электроотрицательным элементом по сравнению с железом, можно в первом приближении предположить, что все ионы кобальта находятся в Co³⁺ тогда, ионы железа отвечают за появление степени окисления 4+. Данный подход позволил рассчитать содержание ионов Fe⁴⁺ и их долю в сложных оксидах YBaCo_{2-x}Fe_xO_{5+δ.} В данном случае увеличение содержания железа в образцах приводит к увеличению доли ионов Fe⁴⁺. Таким образом, введение железа приводит заметному приросту содержания кислорода, компенсируемого увеличением степени окисления железа.

особенностью Другой железо-замещенных оксидов, является наличие высокотемпературной точки перегиба на зависимостях содержания кислорода от температуры при содержании кислорода заметно превышающих 5.0. В то время как такие точки перегиба для Ni- и Cu-замещенных твердых растворов, и для недопированного состава YBaCo₂O_{5+δ} можно рассматривать как стремление изменения содержания кислорода к 5.0, причина значительного увеличения значения (5+ δ) в точке перегиба на Fe-замещенных оксидах не очевидна. Поскольку во всех образцах содержание кислорода при температурах около 1325 К меньше 5.5, то значение степени окисления 3dпереходных распределяется между 3 +металлов 2^{+} И (без учета реакции Если диспропорционирования). предположить, что железо как более электроположительный элемент по сравнению с кобальтом, сохраняет степень окисления, равную 3+, то формально можно оценить содержание кобальта в степени окисления 2+ и 3+. Увеличение степени окисления кобальта отражает влияние увеличения содержания железа, поскольку последний способствует удержанию кислорода в решетке сильнее, чем кобальт. Другим интересным фактом является уменьшение доли ионов Co²⁺ вплоть до

нулевого значения, что препятствует дальнейшему замещению кобальта на железо в твердом растворе YBaCo_{2-x}Fe_xO₅₊₆, так как это при прочих равных условиях должно приводить к увеличению содержания кислорода, а дальнейшее увеличение степени окисления ионов Co³⁺ и Fe³⁺ (при данных T, P_{O2}) является неблагоприятным. Такое поведение объясняет границу замещения кобальта на железо между x = 0.7 и 0.8. Коэффициент термического расширения и химическая совместимость оксидов

<u>YBaMe_{2-x}Me'_xO_{5+ δ}(Me, Me' = Fe, Co, Ni, Cu) с материалом электролита</u>

Зависимости относительного линейного расширения $YBaMe_{2-x}Me'_{x}O_{5+\delta}$ (Me = Fe, Co, Ni, Cu) от температуры в интервале 298-1273 К на воздухе, полученные в режиме нагревания и охлаждения, полностью совпадают. Монотонный характер зависимостей $\Delta L/L = f(T)$ для YBaMe_{2-x}Me'_xO_{5+ δ} свидетельствует об отсутствии фазовых переходов. Изобарические зависимости $\Delta L/L = f(T)$ для YBaMe_{2-x}Me'_xO_{5+δ} (Me = Fe, Co, Ni, Cu) были статистически обработаны линейным уравнением в температурном интервале 298-1273 К.

По результатам РФА установлено, что все исследуемые оксиды не взаимодействуют с Ce_{0.8}Sm_{0.2}O_{2-б} при температурах 1173 К и 1273 К. При температурах, выше указанных, наблюдается взаимодействие сложных оксидов состава $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Cu; электролита. Оксид x = 0.0; 0.4) с материалом состава $YBaCo_{1,4}Fe_{0,6}O_{5+\delta}$ не взаимодействует с Ce_{0.8}Sm_{0.2}O₂₋₆ во всем исследуемом интервале температур. При контакте оксидов YBaCo_{2-x}Me_xO₅₊₆ (Me=Fe, Cu) с Zr_{0.85}Y_{0.15}O₂₋₆, начиная с 1173 К, на воздухе происходит образование продуктов взаимодействия.

Электротранспортные свойства перовскитов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu)

На рисунке 11 представлена температурная зависимость электропроводности сложных оксидов YBaCo_{2-x}Me_xO_{5+δ}.

Рисунок 11 - Зависимость общей электропроводности $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu) от температуры

Видно, что примерно при 600 К на зависимостях наблюдается экстремум. В литературе показано, что носителями заряда в кобальтитах редкоземельных элементов и бария со структурой двойного перовскита являются дырки и, проводимость может быть описана по механизму полярона малого радиуса [7,8]. Процессы, ответственные за образование носителей заряда можно представить следующим образом [7]:

$$O_O^{\times} + 2Co_{Co}^{\bullet} = \frac{1}{2}O_2 + V_O^{\bullet\bullet} + 2Co_{Co}^{\times}$$

$$2Co_{Co}^{\times} \Leftrightarrow Co_{Co}' + Co_{Co}^{\bullet}$$
(2)
(3)

$$C_O + Co_{C_O}^{\bullet} \tag{3}$$

Тогда увеличение проводимости от комнатной температуры до 600 К (рисунок 11), то есть при условиях пока изменение содержания кислорода в образце незначительно (рисунок 10), может быть связано с процессом диспропорционирования (реакция (3)). Дальнейшее увеличение температуры приводит к значительному увеличению количества вакансий кислорода $V_o^{\bullet\bullet}$ и, следовательно, уменьшению концентрации электронных дырок, локализованных на ионах кобальта $[Co_{Co}^{\bullet}]$ в соответствии с реакцией (2).

Введение железа в подрешетку кобальта в перовските $YBaCo_2O_{5+\delta}$ увеличивает содержание кислорода и приводит к образованию Fe_{Co}^{\bullet} , которые выступают в роли ловушек для наиболее подвижных носителей заряда (электронных дырок), тем самым уменьшая электропроводность. Небольшая добавка акцепторной примеси (Ni_{Co}^{\bullet} , x=0.1) приводит к увеличению количества подвижных носителей заряда в соответствии с реакцией:

$$Co_{Co}^{\times} + Ni_{Co}^{\times} \Leftrightarrow Co_{Co}^{\bullet} + Ni_{Co}^{\prime} \tag{4}$$

и, следовательно, наблюдается значительное увеличение проводимости (рисунок 11). Однако дальнейшее увеличение содержания акцепторной примеси уменьшает количество доступных мест для носителей заряда, а также способствует образованию дополнительного количества кислородных вакансий в соответствии с реакцией:

$$O_{O}^{\times} + 2Cu_{Co}^{\times} = \frac{1}{2}O_{2} + V_{O}^{\bullet\bullet} + 2Cu_{Co}^{\prime}$$
(5),

что уменьшает число доступных для перескока дырок мест, а также приводит к возникновению большого количества разрывов на пути миграции носителей зарядов ($Me^{\bullet} - O - Me^{\times}$ или $Me' - O - Me^{\times}$) и, следовательно, приводит к уменьшению проводимости образца YBaCo_{1.6}Cu_{0.4}O_{5+δ} по сравнению с недопированным кобальтитом иттрия-бария.

Выводы

По результатам проделанной работы можно сделать следующие выводы:

1 Построены изобарно-изотермические разрезы диаграмм состояния систем Y-Ba-Fe-O и Y-Ba-Co-O. Впервые получены и охарактеризованы твердые растворы состава $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ ($0.1 \le y \le 0.2$, $0.2 \le y \le 0.4$) и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ ($0.0 \le a \le 0.15$);

2 Методом рентгеновского анализа *in situ* исследовано влияние температуры на кристаллическую структуру оксидов YBaCo₂O_{5+ δ} и BaFe_{0.8}Y_{0.1}Co_{0.1}O_{3- δ}, а для YBaCo₂O_{5+ δ} дополнительно и методом микроскопиии высокого разрешения. Установлено, что при повышении температуры на воздухе утроение параметра *a* в сложном оксиде YBaCo₂O_{5+ δ} исчезает и это приводит к образованию $a_p \times a_p \times 2a_p$ структуры (пр. гр. *P4/mmm*). Кристаллическая структура BaFe_{0.8}Y_{0.1}Co_{0.1}O_{3- δ} с температурой не изменяется и во всех случаях хорошо описывается кубической ячейкой (пр. гр. *Pm3m*). Построены изобарические зависимости параметров элементарной ячейки от температуры;

3 Определены области гомогенности твердых растворов YBaCo_{2-x}Fe_xO_{5+ δ} (0 \leq x \leq 0.7), YBaCo_{2-x}Ni_xO_{5+ δ} (0 \leq x \leq 0.1), YBaCo_{2-x}Cu_xO_{5+ δ} (0 \leq x \leq 0.6) на воздухе. Показано, что увеличение содержания замещающего кобальт 3*d*-металла приводит к монотонному увеличению параметров и объема элементарных ячеек YBaCo_{2-x}Me_xO_{5+ δ}, кристаллическая структура оксидов YBaCo_{2-x}Me_xO_{5+ δ} с 0 \leq x<0.2 описана в рамках тетрагональной ячейки 3 $a_p \times 3a_p \times 2a_p$

(пр. гр. *Р4/mmm*). Медь- и железо-замещенные твердые растворы с большим содержанием допанта (x>0.2) имеют тетрагональную ячейку $a_p \times a_p \times 2a_p$ (пр. гр. *Р4/mmm*);

4 Установлено, что постепенное увеличение содержания железа в оксидах приводит к увеличению содержания кислорода в $YBaCo_{2-x}Me_xO_{5+\delta}$, введение меди и никеля уменьшает индекс кислородной нестехиометрии δ ;

5 Получены зависимости общей электропроводности сложных оксидов YBaCo_{2-x}Me_xO_{5+δ} от температуры на воздухе. Зависимости для всех исследуемых образцов проходят через максимум вблизи 600 К, значения проводимости уменьшаются при увеличении температуры и концентрации допанта;

6 Рассчитаны коэффициенты термического расширения (КТР) керамических образцов $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me = Fe, Ni, Cu), $BaCo_{1-y-z}Y_yNi_zO_{3-\delta}$ и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$. Исследована химическая совместимость представленных оксидов с материалом твердого электролита ($Ce_{0.8}Sm_{0.2}O_{2-\delta}$ и $Zr_{0.85}Y_{0.15}O_{2-\delta}$) при $1073 \le T$, $K \le 1373$ и $Po_2 = 0.21$ атм. Показано, что все исследуемые оксиды не взаимодействуют с $Ce_{0.8}Sm_{0.2}O_{2-\delta}$ при температурах 1173 К и 1273 К. Сложный оксид $YBaCo_{1.4}Fe_{0.6}O_{5+\delta}$ и $BaFe_{0.9-a}Y_{0.1}Co_aO_{3-\delta}$ не взаимодействует с $Ce_{0.8}Sm_{0.2}O_{2-\delta}$ во всем исследуемом интервале температур. Представленные сложные оксиды взаимодействуют со стабилизированным оксидом циркония, начиная с 1173 К.

Цитированная литература:

1 Anderson P.S., Kirk C.A., Knudsen J., Reaney I.M. West A.R. Structural characterization of REBaCo₂O_{6- δ} phases (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). // J. Solid State Scien. - 2005. - V. 7. - P. 1149-1156.

2 Haoshan H., Lu Z., Yingfang W., Shijiang L., Xing H. Thermogravimetric study on oxygen adsorption/desorption properties of double perovskite structure oxides $ReBaCo_2O_{5+\delta}$. // J. Rare Earths. - 2007. - V. 25. - P. 275-281.

3 Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. // Acta Cryst. – 1976. – A. 32. – P. 751–767.

4 Lomakov M.V., Istomin S.Ya., Abakumov A.M., Van Tendeloo G., Antipov E. V. Synthesis and characterization of oxygen-deficient oxides $BaCo_{1-x}Y_xO_{3-y}$, x=0.15, 0.25 and 0.33, with the perovskite structure. // Solid State Ionics. - 2008. - V. 179. - P. 1885-1889.

5 Оллред А., Рохов Е.В. Взаимосвязь электроотрицательности и строения элементов. // Ж. неорган. хим. – 1958. – Т. 5., № 6. – С. 264.

6 Woodward P.M., Karen P. Mixed Valence in $YBaFe_2O_5$. // Inorg. Chem. – 2003 – V. 42. – P. 1121–1129.

7 Tsvetkov D.S., Sereda V.V., Zuev A.Yu. Defect structure and charge transfer in the double perovskite $GdBaCo_2O_{6-\delta}$. // Solid State Ionics. – 2011. – V. 192. – P. 215–219.

8 Tsvetkov D.S., Sereda V.V., Zuev A.Yu. Oxygen nonstoichiometry and defect structure of the double perovskite $GdBaCo_2O_{6-\delta}$. // Solid State Ionics. – 2010. – V. 180. – P. 1620–1625.

Основное содержание диссертации изложено в следующих публикациях:

Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК:

1. Aksenova T.V., Cherepanov V.A., Gavrilova L.Ya., Volkova N.E., **Urusova (Podzorova) A.S.** Phase equilibria and crystal structure of the complex oxides in the Ln - Ba - Co - O (Ln = Nd, Sm) systems. // J. Solid State Chem. -2011. - V. 184. - P. 2083-2087.

2. Cherepanov V.A., Gavrilova L.Ya., Aksenova T.V., **Urusova A.S.**, Volkova N.E. Synthesis, structure and properties of $LnBa(Co,Me)_2O_{5+\delta}$ (Ln = Nd, Sm, Ho and Y; Me = Fe, Ni, Cu) as potential cathodes for SOFCs. // Mat. Res. Soc. Proc. – 2012. – V. 1384. – P. 50-55.

3. **Urusova A.S.**, Cherepanov V.A., Gavrilova L.Ya., Aksenova T.V., Kiselev E.A. Phase equilibria, crystal structure and oxygen content of intermediate phases in the Y – Ba –Co – O system. // J. Solid State Chem. – 2013. - V.202. - P. 207-214.

4. **Urusova A.S.**, Cherepanov V. A., Lebedev O. I., Aksenova T. V., Gavrilova L. Ya., Caignaert V., Raveau B. Tuning oxygen content and distribution by substitution at Co site in 112 YBaCo₂O_{5+ δ}: impact on transport and thermal expansion properties. // J. Mater. Chem. A. – 2014. – V.2. – P. 8823-8832.

Другие публикации:

1 Волкова Н.Е., **Урусова (Подзорова) А.С.**, Аксенова Т.В., Гаврилова Л.Я., Черепанов В.А. Синтез и кристаллическая структура сложных оксидов YBa_{0.9}Me_{0.1}Co₂O_{5+δ} и MeBaCo₂O_{5+δ} (Me=Mg, Ca, Sr). // Тезисы докладов XVIII Всероссийской студенческой конференции "Проблемы теоретической и экспериментальной химии". Екатеринбург, 22-25 апреля 2008 г, с.436.

2 **Урусова (Подзорова) А.С.,** Аксенова Т.В. Синтез, структура и свойства легированных кобальтитов состава YBaCo_{2-x}Me_xO_{5+δ} (Me=Fe, Ni, Cu). // Тезисы докладов XIX Всероссийской студенческой конференции "Проблемы теоретической и экспериментальной химии". Екатеринбург, 27-29 апреля 2009 г, с.360.

3 Аксенова Т.В., **Урусова** (**Подзорова**) **А.С.**, Гаврилова Л.Я., Черепанов В.А. Phase stability, oxygen nonstoichiometry and thermal properties of the $LnBaCo_2O_{5+\delta}$ (Ln=Nd, Sm, Eu, Tb, Y) layered perovskites. // XVII International Conference on Chemical Thermodynamics in Russia - Abstracts. Kazan, June 29 - July 3 2009, p. 7.

4 Аксенова Т.В., **Урусова (Подзорова)** А.С., Гаврилова Л.Я., Черепанов В.А. Твердые растворы YBaCo_{2-x}Me_xO_{5+δ}: кристаллическая структура и свойства. // Статья в сборнике трудов 12-го Международного симпозиума "Порядок, беспорядок и свойства оксидов". Сочи, 17-22 сентября 2009 г. с. 17-20.

5 Урусова (Подзорова) А.С., Аксенова Т.В. Синтез и структура кислород-дефицитных оксидов (Ba,Ln)(Co,Ln)O_{3-δ} с перовскитоподобной структурой. // Тезисы докладов XX Российской молодёжной научной конференции, посвященной 90-летию УрГУ "Проблемы теоретической и экспериментальной химии". Екатеринбург, 20-24 апреля 2010 г, С. 273-274.

6 Урусова (Подзорова) А.С., Аксенова Т.В. Структура, кислородная нестехиометрия, электрические и термические свойства частично замещенных кобальтитов иттрия-бария. // Тезисы докладов ХХ Российской молодёжной научной конференции, посвященной 90-летию УрГУ "Проблемы теоретической и экспериментальной химии". Екатеринбург, 20-24 апреля 2010 г, с. 272-273.

7 Урусова (Подзорова) А.С., Аксенова Т.В., Черепанов В.А. Фазовая стабильность, кристаллическая структура и термические свойства слоистых перовскитов YBaMe₂O_{5+δ} (Me=Fe, Co, Cu). // Тезисы докладов XXI Российской молодёжной научной конференции, посвященной 150-летию со дня рождения академика Н.Д. Зелинского "Проблемы теоретической и экспериментальной химии". Екатеринбург, 19-23 апреля 2011 г, с. 277-278.

8 **Урусова (Подзорова) А.С.**, Аксенова Т.В. Кристаллическая структура и свойства твердых растворов на основе YBaCo₂O_{5+δ}. // Тезисы докладов V Всероссийской конференции студентов и аспирантов "Химия в современном мире". Санкт-Петербург. 19-22 апреля 2011 г, С. 603-604.

9 **Урусова (Подзорова)** А.С., Аксенова Т.В., Черепанов В.А. Структура, нестехиометрия и термические свойства твердых растворов YBaCo_{2-x}Cu_xO_{5+δ}. // Тезисы Молодежной конференции «Международный год химии», г. Казань, 2011.

10 Cherepanov V.A., Gavrilova L.Ya., Aksenova T.V., **Urusova (Podzorova) A. S.**, Volkova N. E., Plotnikova E.V. Synthesis, structure and properties of LnBa(Co,Me)₂O_{5+ δ} (Ln = Nd, Sm, Ho and Y; Me = Fe, Ni, Cu) as potential cathodes for SOFCs. // 2011 MRS Fall Meeting & Exhibit. Symposium B: Advanced Materials for Fuel Cells. November 28 - December 2, 2011. Program No B14.4 2011, Abstract Viewer. Boston, MA. Materials Research Society.

11 **Урусова А.С.,** Аксенова Т.В., Черепанов В.А. Кристаллическая структура и свойства сложных оксидов состава YBaCo_{2-x}Fe_xO_{5+δ.} // Тезисы всероссийской конференции «Химия твердого тела и функциональные материалы», Екатеринбург, 2012.

12 Cherepanov V.A., Gavrilova L.Ya., Aksenova T.V., Volkova N. E., **Urusova A.S.** Oxygen nonstoichiometry and defect structure of $LnBaCo_{2-x}Me_xO_{6-\delta}$ (Ln = Nd, Sm, Ho and Y; Me = Fe, Ni, Cu). // Abstracts. Nonstoichiometric Compounds V. Taormina Sicily, Italy, September 23-28, 2012, p.30.

13 Брюзгина А.В., **Урусова А.С.**, Аксенова Т.В. Кристаллическая структура и кислородная нестехиометрия сложных оксидов BaFe_{1-x}(Co,Y)_xO_{3-δ.} // Тезисы докладов XXIII Российской молодёжной научной конференции "Проблемы теоретической и экспериментальной химии". Екатеринбург, 23-26 апреля 2013 г, с. 249-250.

14 Рудик В.В., **Урусова А.С.,** Аксенова Т.В. Сложные оксиды BaCo_{1-x-y}Y_xNi_yO_{3-δ}: кристаллическая структура и свойства. // Тезисы докладов XXIII Российской молодёжной научной конференции "Проблемы теоретической и экспериментальной химии". Екатеринбург, 23-26 апреля 2013 г, с. 281-282.

15 **Урусова А.С.,** Аксенова Т.В., Черепанов В.А. Фазовые равновесия, кристаллическая структура и физико-химические свойства сложных оксидов в системе Y-Ba-Co-O. // Тезисы докладов XXIII Российской молодёжной научной конференции "Проблемы теоретической и экспериментальной химии". Екатеринбург, 23-26 апреля 2013 г, с. 290-291.

¹⁶ **Urusova A.S.,** Aksenova T.V., Cherepanov V.A. Phase equilibria in the Y-Ba-Co-O system and properties of $YBaCo_{2-x}Me_xO_{5+\delta}$ (Me=Fe, Ni, Cu). // ECSSC14. 14th European Conference on Solid State Chemistry. Meeting Abstracts. 7-10 Bordeaux, France, July, 2013, p.129.

17 **Урусова А.С.,** Брюзгина А.В., Аксёнова Т.В., Черепанов В.А. Кристаллическая структура и кислородная нестехиометрия сложных оксидов в системе Ва-Me-Me'-Y-O (Me, Me'=Co, Fe). // Материалы докладов конференции «Химия в федеральных университетах». Екатеринбург, 15-18 августа 2013 г, с.162-165.

18 Брюзгина А.В., **Урусова А.С.,** Аксенова Т.В. Структура, кислородная нестехиометрия и термомеханические свойства сложных оксидов BaFe_{1-y-x}Y_yMe_xO_{3-δ}, (Me=Co,Ni,Cu). // Материалы XXIV Менделеевской конференции молодых ученых. Волгоград. 21-25 апреля 2014. С 10. ВолгГТУ.

19 Брюзгина А.В., **Урусова А.С.,** Аксёнова Т.В. синтеза и свойства оксидов ВаFe_{1-x}(Co,Y)_xO_{3-δ.} // Тезисы докладов XXIV Российской молодёжной научной конференции «Проблемы теоретической и экспериментальной химии». Екатеринбург, 22-25 апреля 2014 г, с. 196-197.

20 Брюзгина А.В., **Урусова А.С.,** Аксёнова Т.В. Кристаллическая структура сложных оксидов в системе Y-Ba-Fe-Co-Cu-O. // Тезисы докладов XXIV Российской молодёжной научной конференции «Проблемы теоретической и экспериментальной химии». Екатеринбург, 22-25 апреля 2014 г. с. 198-199.

21 Брюзгина А.В., **Урусова А.С.,** Аксёнова Т.В. Синтез и исследование свойств ряда твёрдых растворов BaFe_{1-y-x}Y_yMe_xO_{3-δ}(Me = Co, Ni, Cu). // Тезисы докладов IV Всероссийской научной молодежной школы-конференции «Химия под знаком СИГМА: исследования, инновации, технологии». Новосибирск, 12-18 мая 2014 г. с. 324-325.

22 Брюзгина А.В., **Урусова А.С.,** Аксёнова Т. В., Русских О. В. Структура и свойства оксидов ВаFe_{1-x}(Co,Y)_xO_{3-δ}. // Тезисы докладов Всероссийской научной конференции с международным участием «Теоретическая и экспериментальная химия глазами молодежи – 2014». Иркутск, 26–28 мая 2014 г, с.25-26.

23 Cherepanov V.A., Gavrilova L.Ya., Aksenova T.V., **Urusova A.S.**, Volkova N.E., Kiselev E.A., Gilev A.R. Peculiarities of perovskite related oxides formation in the Ln - M - T - O systems (Ln = Lanthanoid, Y; M = Ca, Sr, Ba; T = Mn, Fe, Co, Ni). Phase equilibria and oxygen nonstoichiometry. // ISRS-18. International Symposium on the Reactivity of Solids. Book of Abstracts. Saint Peterburg, Russia, 9-13 June 2014, p. 91-92.

24 **Urusova A.S.,** Bruzgina A.V., Aksenova T.V., Cherepanov V.A. Phase equilibria in the Y - Ba - Fe - O system and physicochemical properties of $BaFe_{0.9-x}Y_{0.1}Co_xO_{3-d}$. // ISRS-18. International

Symposium on the Reactivity of Solids. Book of Abstracts. Saint Peterburg, Russia, 9-13 June 2014, p. 141-142.

25 **Urusova A.S.,** Bruzgina A.V., Aksenova T.V., Cherepanov V.A. Phase equilibria in the yittriumbarium-iron-oxide system at 1373 K. // 11th Conference on Solid State Chemistry. Book of Abstracts. Trenčianske Teplice, Slovak Republic, 6-11 July 2014, p.112.

26 Cherepanov V.A., Volkova N.E., **Urusova A.S.**, Gavrilova L.Ya., Aksenova T.V. Transformations of phase equilibria in the Ln - M - T - O systems (Ln = Lanthanoid, Y; M = Ca, Sr, Ba; T = Mn, Fe, Co, Ni). // 13th International Symposium on Advancing on Chemical Sciences (ISACS13) «Challenges in Inorganic and Materials Chemistry» 1-4 July 2014, Dublin, Ireland. Book of Abstracts. Royal Society of Chemistry. 2014, p. P10.

27 **Урусова А.С.,** Аксёнова Т.В., Черепанов В.А. Синтез, структура и физико-химические свойства перовскитоподобных соединений состава BaFe_{1-y-x}Me_xY_yO_{3-δ} (Me=Co,Ni,Cu) // Сборник статей материалов конференции «Химия в федеральных университетах». Екатеринбург, 4-8 ноября 2014 г, с.26-29.

28 Рудик В.В., **Урусова А.С.,** Аксенова Т.В. Твердые растворы BaCo_{1-х-у}Y_xMe_yO_{3-δ}, (Me=Fe,Ni,Cu). // Материалы XXIV Менделеевской конференции молодых ученых. Волгоград, 21-25 апреля 2014, С 31.

29 Рудик В.В., **Урусова А.С.**, Аксенова Т.В., Черепанов В.А. Кристаллическая структура и свойства замещенных кобальтитов бария состава BaCo_{1-x-y}Y_yNi_xO_{3-δ}. // Тезисы докладов. 9-й семинар СО РАН-УрО РАН. Термодинамика и материаловедение, посвященный памяти академика Ф.А. Кузнецова. Новосибирск, 30 июня-4 июля 2014 г, с. 173.

30 Рудик В.В., **Урусова А.С.,** Аксенова Т.В., Черепанов В.А. Перовскитоподобные соединения состава BaCo_{1-x-y}Y_xNi_yO_{3-δ}. // Сборник статей материалов конференции II научно технической конференции магистрантов, аспирантов и молодых ученых «Химия в федеральных университетах», Екатеринбург 4-8 ноября 2014г., с 217-221.

Подписано в печать 26.12.2014 г. Формат 60×80 1/16. Бумага офсетная. Усл. печ. л. 1.4. Тираж 100 экз. Заказ № 105. Отпечатано: 620014 г. Екатеринбург ул. Шейнкмана. 57. Центр оперативной полиграфии ООО КопиМастер