На правах рукописи

Joppepur

МЕРКУШКИН Евгений Анатольевич

ВЗАИМОСВЯЗЬ СОСТАВА И СТРУКТУРЫ АУСТЕНИТНЫХ АЗОТСОДЕРЖАЩИХ СТАЛЕЙ С КОРРОЗИОННЫМИ И МЕХАНИЧЕСКИМИ СВОЙСТВАМИ

05.16.01 – Металловедение и термическая обработка металлов и сплавов

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата технических наук

Екатеринбург – 2017

Работа выполнена на кафедре металловедения Федерального государственного автономного образовательного учреждения высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель:

доктор технических наук, доцент Березовская Вера Владимировна

Официальные оппоненты:

Яковлева Ирина Леонидовна,

доктор технических наук, старший научный сотрудник, ФГБУН Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (г. Екатеринбург), главный научный сотрудник лаборатории физического металловедения;

Калинин Григорий Юрьевич,

доктор технических наук, доцент, ΦΓΥΠ «Центральный научно-исследовательский институт конструкционных материалов «Прометей» (г. Санкт-Петербург), начальник лаборатории «Металловедение сталей co специальными физическими свойствами» научно-производственного комплекса No 3 «Корпусные стали и наноматериалы»

Ведущая организация:

ФГБУН Институт машиноведения Уральского отделения Российской академии наук, г. Екатеринбург

2017 г.

Защита диссертации состоится 09 марта 2017 г. в 15:00 ч на заседании диссертационного совета Д 212.285.04 на базе ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» по адресу: 620002, г. Екатеринбург, ул. Мира, 19, ауд. И-420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», http://lib.urfu.ru/mod/data/view.php?d=51&rid=263817

Автореферат разослан «____»

И.о. ученого секретаря диссертационного совета

Лобанов Михаил Львович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследования. Требования повышенной прочности и экономичности, предъявляемые к нержавеющим сталям разного применения, привели к разработке коррозионностойких сталей с высоким содержанием азота (ВАС) и полной заменой никеля марганцем. Это обеспечило им такие преимущества, как высокая прочность на разрыв, хорошая пластичность, повышенная устойчивость к мартенситным превращениям, высокий коэффициент упрочнения, высокая стойкость к точечной и щелевой коррозии, отсутствие ферромагнитных свойств.

Одной из проблем использования всех аустенитных коррозионностойких сталей (АКСС) является ИХ склонность К питтинговой коррозии В хлоридсодержащих водных растворах. В последнее время показано, что азот повышает сопротивление АКСС этому виду локальной коррозии, однако о влиянии других легирующих элементов, присутствующих В сталях аустенитного класса, пока нет четкого представления. Исследование влияния химического состава на потенциал питтингообразования (E_b) с целью получения на этой основе аналитической зависимости в литературе до настоящего времени не рассматривалось. Систематического исследования структурного влияния состояния азотистых сталей на потенциал питтингообразования, механические свойства и коррозионное растрескивание напряжением (КРН) не проводилось. С учетом под ЭТОГО данная диссертационная работа является актуальной и полезной для практики использования азотистых сталей.

Целью работы было исследование взаимосвязи химического состава и структуры со свойствами азотсодержащих сталей и оптимизация состава и режимов комбинированной упрочняющей обработки, позволяющих получить комплекс высоких физико-механических и коррозионных свойств.

Задачи исследования

1. Электрохимические исследования промышленных АКСС разного химического состава с азотом (0,035–0,82 %¹) для определения параметров питтинговой коррозии и установления характера влияния на них легирующих элементов.

2. Множественный регрессионный анализ результатов электрохимических исследований с целью получения математической зависимости параметров питтинговой коррозии от химического состава аустенитных коррозионностойких сталей с целью прогнозирования их питтингостойкости.

3. Комплексное исследование структуры, формирующейся в процессе упрочняющей термической обработки, и сопоставление полученных результатов с равновесной фазовой диаграммой на примере высокоазотистой аустенитной стали 06Х18АГ19М2.

4. Исследование особенностей мегапластической деформации (МПД) и формирования наноструктуры в стали 06Х18АГ19М2 при равноканальном угловом прессовании (РКУП).

5. Установление взаимосвязи структурного состояния, полученного в процессе упрочняющей обработки, включающей термическую обработку и сочетание термической обработки и РКУП, с питтингостойкостью, механическими свойствами и КРН высокоазотистой аустенитной стали 06Х18АГ19М2.

6. На основе проведенного комплексного исследования оптимизация упрочняющей обработки высокоазотистой аустенитной стали 06X18AГ19М2 для получения высоких физико-механических и коррозионных свойств.

Научная новизна и теоретическая ценность работы

1. Определены соотношения концентраций углерода и азота в аустенитных коррозионностойких сталях, при которых сопротивление питтинговой коррозии повышается: (C+N)>0,5 %, C/N>1/2.

¹ Содержание легирующих элементов во всей работе приводится в % по массе.

2. Проведено систематическое исследование структуры стали 6X18АГ19М2 в широком интервале температур, определены фазовые области, и особенности фазовых превращений в стали при нагреве.

3. Установлено, что для высокоазотистой стали 06Х18АГ19М2 более высокими коррозионными свойствами обладает структура аустенита с нанодисперсными нитридами CrN. Наличие на границах зерен аустенита выделений легированного хромом нитрида молибдена, σ-, χ-фаз и/или неоднородности химического состава после их растворения приводит к понижению коррозионных свойств.

4. Показано, что при равноканальном угловом прессовании наноструктурирование стали 06Х18АГ19М2 происходит преимущественно за счет образования деформационных двойников наноразмерного масштаба без образования продуктов мартенситного превращения и других фаз.

5. Установлено, что при увеличении степени деформации методом РКУП параметры питтинговой коррозии по сравнению с исходно закаленным состоянием снижаются, но остаются более высокими, чем у стали 09Х18Н10Т. Кроме того РКУП приводит к повышению прочности исследованной стали по сравнению с закаленным состоянием до σ_B =5220 МПа, $\sigma_{0,2}$ =4000 МПа при e=3,6 на воздухе и до σ_B =5970МПа, $\sigma_{0,2}$ =3800 МПа при e=7,2 в коррозионной среде без склонности к коррозионному растрескиванию под напряжением.

Практическая значимость

1. Предложен подход к оценке питтингостойкости и уравнение зависимости граничного потенциала (E_b) от химического состава аустенитных коррозионностойких сталей с азотом, позволяющие прогнозировать коррозионные свойства и оптимизировать состав сталей.

2. Разработан режим упрочняющей обработки высокоазотистой аустенитной стали 06X18AГ19M2 путем закалки от 1100–1150°С и старения при 500°С. Даны практические рекомендации по использованию оптимального режима упрочняющей обработки стали 06X18AГ19M2 (P900N+Mo), применяемой для бандажных колец ВКИА 711-171-015 турбогенератора ТФ-80-

2 УХЛЗ на предприятии ОАО «Уралэнергоремонт», в результате чего эксплуатационная стойкость изделий повысилась на 30%.

3. Результаты работы использованы в учебно-методическом пособии «Питтинговая коррозия сталей» по курсу «Теория коррозии, коррозионностойкие материалы и покрытия» для студентов, обучающихся по направлению «Материаловедение и технологии материалов» ФГАОУ ВО «Уральский федеральный университет имени первого президента России Б.Н. Ельцина».

Методология и методы исследования. Использованы разные методы физического металловедения: металлография, дилатометрия, просвечивающая и растровая электронная микроскопия, микрорентгеноспектральный (МРСА), рентгеноструктурный и EBSD анализ под контролем механических и электрохимических свойств.

Основные положения и результаты, выносимые на защиту

1. Результаты электрохимических исследований питтингостойкости аустенитных коррозионностойких сталей с азотом.

2. Закономерности формирования структуры высокоазотистой аустенитной стали 06Х18АГ19М2 в процессе термической обработки.

3. Взаимосвязь структурного состояния стали 06Х18АГ19М2 с питтинговой коррозией.

4. Особенности формирования наноструктуры при равноканальном угловом прессовании стали 06Х18АГ19М2.

5. Результаты исследования влияния коррозионной среды на механические свойства стали 06Х18АГ19М2.

6. Оптимизация режимов упрочняющей обработки стали 06Х18АГ19М2 для получения комплекса высоких физико-механических свойств.

Достоверность результатов исследования обеспечивается воспроизводимостью результатов опытов, согласованием их с литературными данными, применением комплекса современных методов исследования и

использованием современных приборов анализа фазового состава, структуры и свойств.

работы. Апробация диссертационной Основные положения работы доложены на 17 международных конференциях: Уральская школа-семинар металловедов-молодых ученых (8–12 ноября 2010, 14–18 ноября 2011, 12–16 ноября 2012, 11–15 ноября 2013, 8–12 декабря 2014, 7–11 декабря 2015. Екатеринбург); Тhe 1-st International Conference On High Manganse Steels. Seoul, Korea. 15–17 May 2011; XXI-XXIII Уральские школы металловедов-термистов «Актуальные проблемы физического металловедения сталей и сплавов» (06–10 февраля 2012. Магнитогорск; 2-6 февраля 2014. Оренбург; 31 января – 5 февраля 2016. Тольятти); Интерактивная научно-практическая конференция «Инновации в металловедении и металлургии» (2012,2013, 2015); Всероссийская молодежная научная конференция С международным участием «Инновации в материаловедении» (2013, 2015); 54-ая Международная конференция «Актуальные проблемы прочности». 11–15 ноября 2013. Екатеринбург; «High Nitrogen Steels and Interstitial Alloys». 27–29 September 2012. Chennai, India; 12-th International Conference «High Nitrogen Steels 2014». 16–19 September 2014. Hamburg, Germany. XIX Медународная конференция «Физика прочности и пластичности материалов». 8-11 июня 2015. Самара; VIII Международная конференция "Микромеханизмы пластичности, разрушения и сопутствующих явлений" (MPFP-2016). 27 июня – 1 июля 2016. Тамбов; а также на 2-х региональных: XIV областной конкурс научно-исследовательских работ 2011. «Научный Олимп». Екатеринбург; «Создание высокоэффективных производств на предприятиях горно-металлургического комплекса». 3-4 сентября 2013. Верхняя Пышма.

Публикации. Основное содержание диссертации отражено в 33 научных работах, в том числе в 4 статьях, опубликованных в рецензируемых научных изданиях, рекомендованных ВАК РФ, и 6 публикациях, входящих в базы данных WOS и SCOPUS.

Личный вклад автора. На каждом из этапов работы автор принимал непосредственное участие: проводил испытания коррозионных и механических

свойств на современном оборудовании, участвовал в постановке задачи эксперимента, приготовлении образцов для проведения комплексных исследований структуры и свойств сталей с применением современных методов физического металловедения, анализе результатов испытаний, а также в подготовке и написании статей и докладов.

Структура и объем диссертации. Диссертация состоит из введения, шести глав, выводов по главам, заключения, бибилиографического списка и приложения. Объем диссертации составляет 167 страниц, включая 72 рисунка, 13 таблиц и список литературы из 128 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы исследования, показана степень ее разработанности, сформулирована цель и задачи диссертационной работы, научная новизна, практическая значимость, методология и методы исследования, положения, выносимые на защиту, описан личный вклад соискателя, степень достоверности и апробация полученных результатов.

В первой главе проанализированы литературные источники по исследуемой теме. Рассмотрены принципы легирования и описаны особенности структуры и свойств аустенитных коррозионностойких и высокоазотистых (ВАС) сталей, проведен анализ достигнутого в настоящее время в них уровня прочности, пластичности и коррозионной стойкости. Рассмотрено несколько гипотез, объясняющих положительное влияние азота на локальную коррозию сталей.

Во второй главе приведен химический состав исследуемых сталей (Таблица 1), а также описаны методы исследования, использованные для решения поставленных задач.

Электрохимические исследования питтинговой коррозии (ПК) проводили в соответствии с ГОСТ 9.912-89. В качестве оборудования использовали электрохимическую лабораторию VoltaLab 10-PGZ100 с программным обеспечением VoltaMaster 4.

N₂	Марка стали						Содера	жание э.	лементо	в, масс.	%				
п/п	Марка стали	С	S	Р	Mn	Si	Cr	Ni	Мо	Ν	Cu	Ti	V	Al	Nb
1	02Х16Н10ГМ2	0,018	0,001	0,017	1,38	0,51	16,12	10,17	2,04	0,037	-	-	-	-	-
2	04Х18Н8ГД	0,04	0,003	0,024	1,42	0,39	18,3	8,15	-	0,043	0,1	-	-	-	-
3	05Х16Н4Г6Д2	0,05	0,002	0,025	6,15	0,35	16,15	4,1	-	0,085	1,65	-	-	-	-
4	08Х15АГ10Д2	0,08	0,002	0,03	9,78	0,32	14,5	0,16	-	0,163	1,62	-	-	-	-
5	06Х15АГ9НМ2	0,06	0,003	0,025	9,2	0,32	14,8	0,95	1,68	0,166	I	-	-	-	I
6	03Х17АГ7Н4	0,028	0,002	0,029	7,21	0,38	16,9	4,19	0,09	0,162	0,03	-	-	-	I
7	09Х15АГ9НД2	0,094	0,005	0,06	8,98	0,34	15,35	1,16	0,1	0,133	1,66	-	-	-	-
8	09Х16АГ9Н2Д2	0,092	0,002	0,052	8,61	0,23	16,13	1,73	0,06	0,169	2,15	-	-	-	-
9	02Х16Н10ГМ2Д	0,015	0,008	0,032	1,18	0,3	16,48	10,1	2,04	0,035	0,38	-	-	-	-
10	06Х18Н8ГД	0,062	0,006	0,038	0,84	0,34	18,04	8,04	0,19	0,035	0,28	-	-	-	-
11	07Х16Г8Н4Д2	0,071	0,005	0,055	7,54	0,32	16,1	4,07	0,18	0,085	1,78	-	-	-	-
12	01Х14Г10Д2	0,213	0,0123	0,0897	10,19	0,421	13,85	0,232	0,0016	0,15	1,93	-	-	-	-
13	07Х16АГ13М3	0,07	0,007	0,015	12,76	0,71	16,16	0,11	3,24	0,82	-	-	0,05	-	-
14	06Х18АГ19М2	0,06	0,001	0,018	19,13	0,65	17,51	0,13	2,20	0,81	0,03	0,002	0,08	0,008	-
15	03Х20АГ11Н7М2	0,030	0,004	0,015	10,60	0,500	19,62	6,81	1,67	0,422	-	-	0,22	-	0,18
16	09X18H10T	0,069	0,0159	0,0145	0,217	0,587	17,66	9,18	0,145	-	0,282	0,543	0,054	0,128	-

Таблица 1 – Химический состав исследованных АКСС и ВАС

Для *металлографического анализа* использовали цифровой комплекс Альтами MET 1 при поддержке программы Siams Photolab, а также микроскоп OLIMPUS GX71 с видеокамерой GX51 SIMAGIS 2М. Электронномикроскопические исследования проводили на просвечивающих электронных микроскопах JEOL JEM-2100 и ЭМВ-100Л с использованием режима электронографа. Методом рентгеноструктурных исследований на дифрактометре ДРОН-3 в кобальтовом К_α-излучении, а также – на дифрактометре SHIMADZU XRD-7000 в хромовом К_α-излучении, определяли фазовый состава и параметры дефектности аустенита. Механические свойства сталей определяли двумя способами: при стандартных статических испытаниях на одноосное растяжение по ГОСТ 1497-73 на разрывной машине INSTRON-1196 и при испытаниях на трехточечный изгиб с использованием машины TINIUS OLSEN H50KS. Обработку результатов проводили с помощью программного обеспечения HORIZON. *EBSD-анализ* деформированных методом РКУП образцов проводили на электронно-ионном микроскопе ZEISS CrossBeam AURIGA с ускоряющим напряжением 30 кВ и током зонда до фрактографический u 20 мА. микрорентгеноспектральный анализ

поверхности образцов – на растровом электронном микроскопе компании TESCAN с использованием вакуумной камеры VEGA II XMU и LM с системой энергодисперсионного микроанализа Inca Energy 450. При *построении фазовой диаграммы* высокоазотистой стали была использована программа Thermo-Calc с применением термодинамической базы данных TCFE 6.0.

Рисунок 1 – Анодные поляризационные кривые прямого и обратного хода сталей: а – 02X16H10ГМ2; б – 06X18АГ19М2

N⁰	Марка стали	PREN	MARC	Ecor	E_b	Erp	ΔE_b	ΔE_{rp}		
п/п				В						
1	02Х16Н10ГМ2	23,4	20,7	-0,078	0,288	0,122	0,366	0,2		
2	04Х18Н8ГД	19,0	17,2	-0,084	0,213	0,079	0,297	0,163		
3	05Х16Н4Г6Д2	17,5	14,8	-0,099	0,074	-0,039	0,173	0,06		
4	08Х15АГ10Д2	17,1	14,4	-0,192	-0,016	-0,191	0,176	0,001		
5	06Х15АГ9НМ2	23,0	20,0	-0,098	0,053	-0,101	0,151	-0,003		
6	03Х17АГ7Н4	19,8	16,3	-0,073	0,192	-0,016	0,265	0,057		
7	09Х15АГ9НД2	17,8	15,4	-0,091	0,068	-0,104	0,159	-0,013		
8	09Х16АГ9Н2Д2	19,0	16,8	-0,083	0,043	-0,069	0,126	0,014		
9	02Х16Н10ГМ2Д	23,8	21,1	-0,091	0,272	0,127	0,363	0,218		
10	06Х18Н8ГД	19,2	18,2	-0,089	0,211	0,075	0,3	0,164		
11	07Х16Г8Н4Д2	18,1	15,0	-0,098	0,076	-0,011	0,174	0,087		
12	01Х14Г10Д2	16,3	16,0	-0,109	-0,007	-0,110	0,102	-0,001		
13	07Х16АГ13М3	40,0	38,2	-0,031	1,467	1,427	1,498	1,458		
14	06Х18АГ19М2	37,7	32,6	-0,194	1,394	1,362	1,588	1,556		
15	03Х20АГ11Н7М2	31,9	27,2	-0,267	0,933	0,708	1,2	0,975		
16	09X18H10T	18,1	17,1	-0,031	0,177	0,058	0,208	0,089		

Таблица 2 – Параметры питтингостойкости исследованных АКСС и ВАС, а также значения PREN и MARC

В третьей главе описаны результаты испытаний на стойкость к ПК АКСС с азотом (0,035–0,82% N). Образцы для исследований промышленных АКСС

размером 100×10×1 мм были вырезаны из листа, полученного холодной прокаткой, с последующей закалкой от 1050–1100°С. Образцы ВАС (Ø5×50 мм) исследовали после горячей пластической деформации с последующей закалкой 1150°C. ОТ Для исследованных сталей были получены кривые потенциодинамической поляризации, по которым определены значения потенциала свободной коррозии (E_{cor}), граничных потенциалов ПК (E_b и E_{rp}) и базисов питтингостойкости (ΔE_{rp} и ΔE_b). Характерные кривые показаны на рисунке 1. Значения параметров ПК и показателей PREN и MARC для всех сталей показаны в таблице 2.

Для оценки аддитивного влияния легирующих элементов в сталях на ΔE_{rp} и E_b и представления этого влияния в аналитической форме был проведен множественный регрессионный анализ результатов электрохимических исследований. Уравнение регрессии для прогнозирования граничного потенциала E_b имеет следующий вид:

 $E_b = -442 + 288[\%C] - 7[\%Mn] + 8[\%Cr] + 50[\%Ni] + 7[\%Mo] + 2212[\%N] + 0, 4[\%Cu], мВ.$

С целью проверки достоверности полученных экспериментально значений потенциалов питтингостойкости АКСС были проведены дополнительные электрохимические исследования ПК сталей 09Х18Н10Т и 03Х20АГ11Н7М2, химический состав которых приведен в таблице 1. Сталь 09Х18Н10Т исследовали после закалки от 1050°С, выплавленную в индукционной печи с использованием азотированного феррохрома сталь 03Х20АГ11Н7М2 – после закалки от 1100°С. Результаты исследований также представлены в таблице 2.

Полученные из уравнения значения граничного потенциала Е_b для сталей 09X18H10T 03X20AΓ11H7M2 И показали хорошую сходимость С экспериментальными Расчетные значениями. значения составили для рассмотренных сталей соответственно 0,178 и 0,924 В, а фактические 0,177 и 0,933 В. В первом случае отклонение расчетной величины Е_b от фактической составило 0,001 В, во втором 0,009 В, что соответствует 0,6 и 0,9% и

подтверждает высокую степень адекватности предложенной модели оценки параметра питтингостойкости *E*_b.

Рисунок 2 – Поверхность стали 09X18H10T после ПК в 3,5%-растворе NaCl

Рисунок 3 – Зависимость E_b от содержания С+N (\blacktriangle) и С/N (\blacklozenge) в АКСС

С целью определения критериев питтингостойкости АКСС по результатам электрохимических исследований, полученных в данной работе, был проведен анализ зависимостей потенциала питтингостойкости E_b от суммарного содержания (C+N) и отношения C/N, которые показаны на рисунке 3. Из рисунка видно, что значение параметров (C+N)=0,5% и C/N=1/2 соответствует минимальной питтингостойкости ВАС (E_b =0,2 В). Для получения более высоких коррозионных свойств (E_b >0,2 В) необходимо, чтобы суммарное содержание (C+N)>0,5% при их соотношении C/N<1/2.

В четвертой главе приводится исследование питтингостойкости ВАС на 06X18AΓ19M2 примере стали В разных структурных состояниях, формирующихся в результате термической и комбинированной с РКУП обработок (Таблица 3). Наибольшее сопротивление ПК сталь 06Х18АГ19М2 оказывает после температур закалки от 1050-1150°С. После закалки от температур 950, 1000 и 1200°С питтингостойкость существенно ниже. Старение при 300 и 500°C после закалки от 1150°C не оказывает влияния на электрохимические характеристики стали. Тепловая выдержка при 800°С приводит к сильному смещению базиса питтингостойкости ΔE_{rp} и граничного потенциала E_b в отрицательную область соответственно до -0.071 и -0.09 В,

что связано с распадом пересыщенного γ-твердого раствора. Отрицательное влияние на параметры ПК оказывают продукты высокотемпературного распада аустенита с образованием, как будет показано далее, σ-фазы.

Рисунок 4 – Поверхность стали 06Х18АГ19М2 после испытаний ПК: а – закалка от 950°С; б – 1150°С; в – 1150°С + 800°С (8 ч)

Nº	Вид оброботии	Ecor	E_b	E_{rp}	ΔE_b	ΔE_{rp}			
п/п	вид обработки	В							
1	ГПД+3(950°С, 1 ч, вода)	-0,162	0,263	0,045	0,425	0,207			
2	ГПД+3(1000°С)	-0,131	0,472	0,014	0,603	0,145			
3	ГПД+3(1050°С)	-0,112	1,379	1,362	1,491	1,473			
4	ГПД+3(1100°С)	-0,113	1,383	1,403	1,496	1,516			
5	ГПД+3(1150°С)	-0,194	1,394	1,362	1,588	1,556			
6	ГПД+3(1150°С)+С(300°С, 2 ч)	0,009	1,407	1,402	1,398	1,393			
7	ГПД+3(1150°С)+С(500°С, 2 ч)	-0,215	1,390	1,422	1,605	1,637			
8	ГПД+3(1150°С)+С(800°С, 8 ч)	-0,165	-0,009	-0,236	0,156	-0,071			
9	ГПД+3(1200°С)	-0,295	-0,038	-0,281	0,257	0,014			
10	ГПД+3(1150°С)+РКУП (1,8)	-0,138	1,221	1,354	1,359	1,491			
11	ГПД+3(1150°С)+РКУП (3,6)	-0,184	1,122	0,677	1,306	0,861			
12	ГПД+3(1150°С)+РКУП (7,2)	-0,104	0,930	0,600	1,034	0,704			

Таблица 3 – Характеристики питтингостойкости стали 06Х18АГ19М2

После закалки от 950°С, в отличие от 1150°С, питтинги на поверхности стали 06Х18АГ19М2 образовались вдоль границ зерен, после старения при 800°С (8 ч) они практически слились в бороздки и образовали скопления, имеющие вид колоний прерывистого распада (Рисунок 4).

По результатам рентгеноструктурного фазового анализа (РСФА) и металлографическим данным, структура стали после закалки от 1050–1150°С состояла из аустенита. Средний размер зерна составил ~110 мкм. Границы зерен в закаленной от 950–1000°С стали были значительно растравлены; после закалки от 1100°С наблюдалась обычная травимость и правильная огранка зерен вследствие растворения избыточных фаз.

Режимы обработки были выбраны с учетом температурных интервалов фазовых превращений по равновесной диаграмме, построенной в программе Thermo-Calc для стали 06Х18АГ19М2. Политермический разрез фазовой диаграммы приведен на рисунке 5.

Электронно-микроскопические исследования показали, что после горячей пластической деформации при 1220–1240°С структура стали 06Х18АГ19М2 состоит из аустенита с плоскими скоплениями дислокаций у границ зерен и единичными дислокациями. Наблюдаются также дислокационные петли, обусловленные высокой концентрацией вакансий, характерной для ВАС. Микродифракция участков аустенита с матричным контрастом выявила размытые рефлексы упорядоченной фазы CrN, изоморфной матрице.

Рисунок 5 – Политермический разрез фазовой диаграммы стали 06X18AГ19M2: область 1 – Феррит + σ -фаза + Cr₂N+Mo₂C + FeMo(σ); 2 – Феррит + Аустенит + σ -фаза + Cr₂N + Mo₂C + FeMo(σ); 3 – Феррит + Аустенит + σ -фаза + Cr₂N + Mo₂C + FeMo(σ) + M₂₃C

Аналогичная картина наблюдалась в исследованной стали после закалок от 1000–1050°С, а также после старения при 500°С (2 ч). Размер дисперсных выделений нитридной фазы CrN составляет ~5–6 нм. На границах зерен и двойников выделения не обнаружены. После закалки от 1200°С микродифракция не выявила рефлексы CrN.

Электронно-микроскопическими исследованиями стали после старения при температуре 750°С (2 ч) идентифицированы пограничные выделения нитрида Mo₂N. На микродифракционной картине, полученной при большем раскрытии диафрагмы, присутствовали также рефлексы CrN.

Структура стали после закалки от 1150°С и старения при 800°С (1 ч) включала аустенит с выделениями нитрида молибдена Mo₂N. В аустените наблюдались также нитриды CrN.

После закалки от 1150°С и старения при 800°С (50 ч) в стали 06Х18АГ19М2 протекал прерывистый распад. Полосчатые выделения в колониях распада, представляли собой интерметаллидную σ-фазу (FeCr), легированную молибденом, и чередовались с прослойками обедненного аустенита. Крупные выделения фазы, растущей при длительной тепловой выдержке, идентифицированы как χ-фаза.

После тепловой обработки при более высокой температуре 840°С (1 ч) на границах зерен аустенита наблюдались выделения χ-фазы.

Микродифракция границ зерен аустенита в стали 06Х18АГ19М2 после закалки от 1150°С и отжига при 860°С (2 ч) с последующим охлаждением в воде выявила четкие рефлексы свежеобразованного аустенита.

Дилатометрическими исследованиями установлено резкое увеличение размеров образца закаленной от 1150°С стали 06Х18АГ19М2 при нагреве выше 860°С, что вызвано полиморфным превращением $\gamma \rightarrow \delta$. Это согласуется с полученными при ПЭМ-исследовании результатами, показавшими присутствие на микродифракционной картине рефлексов свежеобразованного аустенита в результате обратного $\delta \rightarrow \gamma$ -превращения при охлаждении. Отжиг перед

закалкой при 1050°С, не обеспечивший полной гомогенизации приграничных участков аустенита, обогащенных после растворения σ -фазы хромом и молибденом, сопровождался выделением нитрида Mo₂N, легированного хромом, при нагреве до 700°С, о чем свидетельствовал небольшой отрицательный размерный эффект на дилатограмме и повышенная травимость границ зерен после закалки от 1050°С и старения при 700°С.

Методом РСФА исследована структура стали 06Х18АГ19М2 после закалки от 1200°С. Помимо линий аустенита, на дифрактограмме выявлена линия σ -фазы (2 θ =77°, *I*=40–60, *d/n*=0,184 нм), которая, вероятно, выделилась при охлаждении из обогащенного хромом и молибденом аустенита после полиморфного превращения $\delta \rightarrow \gamma$.

Результаты проведенных структурных исследований стали 06Х18АГ19М2 представлены в виде таблицы 4.

Температурная область по диаграмме равновесия, °С	Фазовый состав по диаграмме равновесия	Исследованные температуры, °С	Фазовый состав по результатам исследований ПЭМ		
1320-1360	$\gamma + \delta$	-	-		
1100 1220		1200	γ + δ (б→γ→σ при охлаждении)		
1100-1320	γ	1150			
		1100	$\gamma + CrN$		
		1050			
860-1100	$\gamma + Cr_2N$	1000	γ + CrN (γ неоднороден по химическому составу после растворения σ-фазы)		
		860	$\gamma + \sigma + CrN$		
830-860	$\gamma + Cr_2N + \sigma$	840	$\gamma + \sigma + \chi + CrN$		
450-830	$\gamma + Cr_2N + \sigma + M_{23}C_6$	800	$\gamma + Mo_2N + \sigma + CrN$ ($\gamma \rightarrow \gamma_{obedh.} + \sigma; \sigma \rightarrow \chi$ при длительной выдержке)		
		700-750	$\gamma + Mo_2N + CrN$		
		500	$\gamma + CrN$		

Таблица 4 – Фазовые области в стали 06Х18АГ19М2

В отличие от равновесной диаграммы, структура γ-твердого раствора исследованной стали 06Х18АГ19М2 содержит нанодисперсные нитриды CrN, изоморфные матрице, образующиеся в результате распада пересыщенного азотом и хромом γ-твердого раствора, вероятно, по механизму гомогенного зарождения как при тепловой выдержке при 300–500°С, так и при закалке. Они наблюдаются в широком интервале температур вплоть до 1200°С.

В пятой главе исследовано влияние мегапластической деформации (МПД) методом равноканального углового прессования (РКУП) на электрохимические ΠК стали 06Х18АГ19М2 (Таблица 3). Степень параметры истинной деформации е при РКУП имела после 2, 4 и 8 циклов значения 1,8; 3,6 и 7,2. Показано, что после РКУП с предварительной закалкой от 1150°С потенциал питтингообразования понижается сравнению стали по С закаленным состоянием тем сильнее, чем выше степень деформации, но превосходит сталь 09X18H10T по этому параметру даже при e = 7,2 (Таблица 2).

После коррозии питтинги не связаны с границами зерен, а образуются, предположительно, в местах скопления дефектов структуры – концентраторах напряжений (Рисунок 6).

Рисунок 6 - Поверхность стали 06Х18АГ19М2 после РКУП (е=1,8) и испытания ПК

Деформация стали 06Х18АГ19М2 при РКУП, согласно ПЭМисследованиям, сопровождалась повышением плотности дислокаций и деформационных двойников, при этом мартенсит или другие фазы в аустените не наблюдались.

Рисунок 7 – Структура аустенита после РКУП: а – (e=1,8); б–е – (e=3,6): б – искривление двойников; в –двойникование внутри двойников; г – микродифракция выделенного участка; д – схема индицирования: ось зоны двойников [123], плоскость двойникования (111), направление двойникования [112]; е – темнопольное изображение в свете двойникового рефлекса (111)_{удв}.; ж–з – (e=7,2): ж – двойникование по двум пересекающимся направлениям сдвига, в светлом поле; з – т/п изображение в рефлексе (111)_γ

После деформации со степенью *e*=1,8, в структуре выявлены двойники шириной 100-200 HM, отмечалась высокая плотность неравномерно распределенных дислокаций (Рисунок 7, а). Деформация со степенью е=3,6 искривление двойников (Рисунок 7. б) И формирование вызвала фрагментированной структуры с размером фрагментов в среднем 400 нм. На этой стадии РКУП наблюдалось образование тонких двойников (80 нм) рисунок 7, *в-е*. В результате деформации степени *е*=7,2 (Рисунок 7, *ж-з*) размер дислокационных фрагментов колебался от 100 до 700 нм. Разброс был связан с параллельно протекающими при РКУ-прессовании процессами фрагментации структуры и динамического возврата. В качестве структурного элемента минимального размера на этой стадии прессования выступали тонкие (50 нм) двойники высокой плотности.

В шестой главе изучены механические свойства стали 06Х18АГ19М2 и влияние на них коррозионной среды при испытании на изгиб. Полученные диаграммы деформации и механические свойства стали приведены на рисунке 8 и в таблице 5. Показано, что после старения при 500°С по сравнению с закалкой повышается предел прочности стали без изменения условного предела текучести и пластичности (Рисунок 8, *a*, δ – кривые 1). Коррозионная среда оказывает заметное разупрочняющее действие на закаленную и состаренную сталь (Рисунок 8, *a*, δ – кривые 2), пластичность при этом не снижается (Таблица 5). Разупрочнение связывается с локальным разрушением пассивной пленки и анодным растворением металла в местах максимальной концентрации напряжений, имеющих наиболее низкий электродный потенциал.

Исследование влияния РКУП на механические свойства стали показало, что после деформации с *e*=3,6 предел прочности стали на воздухе повышается почти в 2,5 раза, условный предел текучести – в 4 раза при резком снижении относительного удлинения с 42% до 7,5 % в закаленном состоянии (Таблица 5).

Рисунок 8 - Кривые изгиба стали 06Х18АГ19М2 на воздухе (1) и в 3,5%-NaCl (2) после обработки: а – Закалка от 1150°С; б – Закалка + Старение 500°С (2 ч)

Таблица 5 – Механические свойства стали 06Х18АГ19М2 при испытании на изгиб в среде воздуха и 3,5%-NaCl

					Воздух		I	Λσρ/σρ		
			σ0,2, МПа	σв, МПа	δ, %	σ0,2, МПа	σв, МПа	δ, %	%	
),			-	1030	2040	42	960	1750	44	15
50 °C 1a	ş	Старени	Старение при 500°С, 2 ч		2130	44	940	1840	49	14
3 (11: ч, вод		I	<i>e</i> =1,8	-	-	-	4400	6100	13	-
1 - 1	•	РКУП	<i>e</i> =3,6	4000	5220	7,5	-	-	-	-
Ľ			<i>e</i> =7,2	_	-	-	3800	5970	9	-

Фрактографическими исследованиями стали 06Х18АГ19М2 после испытаний на воздухе показано, что разрушение после закалки от 1150°С, а также после старения при 500°С носит вязкий характер (Рисунок 9, a). В коррозионной среде характер разрушения не меняется (Рисунок 9, δ).

После РКУП разрушение стали 06Х18АГ19М2 развивалось квазисколом, дисперсность которого увеличивалась по мере повышения числа циклов прессования (Рисунок 10). Коррозионная среда не оказывала заметного влияния на пластичность и характер разрушения предварительно деформированной стали.

Исследования показали, что во всех изученных структурных состояниях сталь 06X18AГ19M2 не проявляла хрупкости и не была подвержена КРН.

Рисунок 9 – Поверхность разрушения после испытаний на изгиб закаленной от 1150°С и состаренной при 500°С стали 06Х18АГ19М2: а– на воздухе; б – 3,5%-NaCl

Рисунок 10 – Поверхность разрушения стали 06Х18АГ19М2 после РКУП и испытаний на изгиб со степенями деформации: а – *e*=1,8; б – 3,6; в – 7,2; а, в – 3,5%-NaCl; б – воздух

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Установлено, что для повышения коррозионных свойств АКСС с азотом (0,035–0,820%) целесообразным следует считать совместное легирование углеродом и азотом при их суммарном содержании (C+N) выше 0,5 и соотношении концентрации C/N ниже 1/2.

2. Показано, что после горячей пластической деформации и закалки от температур 1050–1150°С (1 ч), а также после закалки с последующим старением при 300 и 500°С структура состоит из аустенита и наноразмерных нитридов CrN. Тепловая выдержка закаленной стали при 700–750°С вызывает распад аустенита с образованием нитридов Mo₂N по границам зерен, при 800°С – распад аустенита по прерывистой реакции $\gamma \rightarrow \gamma_{\text{обедн.}} + \sigma$ с образованием χ -фазы при длительных (50 ч) выдержках.

3. Установлено, что максимальной питтингостойкостью сталь 06Х18АГ19М2 обладает после закалки от 1050-1150°С и старения при 300 и 500°С (*E*_b=1,379–1,394 В, *ΔЕ*_{rp}=1,390–1,407 В). В присутствии пограничных Mo_2N , χ-фазы, выделений нитрида σи/или а также химической неоднородности аустенита вблизи границ зерен после их растворения сопротивление образованию питтингов снижается ($E_b = -0.038 - 0.472$ B).

4. Экспериментально показано, что мегапластическая деформация методом РКУП стали 06Х18АГ19М2, закаленной от 1150°С, сопровождается скольжением дислокаций и интенсивным двойникованием аустенита без образования α - или ε -мартенсита и других фаз. Наноструктурное состояние стали достигается в основном за счет двойникования: при e=7,2 ширина двойников составляет 50 нм при среднем размере дислокационных фрагментов 400 нм с углом разориентировки 2–3°.

5. Установлено. что питтингостойкость стали 06X18AΓ19M2 с повышением степени деформации при РКУП понижается до 1,221, 1,122 и 0,930 В соответственно при е=1,8, 3,6 и 7,2, оставаясь более высокой, чем у 09X18H10T (0.177)**B**). Образование стали ПИТТИНГОВ происходит преимущественно в местах локализации деформации и разрушения пассивного слоя на поверхности стали.

6. Показан высокий уровень механических свойств при испытаниях на изгиб ($\sigma_{0,2}$ =1030 МПа, σ_B =2040 МПа, δ =42%), после старения при 500°С прочность повысилась (σ_B =2130 МПа) при сохранении $\sigma_{0,2}$ и δ на исходном уровне. Коррозионная среда вызвала разупрочнение стали ($\Delta \sigma_B / \sigma_B \leq 15\%$), связанное с растворением металла в зоне концентрации напряжений в вершине надреза образца. Характер разрушения стали во всех исследованных структурных состояниях на воздухе и в коррозионной среде остался вязким ямочным, что доказывает отсутствие склонности стали к коррозионному растрескиванию под напряжением.

7. Получено значительное повышение прочности исследованной стали ($\sigma_{\rm B}$ и $\sigma_{0,2}$ в ~2,5–3,5 раза) и снижение пластичности (δ в ~5 раз) в среде и на воздухе после деформации методом РКУП. Разрушение стали на воздухе и в коррозионной среде при этом происходит по механизму квазискола, дисперсность которого увеличивается по мере повышения числа циклов прессования.

8. Оптимальным режимом термической обработки стали 06Х18АГ19М2 для использования в морской воде в качестве высокопрочного конструкционного материала следует считать закалку от 1100–1150°С со старением при 500°С.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕТРАЦИИ

Статьи в рецензируемых научных журналах и изданиях, рекомендованных ВАК:

1. Меркушкин Е.А. Исследование структуры, механических и коррозионных свойств новых высокоазотистых Cr-Mn-сталей с молибденом /

В.В. Березовская, Р.А. Саврай, Е.А. Меркушкин, В.А. Макаров // Металлы. 2012. №3. С. 31-39 (0,6 п.л./ 0,3 п.л.).

2. Меркушкин Е.А. Влияние деформации на структуру, механические и коррозионные свойства высокоазотистой аустенитной стали 07Х16АГ13М3 / В.В. Березовская, М.С. Хадыев, Е.А. Меркушкин, Ю.А. Соколовская // Металлы. 2013. №6. С. 54-62 (0,6 п.л./ 0,2 п.л.).

3. Меркушкин Е.А. ТШР-эффект в безникелевых высокоазотистых аустенитных Cr-Mn-сталях / В.В. Березовская, Ю.А. Расковалова, Е.А. Меркушкин, Р.З. Валиев // Металловедение и термическая обработка металлов. 2015. №11. С. 20-26 (0,4 п.л./ 0,1 п.л.).

4. Меркушкин Е.А. Прогнозирование коррозионных свойств высокоазотистых аустенитных сталей на основе корреляционного уравнения потенциала питтингообразования / Е.А. Меркушкин, В.В. Березовская, М.О. Шпайдель // Материаловедение. 2016. №10. С. 3-5 (0,2 п.л./ 0,1 п.л.).

Публикации в других изданиях:

1. Merkushkin E.A. Structure, mechanical and corrosion properties of high manganese steels with high content of nitrogen / V.V. Berezovskaya, V.Y. Egorova, E.A. Merkushkin // Proceedings of 1-st international conference on high manganese steels. Seoul, 2011. P. 135 (0,06 π . π ./ 0,02 π . π .).

2. Меркушкин Е.А. Влияние термической и термопластической обработок на механические и коррозионные свойства высокоазотистых аустенитных сталей / Е.А. Меркушкин, А.Н. Ананьин, В.В. Березовская // Труды 54 Международной конференции «Актуальные проблемы прочности»: сборник докладов. Екатеринбург, 2013. С. 150 (0,06 п.л./ 0,03 п.л.).

3. Merkushkin E.A. Effect of strengthening treatment on the resistance to pitting corrosion of nickel-free high-nitrogen steels / E.A. Merkushkin, V.V. Berezovskaya, R. Ritzenhoff // Proceedings of 11th International conference «High Nitrogen Steels». Chennai, 2013. P. 265-274 (0,6 п.л./ 0,4 п.л.).

4. Merkushkin E.A. Study of the effect of severe plastic deformation on the resistance to pitting corrosion of high-nitrogen steel P900N+Mo / E.A. Merkushkin, V.V. Berezovskaya, R.Z. Valiev, R. Ritzenhoff // Proceedings of 12th International conference «High Nitrogen Steels». Hamburg, 2014. P. 106-112 (0,4 п.л./ 0,3 п.л.).

5. Меркушкин Е.А. Прогнозирование коррозионных свойств высокоазотистых аустенитных сталей на основе корреляционного уравнения потенциала питтингообразования / Е.А. Меркушкин, В.В. Березовская, Л.Д. Лавриков //Труды XIX Международной конференции «Физика прочности и пластичности материалов»: сборник докладов. Самара, 2015. С. 185-186 (0,1 п.л./ 0,05 п.л.).

6. Меркушкин Е.А. Прогнзирование питтингостойкости аустенитных коррозионностойких сталей, содержащих азот и углерод / Е.А. Меркушкин, В.В. Березовская // Труды XXIII Уральской школы металловедов-термистов «Актуальные проблемы физического металловедения сталей и сплавов»: сборник докладов. Тольятти, 2015. С. 180-182 (0,2 п.л./ 0,1 п.л.).

7. Меркушкин Е.А. Взаимосвязь между потенциалом питтинговой коррозии и химическим составом аустенитных нержавеющих сталей, легированных азотом / Е.А. Меркушкин, В.В. Березовская // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2016. Т. 21. В. 3. С. 1160-1163 (0,3 п.л./ 0,2 п.л.).

8. Меркушкин Е.А. Особенности распада пересыщенного γ-твердого раствора в Cr-Mn высокоазотистых аустенитных сталях при нагреве / В.В. Березовская, Е.А. Меркушкин // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2016. Т. 21. В. 3. С. 897-900 (0,3 п.л./ 0,1 п.л.).