Kp

На правах рукописи

Краснов Алексей Галинурович

СИНТЕЗ И ИССЛЕДОВАНИЕ СВОЙСТВ Sc-, In-СОДЕРЖАЩИХ ТИТАНАТОВ ВИСМУТА СО СТРУКТУРОЙ ТИПА ПИРОХЛОРА

Специальность: 02.00.04 – Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Екатеринбург – 2017

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт химии Коми научного центра Уральского Отделения РАН

Научный руководитель:	доктор химических наук, доцент Пийр Ирина Вадимовна				
Официальные оппоненты:	Красненко Татьяна Илларионовна, доктор химических наук, профессор, ФГБУН Институт химии твердого тела УрО РАН (г. Екатеринбург), ведущий научный сотрудник лаборатории оксидных систем				
	Ананьев Максим Васильевич, доктор химических наук, ФГБУН Институт высокотемпературной электрохимии УрО РАН (г. Екатеринбург), заведующий лабораторией твердооксидных топливных элементов				
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»				

Защита состоится «03» октября 2017 г. в 13:00 на заседании диссертационного совета Д 212.285.23 на базе ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» по адресу: 620000, Екатеринбург, пр. Ленина, 51, Зал диссертационных советов, комн. 248.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», http://lib.urfu.ru/mod/data/view.php?d=51&rid=270313

Автореферат разослан «____» ____ 2017 г.

Ученый секретарь диссертационного совета, кандидат химических наук, доцент

Shap S

Л.К. Неудачина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы работы

Соединения на основе титаната висмута со структурой типа пирохлора Ві₂Ті₂О₇, представляют интерес как потенциально полезные функциональные материалы. Благодаря высокой диэлектрической проницаемости и малым диэлектрическим потерями Bi₂Ti₂O₇ является перспективным материалом при создании накопительных конденсаторов ДЛЯ динамической памяти произвольным доступом (DRAM) и в качестве изолирующего слоя для МОП [1-2]. (металл-оксид-полупроводник)-транзисторов Титанат висмута co структурой типа пирохлора также применяется как буферный слой для улучшения электрических свойств сегнетоэлектрических материалов [3]. Соединения на основе пирохлора титаната висмута благодаря возможности создания высокой дефектности в подрешетках висмута и подвижного кислорода [4] могут быть перспективны как смешанные электронно-ионные проводники в области средних температур [5]. В наноразмерном состоянии Bi₂Ti₂O₇ обладает высокой фотокаталитической активностью в видимой области спектра [6-7].

Термическая нестабильность $Bi_2Ti_2O_7$ при температурах выше 612 °C [8], обусловленная неблагоприятным размерным фактором (соотношение радиусов катионов висмута и титана), ограничивает возможность получения его в виде плотной керамики для практического использования. Стабильность пирохлора титаната висмута может быть достигнута путем замещения части атомов висмута на атомы других элементов с меньшим ионным радиусом.

В последние годы для стехиометрического $Bi_2Ti_2O_7$ установлена структура, изучено диэлектрическое поведение при T < 320 °C, на примере допированных *d*и *f*-элементами титанатов висмута со структурой типа пирохлора показано, что природа и количество допанта оказывает влияние на свойства получаемых соединений. К настоящему времени в литературе отсутствуют сведения о скандий- и индийсодержащих титанатах висмута со структурой типа пирохлора. Отсутствуют, также, данные о квантово-химических расчетах параметров этих соединений.

В настоящей работе объектами получения И исследования являются состава $Bi_{1.6}M_{x}Ti_{2}O_{7-\delta};$ $Bi_{1.5}M_{0.5}Ti_{2}O_{7};$ допированные титанаты висмута $Bi_2Ti_{1,5}M_{0,5}O_7$ (M = Sc, In). Для синтезированных однофазных соединений со структурой типа пирохлора проведено изучение распределение атомов по кристаллографическим позициям, исследование оптических и электрофизических свойств. Выполнен теоретический расчет из первых принципов структурных, электронных и оптических свойств, результаты которого сопоставляются с экспериментальными данными.

Актуальность темы диссертационной работы подтверждена поддержкой исследований грантами РФФИ (проекты 13-03-00132 А; 14-03-31175 мол_а; № 15-03-09173 А, 16-33-00153 мол_а), программой Фонда содействия развитию малых форм предприятий в научно-технической сфере У.М.Н.И.К. (договор № 6275 ГУ2/2015 от 30.06.2015). Исследования включены в планы ФГБУН «Институт химии Коми НЦ УрО РАН» по темам «Физико-химические основы технологии керамических и композиционных материалов, включая наноматериалы, на основе синтетического и природного сырья» (регистрационный номер № 01201260994) и «Разработка физико-химических основ и высокоэффективных методов получения новых конструкционных, полифункциональных керамических, полимерных и композиционных материалов, включая наноматериалы, на основе синтетического и природного и растительного сырья» (регистрационный номер № 115022410061).

Цель и задачи работы

Целью настоящей работы является установление закономерностей влияния допирования скандием, индием на фазовую устойчивость, строение, электрофизические и оптические свойства титаната висмута со структурой типа пирохлора.

Для достижения поставленной цели решались следующие задачи:

1. Определение условий образования однофазных допированных титанатов висмута $Bi_{1.6}M_xTi_2O_{7-\delta}$; $Bi_{1.5}M_{0.5}Ti_2O_7$; $Bi_2Ti_{1.5}M_{0.5}O_7$ (M = Sc, In) со структурой типа пирохлора, синтез соединений.

2. Установление фазовой стабильности полученных соединений на воздухе и в восстановительных условиях (водород).

3. Исследование распределения атомов допанта (Sc, In) по катионным позициям структуры пирохлора.

4. Первопринципный квантово-химический расчет структурных, электронных и оптических свойств стехиометрического пирохлора $Bi_2Ti_2O_7$ и двух моделей пирохлоров с распределением допантов в позиции висмута и титана: $Bi_{1.5}M_{0.5}Ti_2O_7$; $Bi_2Ti_{1.5}M_{0.5}O_7$ (M = Sc, In).

5. Исследование оптического поглощения титанатов висмута со структурой типа пирохлора $Bi_{1.5}M_{0.5}Ti_2O_7$ (M = Sc, In) и сопоставление полученных экспериментальных результатов с данными теоретических расчетов.

6. Изучение зависимости электропроводности и диэлектрических параметров титанатов висмута $Bi_{1.6}M_xTi_2O_{7-\delta}$ (M = Sc, In) от концентрации допанта, температуры, влажности атмосферы, определение доли ионной компоненты в общей проводимости.

Научная новизна

1. Впервые получены скандий- и индийдопированные титанаты висмута со структурным типом пирохлора $Bi_{1.6}M_xTi_2O_{7-\delta}$ ($0.2 \le x \le 0.6$) и $Bi_{1.5}M_{0.5}Ti_2O_{7-\delta}$, M = Sc, In стабильные на воздухе в широком диапазоне температур, перспективные для использования в качестве компонентов электрохимических устройств и в фотокатализе.

2. Путем сопоставления экспериментальных данных и результатов *ab initio* расчетов установлено, что замещение атомов висмута в структуре пирохлора на атомы Sc или In энергетически благоприятно, тогда как замещение четверти позиций титана не выгодно. Предложен оптимальный вариант распределения атомов допанта по катионным позициям в структуре пирохлора $Bi_{1.6}M_xTi_2O_{7-\delta}$ (M = Sc, In).

3. Получены данные о структурных, электронных, оптических свойствах пирохлоров с замещением атомами скандия, индия позиций висмута или титана.

4. В скандий- и индийдопированных титанатах висмута со структурой типа пирохлора при температурах ниже 400 °С преобладает электронная проводимость, выше 400 °С проявляется кислородно-ионный тип проводимости. В интервале $p(O_2)=0.21-1$ атм среднее значение суммы ионных чисел переноса составляет 0.5 при 500–550 °С. Выявлен высокотемпературный высокочастотный релаксационный процесс, однотипный для соединений с разной природой допанта, соотнесенный с прыжковым характером кислородной проводимости.

Теоретическая и практическая значимость

Теоретическая значимость работы заключается в установлении влияния процесса допирования скандием и индием на электрофизические и оптические свойства допированных титанатов висмута со структурой типа пирохлора. Полученные результаты по синтезу твердых растворов, их стабильности, изучению электрофизических и оптических свойствах носят справочный характер и расширяют теоретические представления физической химии твердооксидных соединений о взаимосвязи между химическим составов, строением, катионным распределением и свойствами веществ. Результаты исследований могут быть включены в содержание лекций и практических занятий по курсам физической химии, химии твердого тела, кристаллохимии.

Практическая значимость полученных результатов обуславливается потенциальными областями применения Sc-, In-содержащих титанатах висмута со структурой типа пирохлора. Малые величины диэлектрических потерь и достаточно высокая диэлектрическая постоянная позволяют рекомендовать данные соединения как высокочастотные фильтры и диэлектрические слои. Поглощение в видимом диапазоне электромагнитного спектра допированными

титанатами висмута обуславливает возможность их применения как фотокаталитически активных материалов. Благодаря смешанной электронноионной проводимости данные материалы могут быть перспективны как компоненты электронных и электрохимических устройств (мембран, газовых сенсоров).

Методология и методы исследования

Синтез скандий-, индийсодержащих висмута титанатов проведен твердофазным способом. Фазовый состав образцов изучен методом порошковой рентгеновской дифракции, уточнение структуры выполнено методом полнопрофильного анализа Ритвельда. Морфология поверхности, пористость и дисперсность образцов исследована методом сканирующей электронной микроскопии. Элементный состав определяли в ходе энерго-дисперсионного микроанализа и атомно-эмиссионной спектроскопии с индуктивно связанной плазмой. Методом дифференциальной сканирующей калориметрии определена стабильность синтезированных соединений в атмосферах воздуха и водорода. Методом спектроскопии оптического поглощения получены спектры поглощения образцов. Электрофизические характеристики соединений исследованы переменном токе **ДВУХЗОНДОВЫМ** методом при И методом импедансспектроскопии. Квантово-химические расчеты проведены в рамках теории функционала плотности методом проекционных присоединенных волн по программе VASP с обобщенной градиентной аппроксимацией обменнокорреляционного функционала в форме РВЕ.

Основные положения, выносимые на защиту

1. Условия образования скандий- и индийсодержащих титанатов висмута со структурой типа пирохлора. Области гомогенности твердых растворов замещения $Bi_{1.6}M_xTi_2O_{7-\delta}$ (M = Sc, In).

2. Энергия образования, устойчивость, электронное строение допированных титанатов висмута со структурой типа пирохлора по результатам *ab initio* расчетов.

3. Модели распределения атомов допантов (скандий, индий) по катионным позициям структуры пирохлора.

4. Влияние допирования титаната висмута Bi₂Ti₂O₇ атомами скандия и индия на электрофизические характеристики.

5. Поглощение электромагнитного излучения допированными титанатами висмута в оптическом диапазоне по результатам теоретического расчета и экспериментального исследования.

6. Смешанный тип проводимости $Bi_{1.6}M_xTi_2O_{7-\delta}$ (M = Sc, In).

Апробация. Результаты работы представлены на научных конференциях:

22-ая Всероссийская научная конференция ИГ Коми НЦ УрО РАН «Структура, вещество. история литосферы Тимано-Североуральского сегмента» (г. Сыктывкар, 2013), II Всероссийская научная конференция студентов, аспирантов и молодых ученых «Человек и окружающая среда», (Сыктывкар, 2014), Ш Всероссийская конференция с международным участием «Топливные элементы и энергоустановки на их основе» (г. Черноголовка, 2015), Всероссийская научная конференция международным участием «Второй Байкальский с материаловедческий форум» (г. Улан-Удэ и оз. Байкал, с. Гремячинск, 2015), 15th European conference on solid state chemistry, (Vienna, Austria, 2015), 10-ый Всероссийский семинар с международным участием «Термодинамика и материаловедение» (г. Санкт-Петербург, 2015), Вторая Всероссийская конференция (с международным участием) «Горячие точки химии твердого тела: механизмы твердофазных процессов», (г. Новосибирск, 2015), Всероссийская молодежная научная конференция «Химия и технология новых веществ и (г. Сыктывкар, 2015-2016), IX Всероссийская материалов» конференция композиционные материалы» «Керамика (г. Сыктывкар. 2016). 13-е И международное совещание «Фундаментальные проблемы ионики твердого тела» (г. Черноголовка, 2016), 12th international symposium on systems with fast ionic transport (ISSFIT-12), (Kaunas, Lithuania, 2016), Всероссийская конференция «Химия твердого тела и функциональные материалы – 2016», включая XI Семинар СО РАН-УрО РАН «Термодинамика и материаловедение» (г. Екатеринбург, 2016), XX Менделеевский съезд по общей и прикладной химии, (г. Екатеринбург, 2016).

Личный вклад автора

Синтез и аттестация свойств исследуемых соединений, наработка экспериментальных данных, обработка и представление результатов были выполнены автором.

Аттестация синтезированных соединений была проведена сотрудниками Института химии Коми НЦ УрО РАН с использованием оборудования ЦКП "Химия".

Квантово-химические расчеты из первых принципов выполнены автором в лаборатории квантовой химии и спектроскопии им. профессора А.Л. Ивановского Института химии твердого тела УрО РАН под руководством вед. науч. сотр., канд. физ-мат. наук Шеина И.Р.

Съемка спектров оптического поглощения и низкотемпературная импедансспектроскопия выполнены на базе ресурсных центров «Оптические и лазерные методы исследования вещества» и «Диагностика функциональных материалов для медицины, фармакологии и наноэлектроники» СПБГУ (г. Санкт-Петербург).

Исследование диффузии кислорода в образце Bi_{1.6}Sc_{0.2}Ti₂O_{6.7} методом изотопного кислородного гетерообмена выполнено в лаборатории B.A. Садыкова Института катализа им. Г.К. Борескова СО РАН.

Диссертант лично участвовал в обсуждении и интерпретации экспериментальных данных, апробации полученных результатов, занимался подготовкой публикаций по тематике данной работы.

Публикации

Основные результаты диссертации представлены в 20 печатных работах, включая 5 статей в рецензируемых журналах, рекомендованных ВАК.

Структура и объем работы

Диссертационная работа состоит из введения, 3 глав, выводов, списка литературы, приложений. Материал изложен на 152 страницах машинописного текста, содержит 50 рисунков, 20 таблиц. Список цитируемой литературы включает 133 наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована цель и задачи исследования, отмечена научная новизна и практическая значимость работы.

В первой главе представлен обзор литературы по теме работы. В обзоре описываются особенности строения титаната висмута со структурой типа пирохлора Bi₂Ti₂O₇ и его устойчивость. Представлены результаты квантовохимического моделирования из первых принципов свойств стехиометрического и допированного Bi₂Ti₂O₇, выполнено обобщение результатов изучения оптических свойств висмутсодержащих соединений со структурой типа пирохлора и констатируется высокая фотокаталитическая активность соединений на основе Bi₂Ti₂O₇, обоснованная как теоретическими, так и экспериментальными работами. В главе проанализированы электрофизические свойства полученных ранее термостабильных допированных титанатов висмута перспективных как материалы, обладающие высокой диэлектрической проницаемостью, низкими диэлектрическими потерями, смешанной электронно-ионной (кислородной, протонной) проводимостью. Отмечено отсутствие в литературе данных по исследованию титанатов висмута со структурой типа пирохлора допированных скандием или индием.

Во второй главе изложены условия твердофазного синтеза образцов, описаны методы аттестации и изучения свойств Sc, In-содержащих титанатов висмута со

структурой пирохлора, а также приведены используемые методы квантовохимических расчетов.

Твердофазным способом проведен синтез образцов: $Bi_{1.6}M_xTi_2O_{7-\delta}$ ($0.2 \le x \le 1$); $Bi_{1.5}M_{0.5}Ti_2O_7$; $Bi_2Ti_{1.5}M_{0.5}O_{7-\delta}$ (M = Sc, In). Постадийный обжиг на воздухе с промежуточным перетиранием проводили в температурном режиме: 650 °C (5 ч); 850 °C (5 ч); 1000 °C (5 ч); 1100 °C (12 ч); 1150 °C (12 ч).

Рентгенофазовый анализ (РФА) порошковых образцов выполнен с помощью дифрактометра Shimadzu XRD-6000 (CuK_a - излучение $\lambda = 1.54056$ Å, угловой интервал от 10 до 100 °, шаг – 0.05 °, время экспозиции 2 секунды). Уточнение структуры методом полнопрофильного анализа Ритвельда выполнено с использованием пакета программ FullProf.

Морфология поверхности, пористость и дисперсность образцов исследована методом сканирующей электронной микроскопии (прибор TESCAN VEGA 3 SBU). Локальный элементный состав определяли методом энерго-дисперсионного микроанализа (EDS), используя приставку X-act (Oxford Instruments).

Химический анализ образцов методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (АЭС-ИСП) осуществлен с помощью спектрометра Spectrociros.

Дифференциальная сканирующая калориметрия (ДСК) соединений проведена на приборе дериватограф Netzsch STA 409 PC/PG в области температур 25–1300 °C, скорость нагрева – 5 град/мин в воздушной атмосфере и атмосфере водорода.

Значения пикнометрической плотности однофазных образцов определены по методике ГОСТ 2211-65. Определение кажущейся плотности, открытой, закрытой и общей пористости образцов в виде таблеток после завершающей стадии обжига выполнено согласно ГОСТ 2409-2014.

Спектры поглощения для соединений $Bi_{1.5}M_{0.5}Ti_2O_7$ (M = Sc, In) записаны на спектрофотометре Perkin Elmer Lambda 1050 в диапазоне длин волн 190–1100 нм с использованием интегрирующей сферы 150 mm InGaAs.

Для исследования электрофизических свойств торцы таблетированных образцов (толщина 1–2 мм, диаметр 12–13 мм) покрывали серебряной пастой методом вжигания. Температурные зависимости емкости (C_p) и тангенса угла диэлектрических потерь (tg δ) снимали в интервале температур 200–750 °C при частотах налагаемого поля f = 1-200 кГц (измеритель RLC MT-4090 и анализатор иммитанса E7-28, верхняя граница измеряемого сопротивления 500 и 100 МОм соответственно). Измерения выполнены в атмосфере влажного и сухого воздуха. Влажный воздух создавали путем его продувки через дистиллированную воду при комнатной температуре. Измерения проведены в режиме охлаждения после предварительного нагрева таблеток до 750 °C. Среднее значение суммы ионных

чисел кислородного переноса определено методом электродвижущей силы (ЭДС) при $p(O_2) = 0.21-1$ атм.

Методом импеданс-спектроскопии проведено изучение образцов в диапазоне частот 1 Гц–1 МГц и интервале температур 200–750 °С (импедансметр Z-1000P «Elins», пределы измерений импеданса от 0.05 Ом до 50 МОм). Для образца состава $Bi_{1.6}In_{0.2}Ti_2O_{6.7}$ измерения методом импеданс-спектроскопии проведены с использованием ALPHA-AT анализатора (Novocontrol) с пассивной BDS 1200 ячейкой в диапазоне частот 1 Гц–1.5 МГц с потенциалом 100 мВ. В качестве материала электродов наносили платину. Измерения проведены в воздушной атмосфере в интервале температур 190–700 °С в режиме охлаждения, после предварительного нагревания до 700 °С. Изучение электрофизических свойств в области температур от минус 150 до плюс 100 °С проводили на диэлектрическом спектрометре Novocontrol BDS. В качестве электродов на торцы таблеток наносили проводящий лак на основе серебра. Измерения проведены в цикле охлаждения от 100 °С до минус 150 °С с шагом 25 °С в диапазоне частот 1 Гц–10 МГц. Анализатор ALPHA-AT, используемый в приборах Novocontrol BDS, характеризуется диапазоном измерения импеданса от 10⁻³ Ом до 10¹⁵ Ом.

Подвижность кислорода и его способность к обмену на поверхности исследована с помощью температурно-программированного изотопного обмена (TPIE) с молекулами С¹⁸О₂ в проточном и закрытом реакторе.

Теоретические расчеты энергетических, структурных И электронных параметров проведены в рамках теории функционала плотности DFT (density functional theory) методом проекционных присоединенных волн PAW (Projector Augmented Wave) по программе Vienna Ab initio Simulation Package (VASP) с обобщенной градиентной аппроксимацией GGA (Generalized Gradient Approximation) обменно-корреляционного функционала в форме PBE. Было рассмотрено пять моделей со структурой типа пирохлора: Bi₂Ti₂O₇, Bi_{1.5}M_{0.5}Ti₂O₇ и $Bi_2Ti_{1.5}M_{0.5}O_7$ (M = Sc, In). Допирование моделировали замещением в 22атомной ячейке Bi₄Ti₄O₁₄ атома Bi (Ti) атомом Sc или In. В расчетах использовали энергию *cut-off* в 400 эВ и *k*-сетку размером 8×8×8. Оптимизацию параметров решетки и координат ионов проводили до тех пор, пока остаточные силы на атомах не становились меньше чем 0.5 мэВ/Å. После проведения оптимизации геометрии выполнены расчеты полной и парциальных плотностей состояний и зонной структуры. Расчет спектров поглощения проведен методом DFPT (Density Functional Perturbation Theory) при помощи преобразования Крамерса-Кронинга, интегрируя мнимую часть диэлектрической функции.

В третьей главе приведены результаты и обсуждения экспериментального и теоретического изучения свойств Sc-, In- допированных титанатов висмута со структурой типа пирохлора.

В ходе синтеза твердофазным способом получено 10 составов скандий- и индийсодержащих титанатов висмута со структурой типа пирохлора: $Bi_{1.6}M_xTi_2O_{7-\delta}$ (*x* = 0.2; 0.4; 0.5; 0.6); $Bi_{1.5}M_{0.5}Ti_2O_7$, где M = Sc, In (рисунок 1).

Рисунок 1 – Рентгенограммы образцов $Bi_{1.6}Sc_xTi_2O_{7-\delta}$, (a); $Bi_{1.6}In_xTi_2O_{7-\delta}$ (б).

Для составов, предусматривающих допирование в позиции титаната, показано, формирование структуры пирохлора не происходит. что При синтезе однофазных соединений элементный состав продуктов сохраняется близким к заданному. Так, для образца Bi_{1.6}In_{0.4}Ti₂O₇ химическая формула, рассчитанная по АЭС-ИСП анализа, $Bi_{1,71\pm0.02}In_{0,42\pm0.01}Ti_2O_{7-\delta}$. результатам имеет вид: По результатам ДСК исследований установлено, что допированные пирохлоры стабильны воздушной атмосфере В вплоть до температур плавления $(T_{n\pi} > 1200 \,^{\circ}\text{C}).$ В восстановительной условиях атмосферы стабильность соединений ограничена процессом восстановления висмута, начинающимся при 300 °С. В ходе высокотемпературного спекания были получены плотные таблетированные керамические образцы (относительная плотность ~90%) для выполнения электрофизических измерений (рисунок 2).

При уточнении структуры рассматривали различные варианты распределения атомов допанта по катионным позициям структуры пирохлора с учетом смещений А-атомов, атома кислорода O' и без смещений. Оптимальные результаты полнопрофильной обработки соединений $Bi_{1.5}Sc_{0.5}Ti_2O_7$ и $Bi_{1.5}In_{0.5}Ti_2O_7$ получены для варианта предполагающего распределение всех атомов допанта в A(Bi)-позиции, отсутствие вакансий в катионной A- и в кислородной O' подрешетках, учитывая смещения атомов висмута и допанта из позиций 16*c* в позиции 96*g*, а атомов O' из позиций 8*a* в позиции 32*e* (таблица 1). Моделирование распределения атомов допанта в позиции титана приводило к ухудшению факторов соответствия.

Рисунок 2 – СЭМ-изображение шлифованной поверхности керамики: а) $Bi_{1.6}Sc_{0.2}Ti_2O_{6.7}$; б) $Bi_{1.6}In_{0.2}Ti_2O_{6.7}$.

Таблица 1 – Результаты полнопрофильной обработки дифрактограммы $Bi_{1.5}Sc_{0.5}Ti_2O_7$ и $Bi_{1.5}In_{0.5}Ti_2O_7$ для модели, в которой все атомы скандия распределены в А-позициях с учетом смещения А-атомов из 16*c* в 96*g*, атомов О' из 8*a* в 32*e*

Атом	Положение	x	у	Z,	B_{iso} , Å ²	Заселенность		
	$Bi_{1.5}Sc_{0.5}Ti_2O_7$							
Bi/Sc	96g	0.014	0.014	-0.025	0.01	0.75/0.25		
Ti/Sc	16 <i>d</i>	0.5	0.5	0.5	1.54	1/0		
0	48f	0.125	0.125	0.422	0.1	1		
O'	32 <i>e</i>	0.270	0.270	0.270	0.1	1		
$a = 10.3104$ Å; $R_{\rm p} = 4.86$ %; $R_{\rm wp} = 6.33$ %; $\chi^2 = 2.39$								
Bi _{1.5} In _{0.5} Ti ₂ O ₇								
Bi/In	96g	0.014	0.014	-0.025	0.01	0.75/0.25		
Ti/In	16 <i>d</i>	0.5	0.5	0.5	0.57	1/0		
0	48f	0.125	0.125	0.437	0.10	1		
0'	32 <i>e</i>	0.269	0.269	0.269	0.10	1		
$a = 10.3269 \text{ Å}; R_{p} = 5.25\%; R_{wp} = 7.07\%; \chi^{2} = 2.68$								

Сопоставление теоретической и пикнометрической плотности соединений $Bi_{1.5}M_{0.5}Ti_2O_7$ и $Bi_{1.6}M_xTi_2O_{7-\delta}$ при x = 0.2-0.4 (M = Sc, In) позволяет сделать вывод, что атомы Sc и In попадают в позиции висмута. Для составов $Bi_{1.6}M_xTi_2O_{7-\delta}$ при x = 0.5-0.6 атомы допанта заполняют все вакантные позиции висмута и частично попадают в позиции титана. Полученные результаты сравнения плотностей для всех соединений согласуются с результатами профильного анализа, что свидетельствует об адекватном выборе модели распределения атомов допанта.

В ходе расчетов из первых принципов были рассмотрены пять моделей пирохлоров: стехиометрический $Bi_2Ti_2O_7$; замещенные по позициям Ві или Ті (25% ат.) пирохлоры $Bi_{1.5}M_{0.5}Ti_2O_7$ и $Bi_2Ti_{1.5}M_{0.5}O_7$ (M = Sc, In). Рассчитанный

параметр элементарной ячейки Bi₂Ti₂O₇ согласуется с экспериментальным 10.3591 Å ИЗ работы [8]. Значения оптимизированных значением И экспериментально установленных в ходе данной работы параметров ячеек $Bi_{1,5}M_{0,5}Ti_{2}O_{7}$ (M = Sc, In) близки и коррелируют с величинами радиусов ионов Sc и In, замещающих висмут: $R_{ion}(Bi) = 1.17$ Å, $R_{ion}(Sc) = 0.87$ Å, $R_{ion}(In) = 0.92$ Å (таблица 2). Параметры ячеек замещенных соединений во всех случаях, включая составы $Bi_{1,6}M_rTi_2O_7$ при x = 0.2-0.6 (M = Sc, In), оказываются меньшими, чем параметр ячейки для Bi₂Ti₂O₇. Полученные результаты свидетельствуют о том, что замещение позиций Ві элементами с меньшим ионным радиусом (Sc, In) является одним из факторов стабилизации фазы пирохлора.

Рассчитанные энергии образования фаз для $Bi_{1.5}Sc_{0.5}Ti_2O_7$ и $Bi_{1.5}In_{0.5}Ti_2O_7$ являются отрицательными, т.е. замещение атомов Bi на атомы Sc или In является энергетически предпочтительным процессом (таблица 3). Для Bi₂Ti_{1.5}Sc_{0.5}O₇ и Bi₂Ti_{1.5}In_{0.5}O₇ эти энергии положительны и, следовательно, энергетически устойчивой кристаллической структуры типа пирохлора для данных составов не существует, что подтверждается экспериментальными результатами по синтезу соединений указанных составов.

Таблица	2	-	Параметры	элементарной	ячейки
Ві₂Ті₂О ₇ и за	мег	цеі	нных титана	гов висмута	

Табл	ица 3. –	Энергия	образования
фаз заме	ещенных т	гитанатов	висмута

Состав	а (расчет), Å (0 K)	а (эксперимент), Å
Bi ₂ Ti ₂ O ₇	10 3223	10.3591 (2 K) [8]
	10.3223	10.3795 (290 K)[8]
$Bi_{1.5}Sc_{0.5}Ti_2O_7$	10.2086	10.3104±0.0001 (298 K)
$Bi_{1.5}In_{0.5}Ti_2O_7$	10.2136	10.3269±0.0002 (298 K)
$Bi_{2}Ti_{1.5}Sc_{0.5}O_{7}$	10.4440	_
$Bi_2Ti_{1.5}In_{0.5}O_7$	10.4663	_

Фаза	ΔЕ, эВ/форм. ед.
$Bi_{1.5}Sc_{0.5}Ti_2O_7$	-2.67
$Bi_{1.5}In_{0.5}Ti_2O_7$	-0.25
$Bi_{2}Ti_{1.5}Sc_{0.5}O_{7}$	0.41
$Bi_2Ti_{1.5}In_{0.5}O_7$	2.84

На рисунках 3 и 4 представлены результаты расчетов энергетического зонного строения и плотностей электронных состояний для Bi_{1.5}Sc_{0.5}Ti₂O₇ и Bi_{1.5}In_{0.5}Ti₂O₇. Величина запрещенной щели для Bi_{1.5}Sc_{0.5}Ti₂O₇ (рисунок 3a) составляет 2.32 эВ вдоль направления L (прямой электронный переход). При замещении атомов висмута на скандий его 3*d*-состояния участвуют в формировании валентной зоны и зоны проводимости (рисунок 3б) при этом вклад Sc 4s-, Sc 4p- состояний в этих зонах несущественен. Для случая Bi_{1.5}In_{0.5}Ti₂O₇, электронный переход будет непрямым (X – L) со значением энергии 2.21 эВ (рисунок 4a). Анализ плотностей состояний показал, что In 5s- и In 5p- состояния участвуют в формировании валентной зоны и частично зоны проводимости (рисунок 4б), при этом вклад 4dорбиталей незначителен.

Рисунок 3 – Энергетические зоны (а); полная и парциальные плотности электронных состояний (б) Bi_{1.5}Sc_{0.5}Ti₂O₇.

Рисунок 4 – Энергетические зоны (а); полная и парциальные плотности электронных состояний (б) Bi_{1.5}In_{0.5}Ti₂O₇.

Рисунок 5 — Спектры оптического поглощения $Bi_{1.5}Sc_{0.5}Ti_2O_7$

Спектры поглощения $Bi_{1.5}Sc_{0.5}Ti_2O_7$, представленные на рисунке 5, показывают хорошее совпадение экспериментальных результатов данных теоретических И расчетов DFT в области энергий 1-5 эВ. обоих соединений Найдено, лля что $Bi_{1} Sc_{0} Ti_{2}O_{7}$ $Bi_1 5In_0 5Ti_2O_7$ И экспериментальные и расчетные спектры коррелируют. Максимальное поглощения поглощение наблюдается в области энергий 3 - 5эΒ 250 - 410излучения или HM.

Экспериментальные величины запрещенной зоны близки с рассчитанными значениями, однако величины, полученные в рамках DFT расчетов, оказываются немного меньше (таблица 4).

Таблица 4 – Величины запрещенной щели замещенных титанатов висмута по данным оптического поглощения и по результатам расчетов DFT

	<i>E</i> g (экспер	имент), эВ	<i>E</i> _g (теория), эВ	
Соединение	прямой	непрямой	прямой	непрямой
	переход	переход	переход	переход
$Bi_{1.5}Sc_{0.5}Ti_2O_7$	3.05	2.70	2.32 (L→L)	2.25 (X→L)
Bi _{1.5} In _{0.5} Ti ₂ O ₇	2.97	2.60	2.24 (X→X)	2.21 (X→L)

Согласно величинам энергии запрещенной щели титанаты висмута со структурой типа пирохлора допированные скандием и индием можно отнести к классу диэлектриков. Рассмотренные допированные пирохлоры $Bi_{1.5}Sc_{0.5}Ti_2O_7$ и $Bi_{1.5}In_{0.5}Ti_2O_7$ перспективны как вещества фотокаталитически активные в видимом диапазоне излучения.

Для изучения электрофизических свойств Sc-, In-содержащих титанатов висмута использовали спеченные в виде таблеток образцы с относительной плотностью 86–92 %. Величины проводимости образцов находятся в пределах измерений использованных установок и хорошо воспроизводятся. Установлено, что соединения характеризуются проводимостью в диапазоне от 10⁻⁹ до 10⁻³ См/см 200-750 °C (рисунок 400 °C при температурах 6). Дo реализуется преимущественно электронная проводимость со значением энергии активации ~0.40 эВ. Выше 400 °С энергия активации проводимости изменяется в пределах от 0.88 до 1.47 эВ. Для скандий- и индийсодержащих пирохлоров при увеличении содержания допанта наблюдается возрастание проводимости и уменьшение активации во всем исследованном диапазоне температур. энергии Рост проводимости при увеличении количества допанта от 0.2 до 0.4 (изовалентное

замещение) может быть вызван увеличением количества мобильного атомов кислорода.

Рисунок 6 – Температурные зависимости проводимости а) $Bi_{1.6}Sc_xTi_2O_{7-\delta}$; б) $Bi_{1.6}In_xTi_2O_{7-\delta}$ при частоте 1 кГц.

В интервале парциального давления кислорода $p(O_2) = 0.21-1$ атм среднее значение суммы ионных чисел переноса с ростом температуры увеличивается и выходит на плато при 500–550 °C (рисунок 7). Увеличение доли допанта (*x*) от 0.2

Рисунок / – Температурная зависимость среднего значения суммы ионных чисел переноса.

до 0.4 приводит к увеличению значения ионных чисел переноса. Энергия активации для соединений ($Bi_{1.6}M_{0.4}$) Ti_2O_7 (M = Sc, In) в интервале температур 200-750 °C изменяется от 0.94 до 0.98 эВ. Данные значения оказываются близки к энергии активации проводимости для титанатов со структурой типа пирохлора: $Sm_{1.92}Ca_{0.08}Ti_2O_{7-\delta}$ (1 *B*); $Gd_{2}Ti_{2}O_{7}$ (1.04 $\Im B$); (Y_{1.94} $Li_{0.18}$) $Ti_{2}O_{7}$ (1.08 $\Im B$). При увеличении концентрации допанта x > 0.4, часть ионов скандия и индия попадают в позиции титана Ti⁴⁺. В ходе гетеровалентного замешения компенсация положительного

заряда может происходить в результате образования положительно заряженной кислородной вакансии согласно квазихимическому уравнению 1:

$$2\mathrm{Ti}_{\mathrm{Ti}} + \mathrm{O}_{\mathrm{o}}^{\mathrm{x}} \to 2\mathrm{M'}_{\mathrm{Ti}} + \mathrm{V}_{\mathrm{o}}^{\bullet}.$$
 (1)

Наблюдаемое повышение проводимости и некоторое понижение энергии активации может быть связано с увеличением доли ее электронной составляющей.

Для соединений С дефектностью в позициях Ві и, следовательно, с вакансиями в подрешетке O' $(Bi_{1.6}M_{0.2}\Box_{0.2})Ti_2O_6O'_{0.7}$, наблюдается увеличение проводимости во влажной атмосфере области В 240-640 °C температур при различных частотах налагаемого переменного

Рисунок 8 – Температурные зависимости проводимости образцов при частоте 1 кГц: а) $(Bi_{1.6}In_{0.2}\Box_{0.2})Ti_2O_6O'_{0.7};$ б) $(Bi_{1.6}In_{0.4}\Box_0)Ti_2O_6O'_{1.}$

тока, что связано с реализацией протонного транспорта (рисунок 8а). При полном заселении А-позиций катионами Ві и допанта (Ві_{1.6}М_{0.4}□₀Ti₂O₆O'₁), вакансии в подрешетке О' отсутствуют, и, в этом случае, температурные зависимости проводимости при нагревании во влажной и сухой атмосфере совпадают (рисунок 8б).

Соединения $Bi_{1.6}Sc_xTi_2O_{7-\delta}$ (x = 0.4; 0.6) и $Bi_{1.6}In_xTi_2O_{7-\delta}$ (x = 0.2; 0.4; 0.6) исследовали методом импеданс-спектроскопии в области температур 200–700 °C в диапазоне частот от 1 Гц до 1 МГц. Для $Bi_{1.6}In_{0.2}Ti_2O_{7-\delta}$ спектр импеданса характеризуется наличием одной дуги полуокружности (рисунок 9), которая хорошо описывается в ходе моделирования, с использованием схемы состоящей из одного параллельно связанного *RC*-элемента (программа Zview).

Рисунок 9 – Экспериментальные и теоретические кривые годографов образца Bi_{1.6}In_{0.2}Ti₂O_{6.7} при температурах: а) 350°С; б) 700 °С.

Энергия активации проводимости на постоянном токе, рассчитанная из объемного сопротивления, для $Bi_{1.6}In_{0.2}Ti_2O_{6.7}$ в диапазоне температур (350–700 °C), составляет 1.54 эВ и близка к значению, выявленному при изучении проводимости с помощью моста переменного тока при частоте 1 кГц – 1.47 эВ. Подобные величины энергии активации соотносятся с реализацией проводимости прыжкового типа при наличии кислородных вакансий в структуре пирохлора [9].

Высокотемпературный поляризационный процесс выявлен при анализе диэлектрических характеристик для всех Sc-, In-допированных поведения Ha частотных вещественной титанатов висмута. зависимостях части диэлектрической проницаемости и тангенса угла диэлектрических потерь в низкочастотном диапазоне (f < 1 к Γ ц) наблюдается сильная дисперсия (рисунок 10). При высоких частотах (f > 100 кГц) во всех изученных соединениях величины ε' и tg δ перестают зависеть от частоты и температуры. Аналогичное поведение наблюдалось В диэлектрике висмутсодержащем пирохлоре Bi₃Zn_{1.84}Nb₃O_{13.84} [9].

Рисунок 10 – Частотные зависимости для Bi_{1.6}In_{0.2}Ti₂O_{6.7}: а) действительной части диэлектрической проницаемости; б) тангенса угла потерь при различных температурах.

Для детального анализа релаксационного процесса использовали формализм электрического модуля. Исследование зависимости мнимой компоненты электрического модуля *M*["] от частоты в интервале температур 300–700 °C выявило наличие релаксационных максимумов, которые сдвигаются в область высоких частот при повышении температуры (рисунок 11).

Высота и ширина пиков для каждого из соединений практически не зависят от температуры, следовательно, динамические процессы в образцах однотипны. Ширина пиков на половине высоты для образцов $Bi_{1.6}In_{0.2}Ti_2O_{6.7}$ и $Bi_{1.6}In_{0.6}Ti_2O_{7-\delta}$ составляет около 1.2 декады логарифма частоты, что близко к значению типичному для дебаевского максимума (1.14 порядка частоты).

Рисунок 11 — Частотные зависимости мнимой части электрического модуля: a) $Bi_{1.6}In_{0.2}Ti_2O_{6.7}$; б) $Bi_{1.6}In_{0.6}Ti_2O_{7-\delta}$.

В таблице 5 представлены значения энергии активации релаксационного процесса, значения характеристических частот, найденные по максимумам зависимости мнимой части электрического модуля M''(f); энергии активации проводимости на переменном и постоянном токе (σ_{DC} , рассчитанная из данных импеданс-спектроскопии).

Соединение	Т(рел.проц.)	$E_{a(\tau)}$, эВ	<i>f</i> _{o,} Гц	<i>E</i> _{a(T)} (1 кГц), эВ	$E_{aDC(T)}$, эВ
Bi _{1.6} Sc _{0.4} Ti ₂ O ₇	400-600	1.09±0.03	9.18·10 ¹¹	1.08±0.01	1.15±0.05
$Bi_{1.6}Sc_{0.6}Ti_2O_{7-\delta}$	350-500	0.66±0.02	$1.93 \cdot 10^{10}$	0.95±0.01	0.68±0.03
Bi _{1.6} In _{0.2} Ti ₂ O _{6.7}	350-700	1.54±0.03	$2.81 \cdot 10^{13}$	$1.47{\pm}0.02$	1.50±0.02
$Bi_{1.6}In_{0.4}Ti_2O_7$	400-600	1.25±0.05	$1.03 \cdot 10^{13}$	1.05 ± 0.01	1.12±0.02
$Bi_{1.6}In_{0.6}Ti_2O_{7-\delta}$	300-500	0.94±0.02	$5.34 \cdot 10^{11}$	1.00±0.03	0.94±0.01
Bi ₃ Zn _{1.84} Nb ₃ O _{13.84} [9]	500-850	1.55	$5.5 \cdot 10^{12}$	_	1.59
Bi ₃ Zn ₂ Sb ₃ O ₁₄ [10]	400-700	1.37	$1.65 \cdot 10^{13}$	_	1.37

Таблица 5 — Рассчитанные энергии активации по данным температурной зависимости времен релаксации $(E_{a(\tau)})$ и проводимости $(E_{a(T)})$

Для каждого исследованного состава значения энергии активации проводимости находятся в хорошем согласии со значениями энергий активации релаксационного процесса. Это свидетельствует о возможности перескоков носителей заряда (ионов кислорода) на дальние расстояние при высоких температурах и о связи высокотемпературного релаксационного процесса с ионным транспортом.

Возможность кислородного транспорта в допированных титанатах висмута со структурой типа пирохлора была подтверждена с помощью изотопного обмена

[11] на образце $Bi_{1.6}Sc_{0.2}Ti_2O_{6.7}$. По результатам исследования установлено, что процесс обмена кислорода начинается при $T \sim 400$ °C (рисунок 12).

Рисунок 12 – ПРПЕ изотопныи обмен с $C^{18}O_2$ в проточном реакторе для образца – $Bi_{1.6}Sc_{0.2}Ti_2O_{6.7}$. Точки – эксперимент, линии – расчет.

Показано, что с точки зрения подвижности однороден. решетки кислород так как характеризуется единственным коэффициентом диффузии во всем объеме $(1.78 \cdot 10^{-13})$ $c M^2/c$). a энергия активации диффузии равна 0.57 эВ. Таким образом, наблюдаемая высокая кислородная диффузия при T > 450 °C согласуется с результатами исследования высокотемпературной электропроводимости и подтверждает наличие ионного транспорта в допированных титанатах висмута со структурой пирохлора.

- эксперимент, линии – расчет. Для образцов Bi_{1.6}In_{0.2}Ti₂O_{6.7}; Bi_{1.6}Sc_{0.2}Ti₂O_{6.7}; Bi_{1.6}Sc_{0.4}Ti₂O₇ изучены диэлектрические характеристики в низкотемпературной области от минус 150 до плюс 100 °C и диапазоне частот 1 Гц–10 МГц. Результаты исследований низкотемпературного поведения диэлектрических характеристик в Sc-, Inсодержащих титанатах висмута со структурой пирохлора (таблица 6) позволяют провести сопоставление с данными для стехиометрического Bi₂Ti₂O₇.

Таблица 6 – Диэлектрические характеристики соединений со структурой типа пирохлора при 298 К

Соединение	Частота	ε'	tg δ
Bit allo aThO a	100 кГц	70	0.0026
2 -1.00.22 0.7	1 МГц	69	0.0035
Bit ScartinOca	100 кГц	71	0.0065
D11.65C0.2112C6.7	1 МГц	71	0.0050
Bit 6Sc04TpO7	100 кГц	99	0.0043
	1 МГц	98	0.0058
Bi ₂ Ti ₂ O ₇ [12]	100 кГц	115	0.0064
$Bi_{(1.6-0.8x)}Y_{x}Ti_{2}O_{(6.4+0.3x)},$ x = 0.06–1.8 [13]	1 МГц	127–64	0.006–0.0007
$Bi_{(1.6-1.08x)}Nd_{x}Ti_{2}O_{(6.4-0.11x)},$ x = 0.45–0.67 [14]	1 МГц	98-87	0.0075

Величины диэлектрической проницаемости в Sc-, In-допированных титанатах висмута сопоставимы с аналогичными величинами для стехиометрического $Bi_2Ti_2O_7$ и с характеристикам для титанатов висмута допированных иттрием и неодимом. Тангенс угла диэлектрических потерь исследованных соединений оказался ниже, чем указанные литературные значения. Рассматриваемые в данной работе соединения можно рекомендовать как диэлектрические материалы.

выводы

1. Впервые получены однофазные допированные титанаты висмута со структурой типа пирохлора $Bi_{1.6}M_xTi_2O_{7-\delta}$ ($0.2 \le x \le 0.6$) и $Bi_{1.5}M_{0.5}Ti_2O_{7-\delta}$, M = Sc, In. Установлена их стабильность на воздухе до температуры плавления ($T_{nn} \sim 1230-1290^{\circ}C$) и в атмосфере водорода до 350°C.

2. Ha основании структурного анализа И сопоставления значений пикнометрической и теоретической плотности допированных титанатов висмута предложен оптимальный вариант распределения атомов допанта по катионным пирохлора $Bi_{1.6}M_xTi_2O_{7-\delta}$, позициям структуры при котором допант преимущественно заполняет вакантные позиции висмута при $x \leq 0.4$. При большем содержании допанта x > 0.4 частично замещаются позиции титана.

3. На основании *ab initio* расчетов установлено, что замещение допантом позиций висмута энергетически благоприятно, способствует образованию структуры типа пирохлора для $Bi_{1.5}Sc_{0.5}Ti_2O_7$ и $Bi_{1.5}In_{0.5}Ti_2O_7$, что подтверждено синтезом соединений. Для составов $Bi_2Ti_{1.5}Sc_{0.5}O_7$ и $Bi_2Ti_{1.5}In_{0.5}O_7$ соединения со структурой типа пирохлора не образуются, что согласуется с положительными значениями рассчитанных энергий образования.

4. В ходе расчета электронной и зонной структуры определены величины запрещенной щели для прямого – 2.65 эВ ($Bi_2Ti_2O_7$), 2.42 эВ ($Bi_{1.5}Sc_{0.5}Ti_2O_7$) и непрямого 2.31 эВ ($Bi_{1.5}In_{0.5}Ti_2O_7$) электронных переходов, которые согласуются с величинами, полученными в результате изучения оптического поглощения.

5. По данным спектроскопии оптического поглощения величины оптической запрещенной щели для прямого и непрямого переходов – 3.05 и 2.70 эВ ($Bi_{1.5}Sc_{0.5}Ti_2O_7$), 2.97 и 2.60 эВ ($Bi_{1.5}In_{0.5}Ti_2O_7$), находятся в видимом диапазоне ($E \le 3.2$ эВ). Соединения перспективны в качестве фотокатализаторов в видимой области спектра.

6. Проводимость допированных титанаты висмута со структурой типа пирохлора $Bi_{1.6}M_xTi_2O_{7-\delta}$ (M = Sc, In) обусловлена электронными и ионными (при T > 400 °C) носителями заряда и возрастает с увеличением содержания допанта (Sc, In). Релаксационный процесс (400–600 °C), выявленный при анализе диэлектрических характеристик (ε' , tg δ , M''), согласуется с прыжковым характером кислородной проводимости.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

1. Hardy, A. Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate $(Bi_2Ti_2O_7)$ films / A. Hardy, S. Van Elshocht, C. De Dobbelaere, J. Hadermann, G. Pourtois, S. De Gendt, V.V. Afanas'ev, M.K. Van Bael // Mater. Res. Bull. – 2012. – V. 47. – P. 511–517.

2. Cho, K.H. Significantly reduced leakage currents in organic thin film transistors with Mn-doped $Bi_2Ti_2O_7$ high-k gate dielectrics / K.H. Cho, M.G. Kang, H.W. Jang, H.Y. Shin, C.Y. Kang, S.J. Yoon // Phys. Status Solidi-Rapid Res. Lett. – 2012. – V. 6. – P. 208–210.

3. Yang, C.H. Effects of a $Bi_2Ti_2O_7$ seeding layer on properties of $Bi_{3.5}Nd_{0.5}Ti_3O_{12}$ thin film / C.H. Yang, H.T. Wu, D.M. Yang // Mater. Lett. – 2007. – V. 61. – P. 4166–4168.

4. Radosavljevic, I. Synthesis and structure of pyrochlore-type bismuth titanate / I. Radosavljevic, J.S.O. Evans, A.W. Sleight // J. Solid State Chem. –1998. – V. 136. – P. 63–66.

5. Hou, J. Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity / J. Hou, Sh. Jiao, H. Zhu, R.V. Kumar // J. Solid State Chem. – 2011. – V. 184. – P. 154–158.

6. Murugesan, S. Robust synthesis of bismuth titanate pyrochlore nanorods and their photocatalytic applications / S. Murugesan, V. Subramanian // Chem. Commun. – 2009. – № 34. –P. 5109–5111.

7. Esquivel-Elizondo J.R. $Bi_2Ti_2O_7$: It is not what you have read / J.R. Esquivel-Elizondo, B.B. Hinojosa, J.C. Nino // Chem. Mater. – 2011. – V. 23. – P. 4965–4974.

8. Hector, A.L. Synthesis and structural study of stoichiometric $Bi_2Ti_2O_7$ pyrochlore / A.L. Hector, S.B. Wiggin // J. Solid State Chem. – 2004. – V. 177. – P. 139–145.

9. Tan, K.B. High temperature impedance spectroscopy study of non-stoichiometric bismuth zinc niobate pyrochlore / K.B. Tan, C.C. Khaw, C.K. Lee, Z. Zainal, Y.P. Tan, H. Shaari // Materials Science-Poland. $-2009. - V. 27. - N_{\odot}. 3. - P. 825-837.$

10. Nobre, M.A.L. Dielectric dispersion in $Bi_3Zn_2Sb_3O_{14}$ ceramic: a pyrochlore type phase / M.A.L. Nobre, S. Lanfredi // Mat. Res. – 2003. – V. 6. – No. 2. – P. 157–161.

11. Sadykov, V.A. Temperature-programmed $C^{18}O_2$ SSITKA for powders of fast oxide-ion conductors: Estimation of oxygen self-diffusion coefficients / V.A. Sadykov, E. Sadovskaya, A. Bobin, T. Kharlamova, N. Uvarov, A. Ulikhin, C. Argirusis, G. Sourkouni, V. Stathopoulos // Solid State Ionics. – 2015. – V. 271. – P. 69–72.

12. Turner Ch.G. Dielectric properties and relaxation of $Bi_2Ti_2O_7$ / Ch.G. Turner, J. Roberto Esquivel-Elizondo, J.C. Nino // J. Am. Ceram. Soc. – 2014. – V. 97. –P. 1–6.

13. Kunej, S. Dielectric Properties of the $Bi_{(1.6-0.8x)}Y_xTi_2O_{(6.4+0.3x)}$ (0.03>x>2) Pyrochlore Solid Solution / S. Kunej, D. Suvorov // J. Am. Ceram. Soc. - 2009. - V. 92. - P. 959–961.

14. Kunej, S. Dielectric Properties of the Bismuth Neodymium Titanate Pyrochlore Solid Solution / S. Kunej, S.D. Scapin, D. Suvorov // J. Am. Ceram. Soc. – 2012. – V. 95. – P. 1201–1203.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи, опубликованные в рецензируемых научных журналах и изданиях, определенных ВАК:

1. Краснов, А.Г. Синтез катионсодержащих титанатов висмута и их фотокаталитические свойства / А.Г. Краснов, М.С. Королева, И.В. Пийр, Т.Е.Короткова // Известия Коми научного центра УрО РАН. – 2014. – № 2 (18). – С. 19–23. (0.25 п.л. / 0.15 п.л.).

2. Краснов, А.Г. Синтез и свойства допированных Sc, Mg титанатов висмута со структурой пирохлора / А.Г. Краснов, М.М. Пискайкина, И.В. Пийр // Журнал общей химии. – 2016. – Т. 86. – № 2. – С. 177–184. (0.4 п.л. / 0.28 п.л.).

3. Краснов, А.Г. Протонная проводимость в In, Мg-допированных титанатах висмута со структурой типа пирохлора / А.Г. Краснов, М.М. Пискайкина, И.В. Пийр // Химия в интересах устойчивого развития. – 2016. – № 5 (24). – С. 687–692. (0.3 п.л. / 0.24 п.л.).

4. Краснов, А.Г. Экспериментальное исследование и ab initio расчет свойств Sc, Inдопированных титанатов висмута со структурой типа пирохлора / А.Г. Краснов, И.Р. Шеин, И.В. Пийр // Физика твердого тела. – 2017. – Т. 59. – № 3. – С. 483–490. (0.35 п.л. / 0.28 п.л.).

5. Krasnov, A.G. The conductivity and ionic transport of doped bismuth titanate pyrochlore $Bi_{1.6}M_xTi_2O_{7-\delta}$ (M – Mg, Sc, Cu) / A.G. Krasnov, I.V. Piir, M.S. Koroleva, N.A. Sekushin, Y.I. Ryabkov, M.M. Piskaykina, V.A. Sadykov, E.M. Sadovskaya, V.V. Pelipenko, N.F. Eremeev // Solid state ionics. – 2017. – V. 302. – P. 118–125. (0.4 п.л. / 0.2 п.л.).

Материалы и тезисы докладов научных мероприятий:

6. Краснов А.Г. Титанат висмуга со структурой пирохлора допированный катионами скандия, индия (III) / А.Г. Краснов, А.Н. Мартюшева, И.В. Пийр // Материалы 22-й научной конференции Института геологии Коми НЦ УрО РАН "Структура, вещество, история литосферы Тимано-Североуральского сегмента". – г. Сыктывкар. – 2013. – С. 92–94. (0.15 п.л. / 0.12 п.л.).

7. Краснов А.Г. Керамический синтез и электрофизические свойства Sc и In-содержащих титанатов висмута со структурой пирохлора / А.Г. Краснов, А.Н. Мартюшева // Тезисы докладов II Всероссийской научной конференции студентов, аспирантов и молодых ученых "Человек и окружающая среда". – г. Сыктывкар. – 2014. – С. 35. (0.05 п.л. / 0.04 п.л.).

8. Краснов А.Г. Протонная проводимость Sc, In, Ga-допированных титанатов висмута со структурой типа пирохлора // Тезисы докладов V Всероссийской молодежной научной конференции "Химия и технология новых веществ и материалов". – г. Сыктывкар. – 2015. – С. 27–29. (0.15 п.л. / 0.15 п.л.).

9. Краснов А.Г. Высокотемпературная протонная проводимость пирохлоров Bi_{2-y}M_xTi₂O_{7-δ} (*M* – Sc, In, Mg) / А.Г. Краснов, И.В. Пийр, М.М. Пискайкина // Сборник тезисов Третьей Всероссийской конференции с международным участием "Топливные элементы и энергоустановки на их основе". – г. Черноголовка. – 2015. – С. 97–98. (0.1 п.л. / 0.07 п.л.).

10. Пийр И. В. Особенности строения допированных титанатов висмута со структурой типа пирохлора / И. В. Пийр, М.С. Королева, А. Г. Краснов, Н.А. Секушин, М.М. Пискайкина, Д.А. Королев // Материалы конференции "Второй Байкальский материаловедческий форум". – г. Улан-Удэ и оз. Байкал, с. Гремячинск. – 2015. – С. 96–97. (0.1 п.л. / 0.04 п.л.).

11. Krasnov A.G. Synthesis and properties of $Bi_{2-y}M_xTi_2O_{7-\delta}$ (M - Sc, In) pyrochlores / A.G. Krasnov, I.V. Piir // Book of Abstracts 15^{th} European Conference on Solid State Chemistry. – Vienna, Austria. – 2015. – P. 261. (0.05 п.л. / 0.04 п.л.).

12. Краснов А.Г. Электронная структура и фазовая стабильность Bi₂Ti₂O₇, допированного Sc, Ga, In» / А.Г. Краснов, И.Р. Шеин, И.В. Пийр // Тезисы докладов 10-го Всероссийского семинара с международным участием "Термодинамика и материаловедение". – г. Санкт-Петербург. – 2015. – С. 55. (0.05 п.л. / 0.035 п.л.).

13. Пийр И. В. Влияние допирования титаната висмута со структурой типа пирохлора на термостабильность соединений и ионный транспорт / И. В. Пийр, М.С. Королева, А. Г. Краснов,

М.М. Пискайкина, Н.А. Секушин // Тезисы докладов Второй Всероссийской конференции (с международным участием) "Горячие точки химии твердого тела: механизмы твердофазных процессов". – г. Новосибирск. – 2015. – С. 72. (0.05 п.л. / 0.02 п.л.).

14. Краснов А.Г. Определение края фундаментального поглощения в допированных титанах висмута со структурой типа пирохлора / А.Г. Краснов, М.С. Королева, М.М. Пискайкина // Тезисы докладов VI всероссийской молодежной научной конференции "Химия и технология новых веществ и материалов". – г. Сыктывкар. – 2016. – С. 46. (0.05 п.л. / 0.035 п.л.).

15. Краснов А.Г. Синтез и свойства титанатов висмута допированных Sc, In, Ga со структурой типа пирохлора / А.Г. Краснов, К.О. Киреева, И.В. Пийр // Тезисы докладов IX Всероссийской конференции "Керамика и композиционные материалы". – г. Сыктывкар. – 2016. – С. 336. (0.05 п.л. / 0.035 п.л.).

16. Пийр И.В. Электронный и ионный транспорт в допированных титанатах висмуга со структурой типа пирохлора / И.В. Пийр, М.С. Королева, А.Г. Краснов, М.М. Пискайкина // Тезисы докладов IX Всероссийской конференции "Керамика и композиционные материалы". – г. Сыктывкар. – 2016. – С. 372–373. (0.1 п.л. / 0.045 п.л.).

17. Краснов А.Г. Синтез, структура и электрофизические свойства Ві_{2-х}М_хТі₂O_{7-δ} (M – Sc, In, Li) / А.Г. Краснов, И.В. Пийр, Н.А. Секушин // Труды 13-ого международного совещания "Фундаментальные проблемы ионики твердого тела". – г. Черноголовка. – 2016. – С. 70. (0.05 п.л. / 0.035 п.л.).

18. Krasnov A.G. The conductivity and ionic transport in bismuth titanate pyrochlore doped with s-, p-, d-metals (Sc, Mg, In Cu) / A.G. Krasnov, I.V. Piir, M.S. Koroleva, N.A. Sekushin, M.M. Piskaykina, V.A. Sadykov, E.M. Sadovskaya, V.V. Pelipenko, N.F. Eremeev // 12th international symposium on systems with fast ionic transport (ISSFIT-12). – Kaunas, Lithuania. – 2016. – P. 101. (0.05 π.π. / 0.0275 π.π.).

19. Краснов А.Г. Sc-, Іп-допированные титанаты висмута со структурой типа пирохлора: экспериментальное и теоретическое исследование свойств / А.Г. Краснов, И.Р. Шеин, И.В. Пийр // Сборник трудов всероссийской конференции "Химия твердого тела и функциональные материалы – 2016", включая XI Семинар СО РАН-УрО РАН "Термодинамика и материаловедение". – г. Екатеринбург. – 2016. – С.187–188. (0.1 п.л. / 0.07 п.л.).

20. Краснов А.Г. Электрические свойства Mg-, Sc-, In-допированных титанатов висмута со структурой типа пирохлора / А.Г. Краснов, И.В. Пийр, М.М. Пискайкина, Н.А. Секушин // Тезисы докладов "XX Менделеевский съезд по общей и прикладной химии". – г. Екатеринбург. – 2016. – Том 2а. С.379. (0.05 п.л. / 0.035 п.л.).