На правах рукописи

Alicent

ХАСАНОВ Альберт Фаридович

СИНТЕЗ 2,2'-БИПИРИДИНОВ И ИХ АННЕЛИРОВАННЫХ АНАЛОГОВ

02.00.03 – Органическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Екатеринбург – 2018

Работа выполнена на кафедре органической и биомолекулярной химии в Федеральном государственном автономном образовательном учреждении высшего образования «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»

Научный руководитель: доктор химических наук, Зырянов Григорий Васильевич

Официальные оппоненты: Ким Дмитрий Гымнанович, доктор химических наук, профессор, ФГАОУ ВО «Южно-Уральский государственный университет (национальный исследовательский университет)», г. Челябинск, профессор кафедры теоретической и прикладной химии Института естественных и точных наук;

Рубцов Александр Евгеньевич, кандидат химических наук, доцент, ФГБОУ ВО «Пермский государственный национальный исследовательский университет», г. Пермь, заведующий лабораторией асимметрического синтеза

Ведущая организация: ФГБУН Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук, г. Иркутск

Защита состоится «04» июня 2018 года в 14:00 часов на заседании диссертационного совета Д 212.285.08 на базе ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» по адресу: 620002, г. Екатеринбург, ул. Мира, 19, ауд. И-420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», http://lib.urfu.ru/mod/data/view.php?d=51&rid=277592

Автореферат разослан «___» ____ 2018 года

Ученый секретарь диссертационного совета

Jours

Поспелова Татьяна Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования.

Современные тенденции синтетической органической химии требуют перехода от многоступенчатых подходов получения целевых молекул к подходам, протекающим в условиях экономии атомов, реакционных стадий, растворителей и т.д. (так называемые РАЅЕ-процессы), а также от реакций, катализируемых переходными металлами и их комплексами, к некатализируемым процессам при сохранении общей эффективности применяемых подходов. Такие подходы имеют неоспоримое преимущество для синтеза сложных гетероциклических соединений благодаря потенциальным терапевтическим свойствам последних (большинство из природных и синтетических лекарственных препаратов и физиологически-активных соединений имеют гетероциклическую природу), их перспективным координационно-химическим свойствам, в особенности по отношению к заряженным аналитам, а также уникальным фото-, электролюминесцентным и электрохимическим свойствам органических материалов, полученных с включением гетероциклических составляющих. Наиболее известными представителями гетероциклов, имеющих повсеместное практическое применение, являются 2,2'-бипиридины и их функционализированные производные, включая азааналоги. К настоящему времени методы получения 2,2'-бипиридинов относительно хорошо изучены. Тем не менее, для получения производных 2,2'-бипиридинов, например 2-(пиридин-2-ил)хинолинов и 1-(2пиридил)изохинолинов, 2-(пиридин-2-ил)пиримидинов и (пиридин-2-ил)пиразинов, обычно используют многоступенчатые синтезы, основанные на комбинациях реакций кросс-сочетания, гетероциклизации, реакции Бишлера-Напиральского, Кренке, реакции с литийорганическими соединениями и многих других. Большинство из описанных выше процессов являются многостадийными, они требуют применения жестких условий и/или дорогостоящих реагентов и/или катализаторов. Особый интерес представляют олигопиридины, несущие в своем составе полиядерные (гетеро)ароматические заместители и фрагменты, например, (аза)пирен, (аза)фенантрен, (аза)трифенилен и т.д. благодаря своим уникальным фотофизическим свойствам, широким возможностям для дальнейшей функционализации, а также широкому спектру применения.

Цель работы заключается в поиске удобных и эффективных синтетических методов получения различных аннелированных 2,2'-бипиридинов, а также изучению их фотофизических и координационно-химических свойств.

Задачи исследования. Для достижения поставленной цели необходимо решить следующие задачи:

 синтез новых производных 2,2'-бипиридинов, содержащих в своей структуре (поли)(гетеро)ароматические заместители и фрагменты;

- 2) синтез азааналогов полиароматических соединений;
- 3) изучение фотофизических характеристик полученных соединений;

4) изучение координационно-химических свойств полученных соединений в присутствии катионов металлов, а также электрон-дефицитных нейтральных молекул (например, нитроароматических (взрывчатых) веществ).

Научная новизна и теоретическая значимость

Предложены новые синтетические подходы к неописанным ранее полиядерным лигандам и флуорофорам 2,2'-бипиридинового ряда, а именно к 1-(пиридин-2ил)изохинолинам в результате взаимодействия 3-(пиридин-2-ил)-1,2,4-триазинов с 1-морфолинциклогексеном И последующей окислительной ароматизацией циклогексенового фрагмента. Впервые литиевые соли полиароматических соединений (пирен, фенантрен, трифенилен) были использованы в качестве нуклеофилов в реакциях S_NH . Впервые предложен подход к 2-(пиридин-2-ил)моноазатрифениленам через их 1,2,4триазиновые аналоги с возможностью модификации конечной структуры лигандов. Дополнен и значительно расширен метод построения 2-гетарилпиридинов из легкодоступных гидразонов изонитрозоацетофенона и иминоэфиров. Установлено, что в результате реакции нуклеофильного замещения водорода с помощью литиевой соли арилацетиленов можно ввести фрагменты как арилацетиленов, так и арилвинилов в положение С5 1,2,4-триазинового цикла в зависимости от условий реакции. Изучены фотофизические свойства (максимумы поглощения и испускания, квантовые выходы) полученных соединений.

Практическая ценность работы заключается в разработке простых И эффективных методов синтеза новых, ранее не описанных лигандов 2,2'-бипиридинового ряда из легкодоступных реагентов, включая аннелированные аналоги, например азатрифенилены (дибензо[f,h]хинолины) - перспективные хромофоры и хемосенсоры. Данные гетероциклы являются перспективными лигандами для хелатирования катионов металлов. Продемонстрировано влияние структуры лиганда на его координационно-Установлена химические свойства. возможность обнаружения различных высокоэнергетических нитроароматических соединений (пикриновая кислота, 2,4-ДНТ, ТНТ), а также катионов цинка синтезированными азатрифениленами в результате тушения их люминесценции.

Личный вклад автора состоит в поиске и изучении литературных источников о методах синтеза 2,2'-бипиридинов, их производных и аналогов, а также в непосредственном планировании и осуществлении экспериментов, обработке и анализе полученных данных. Автор принимал участие в написании научных статей и представлении полученных результатов на научных конференциях.

Методология и методы диссертационного исследования. В ходе выполнения данной работы проводили анализ литературных источников по теме исследования, направленный органический синтез с применением современных синтетических техник и методов. Структуры полученных соединений были подтверждены комплексом физикохимических и спектральных (ЯМР-спектроскопия, масс-спектрометрия, УФспектрометрия, РСА и др.) методов анализа.

Степень достоверности полученных результатов обеспечена применением передовых методов исследования и воспроизводимостью результатов экспериментов. Анализ состава, структуры и чистоты, изучение фотофизических характеристик полученных соединений осуществлялись на современных и сертифицированных приборах в Уральском федеральном университете им. первого Президента России Б.Н.Ельцина и Институте органического синтеза им. И. Я. Постовского УрО РАН.

Положения, выносимые на защиту:

 дополненный и значительно расширенный метод получения α-незамещенных 2,2'бипиридинов и их аналогов из соответствующих 1,2,4-триазинов, полученных через взаимодействие гетарилнитрилов и гидразонов изонитрозоацетофенона;

методы синтеза 2-(пиридин-2-ил)хинолинов и 1-(пиридин-2-ил)изохинолинов;

 получение производных 1,2,4-триазинов и 2,2-бипиридинов, имеющих остатки полиядерных ароматических соединений, посредством реакций нуклеофильного замещения водорода в ряду 1,2,4-триазинов;

методы получения моноазатрифениленов (дибензо[*f*,*h*]хинолинов) с расширенной системой сопряжения;

результаты фотофизических измерений для полученных соединений

 изучение координационно-химических свойств полученных соединений, в том числе в качестве хемосенсоров для обнаружения нитроароматических (взрывчатых) соединений и индикатора на катионы цинка.

Публикации. Основное содержание диссертации изложено в 21 публикации, в том числе в 9 статьях, опубликованных в рецензируемых научных журналах, рекомендованных ВАК РФ, а также в 12 тезисах материалов международных и российских конференций.

Апробация результатов была осуществлена на VII всероссийской конференции по химии полиядерных соединений и кластеров (Новосибирск, 2012), кластера конференций по органической химии «Оргхим-2013» (Санкт-Петербург, 2013), XVI молодежной школы-конференции по органической химии (Пятигорск, 2013), Уральском научном форуме «Современные проблемы органической химии» (Екатеринбург, 2014), XXVI международной Чугаевской конференции по координационной химии (Казань, 2014),

I международной школы-конференции студентов, аспирантов и молодых ученых «Биомедицина, материалы и технологии XXI века» (Казань, 2015), 1st European Young Chemists Meeting (Португалия, Гимарайнш, 2016), XX Менделеевском съезде по общей и прикладной химии (Екатеринбург, 2016), RSC-NOST Symposium on Organic & Biomolecular Chemistry (Лидс, Великобритания, 2017)

Объем и структура работы. Диссертация выполнена на 115 страницах, состоит из введения, трех глав: литературный обзор (глава 1), обсуждение результатов (глава 2), экспериментальная часть (глава 3) и заключения. Диссертация содержит 80 схем, 11 таблиц, 25 рисунков. Библиографический список цитируемой литературы содержит 145 наименований.

Благодарность. Автор выражает глубокую и искреннюю благодарность к.х.н. Копчуку Д.С. за помощь в проведении исследований, доценту, к.х.н. Ельцову О.С. (Уральский федеральный университет, г. Екатеринбург) за проведение спектроскопии ЯМР, к.х.н. Ковалеву И.С. (Уральский федеральный университет, г. Екатеринбург) за проведение масс-спектрометрии, к.х.н. Слепухину П.А. (Институт органического синтеза УрО РАН, г. Екатеринбург) за проведение рентгеноструктурного анализа, Ким Г.А. (Институт органического синтеза УрО РАН, г. Екатеринбург) и Тания О.С. (Уральский федеральный университет, г. Екатеринбург) за проведение фотофизических измерений, всему коллективу кафедры органической и биомолекулярной химии ХТИ УрФУ во главе с заведующим кафедрой академиком РАН Чарушиным В.Н. и директору ХТИ УрФУ чл.-корр. Русинову В.Л. Работа выполнена при поддержке РНФ (грант №15-13-10033)

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Результаты диссертационной работы изложены в трех разделах. В первом разделе приводится обзор литературных данных по методам синтеза пиридил(изо)хинолинов, 2-гетарилпиридинов, азатрифениленов, методы прямого введения остатков стильбена или ацетилена, а также методы визуального (люминесцентного) обнаружения нитроароматических веществ. Во втором разделе описаны методы получения разнообразных лигандов-аналогов 2,2'-бипиридина и фотофизические свойства некоторых из них. В третьем разделе приводятся экспериментальные данные.

Синтез 1-(пиридин-2-ил)изохинолинов

Удобными прекурсорами для получения (3),4-(ди)арил-1-(пиридин-2ил)изохинолинов являются (5),6-(ди)арил-3-(пиридин-2-ил)-1,2,4-триазины 1, которые синтезированы по известной реакции циклоконденсации между диарил-1,2-дионом 2а-д и амидразоном 3, а также в результате взаимодействия пиридин-2-карбоксальдегида 4 с

гидразонами изонитрозоацетофенона **5а-в** с последующей циклизацией при кипении в уксусной кислоте (Схема 1).

Трансформация 1,2,4-триазинового ядра в соединениях **1а-д** в изохинолиновое может быть произведена путем реакции аза-Дильса-Альдера с 1-морфолинциклогексеном **6** в качестве диенофила с последующей ароматизацией аннелированного цикла. Было установлено влияние соотношения реагентов и температуры реакции на выходы продуктов. Так, после кипячения триазинов с диенофилом (в соотношении от 1 до 5 экв.) в ароматических растворителях (толуол, *о*-ксилол) удалось выделить тетрагидроизохинолины **7а-д** с низкими выходами, не превышающими 25%. Однако, проведение данного взаимодействия с пятикратным избытком диенофила при 200°С в инертной атмосфере и в условиях отсутствия растворителя позволило получить целевые продукты с выходами 37-54%.

Последующий подбор реагента для ароматизации показал, что наиболее приемлемым является взаимодействие тетрагидроизохинолинов **7а-д** с 2,3-дихлор-5,6дицианобензохиноном (DDQ) **9** при кипячении в толуоле или *о*-ксилоле (Схема 2), что приводит к изохинолинам **8** с выходами до 68%. Попытка ароматизации тетрагидроизохинолинов действием палладия на активированном углероде в отсутствие растворителя приводила к целевым продуктам с выходами не более 15%, при значительном осмолении реакционной массы.

Схема 2

Структуры полученных тетрагидроизохинолинов **7а-**д и изохинолинов **8а-**д были подтверждены методами ЯМР и масс-спектрометрии. В частности, в спектрах ЯМР ¹Н изохинолинов **8** отсутствуют сигналы протонов алифатического фрагмента циклогексена, так же как и сигналы sp³-гибридных атомов углерода в спектрах ЯМР ¹³С. Кроме того, строение соединений **7в,д** (Рисунок 1) и кадмиевых комплексов лигандов **8г,д** (Рисунок 2) подтверждено данными РСА.

Рисунок 1 - Структуры соединений 7в (слева) и 7д (справа) по данным РСА

Рисунок 2 - Структуры кадмиевых комплексов лигандов 8г (слева) и 8д (справа) по данным РСА

Синтез 2-(5-арилпиридин-2-ил)хинолинов

Аналогичный описанному выше подход был использован и для получения 2-(5арилпиридин-2-ил)хинолинов 10а-з (Схема 3). Исходные 1,2,4-триазины 11а-д были получены в ходе реакции циклоконденсации между соответствующими хинолин-2-илкарбальдегидами 12а, б и гидразонами изонитрозоацетофенона 13а-в (Метод А), а последующая реакция аза-Дильса-Альдера с диенофилами привела к трансформации 1,2,4-триазинового прекурсора в пиридиновый. При этом, введение атомов фтора в состав хинолинового фрагмента не оказало влияния на протекание реакций. В зависимости от диенофила применялись различные использованного условия реакции. Так. взаимодействие с 2,5-норборнадиеном проводили в среде высококипящего о-ксилола (Метод Б), тогда как взаимодействие с 1-морфолинциклопентеном протекало при 200°С, в условиях отсутствия растворителя и в инертной атмосфере (Метод В).

Схема 3

Фотофизические свойства хинолинов

Были проанализированы результаты фотофизических измерений полученных лигандов (Рисунок 3, таблица 1). Согласно литературным данным (D. N. Kozhevnikov et. al. // *Tetrahedron Lett.*, 2006, 47, 7025) фенилпиридинхинолин **14a**, не содержащий заместителей, показывает чрезвычайно слабую флуоресценцию, которую можно объяснить значительным вкладом n-*π*-перехода в его возбужденном состоянии.

Введение атомов фтора в хинолиновый фрагмент и в ароматический заместитель привело к увеличению квантового выхода флуоресценции с 1.2% у **14** до 4.1-4.6% у **4а,б**. Наоборот, в случае соединений **146** и **10в**, содержащих метоксифенильный заместитель, введение атомов фтора привело к понижению квантового выхода по сравнению с **146** с 65% до 55%. Во всех случаях максимумы спектров поглощения остались практически без изменений, в то время как для максимумов испускания после введения атомов фтора наблюдался небольшой (менее 6 нм) длинноволновый сдвиг. Стоит также отметить, что аннелирование к пиридиновому кольцу циклопентенового фрагмента (соединения **10а-6** и **10е-3**) привело к существенному увеличению квантовых выходов флуоресценции. Кроме того, наряду с увеличением квантовых выходов флуоресценции, для соединений **10а,б,е-з** наблюдался большой батохромный сдвиг максимумов испускания в сравнении с ранее описанными пиридилхинолинами **14а,6**. Введение атомов фтора, наоборот, приводит к

понижению квантового выхода флуоресценции, например с 49.1% (соединение **10a**) до 20.9% (соединение **10**г) или 13.5% (соединение **10**з).

Рисунок 3 - Спектры эмиссии соединений 10а-з

Соед	λαδς	λэм	Φ,%
10a	202, 259, 282 ^{nл} , 340, 351 ^{nл}	472	49.1
106	202, 259, 283 ⁿⁿ , 340, 352 ⁿⁿ	483	43.4
10в	195, 220 ^{пл} ,247, 320 ^{пл} , 341	437	55
10г	197, 219 ^{пл} ,262, 303пл, 310, 326, 340	372	4.1
10д	196, 203пл, 216пл, 261, 306пл, 310, 340	376	4.6
10e	195, 217, 244, 312, 331	426	33.5
10ж	198, 220, 258, 302 ⁿⁿ , 309, 324, 337	458	20.9
103	199, 219, 258, 308, 324, 337	464	13.5

Таблица 1 - Фотофизические свойства соединений 10а-з

Квантовые выходы измерены относительно хининсульфата ($\Phi = 54.6$ % в 0.1н водном растворе H₂SO₄).

Получение замещенных 2,2'-бипиридинов комбинацией S_N^H-процессов и реакций аза-Дильса-Альдера в 6-фенил-3-(2-пиридил)-1,2,4-триазине

Благодаря своей π -дефицитности 1,2,4-триазины способны вступать в реакции нуклеофильного замещения водорода (S_N^H) с широким кругом нуклеофилов через образование стабильных σ -аддуктов с их последующей ароматизацией. В рамках работы данный тип взаимодействия был использован для получения 1,2,4-триазиновых прекурсоров 2,2'-бипиридинов, содержащих полиароматические фрагменты/флуорофоры (пирен, фенантрен и трифенилен) в цикле (Схема 4). Так, взаимодействием 3-(пиридин-2-

ил)-6-фенил-1,2,4-триазина **17** с литий-аренами **15а-в**, полученными *in situ* из монобромаренов **16а-в**, с выходами до 96% были сперва синтезированы стабильные σ -аддукты **18а-в**. Наличие в спектрах ЯМР ¹Н соединений **18а-в** сигнала NH-протона в виде однопротонного синглета в области 11-12 м.д., сигнала протона у sp³-гибридизованного атома углерода в виде однопротонного синглета в диапазоне 6.22-7.00 м.д., а также наличие в спектрах ЯМР ¹³С сигнала sp³-гибридизованного атома углерода в районе 54.9-57.7 м.д. однозначно доказывает образование аддуктов приписываемой структуры. Ароматизация **18а-в** была успешно реализована в результате взаимодействия с DDQ: после очистки методом колоночной хроматографии выходы продуктов **19а-в** составили до 83-91%.

Схема 4

Целевые 2,2'-бипиридины с остатками полиаренов были получены в ходе реакции аза-Дильса-Альдера полученных триазинов **19а-в** с диенофилами (кипячение с 2,5-норборнадиеном в *о*-ксилоле или взаимодействие с 1-морфолинциклопентеном в отсутствие растворителя) (Схема 5). Структуры полученных соединений подтверждены методами ЯМР ¹Н и ¹³С-спектроскопии, масс-спектрометрии и элементного анализа.

Схема 5

Метод 1: 2,5-норборнадиен, о-ксилол, 143°С, 18 часов (для 20а-в); Метод 2: 1-морфолиноциклопентен, о-ксилол, 143°С, 10 ч (для 21а)

Получение арилэтинил- и арилвинил-1,2,4-триазинов

В отличие от ариллитиевых солей 19а-в литиевые соли ацетиленов 22а-г при взаимодействии с 6-арил-3-(пиридил-2-ил)-1,2,4-триазинами 17а,6 ведут себя несколько иначе. Так, при проведении реакции в аналогичных условиях вместо ожидаемых оаддуктов в качестве основных продуктов были получены 6-арил-5-арилвинил-3-(пиридин-2-ил)-1,2,4-триазины 23а-е (Схема 6), структуры которых подтверждены данными ЯМР ¹Н и ¹³С спектроскопии, масс-спектрометрии и элементного анализа. В частности, в спектре ЯМР ¹Н продуктов 23 присутствуют два однопротонных дублета с константами *J* = 15.6 Гц, являющиеся характерными сигналами транс-стильбенов 23. для Дополнительным фактором, свидетельствующим об образовании продуктов строения 22 вместо ожидаемых 24, является отсутствие в спектрах ЯМР ¹³С сигналов sp-гибридных атомов углерода в области 90-100 м.д.

Ожидаемый σ -аддукт 24 в данных условиях образуется лишь в следовых количествах о чем свидетельствует двойной набор сигналов протонов остатка пиридин-2ила и сигналов ароматической части в спектре ЯМР ¹Н, а также сигналы протонов С-Н у sp³-гибридного углерода С5 (5.89 м.д.) и NH-протона (10.45 м.д). Более того после ароматизации смеси продуктов с помощью DDQ и очистки методом колоночной хроматографии удалось выделить арилэтинилы 25 с выходами не более 3%.

Однако, количественное образование продуктов **25** наблюдается при добавлении раствора DDQ в толуоле непосредственно в реакционную смесь сразу после смешения литий арилацетилена и триазина (Схема 7).

Структуры соединений **25а,6** были подтверждены методами ¹Н и ¹³С ЯМРспектроскопии, масс-спектрометрии и элементного анализа. В частности, в спектрах ¹³С соединений **25а,6** наблюдались сигналы sp-гибридных атомов углерода, подтверждающих наличие именно тройной С≡С связи.

Аналогично описанному выше методу получения 2,2'-бипиридинов стильбены 23а,б в результате реакции аза-Дильса-Альдера при взаимодействии с 2,5норборнадиеном в *о*-ксилоле с выходами 65-70% дают бипиридины **26а,6** (Схема 8)

Прямое получение 2-гетарил-5-фенилпиридинов

α-Незамещенные 2,2'-бипиридины являются традиционными лигандами для катионов металлов. В связи с этим разработка новых методов синтеза данных соединений и их аналогов является перспективной.

В рамках работы нами был дополнен и существенно расширен метод (Изв. АН. Сер. Хим., № 6, 2004, С.1243-1247) получения разнообразных производных и азааналогов 2,2'-бипиридина. Преимущество метода заключается в использовании легкодоступных гидразона изонитрозоацетофенона и (гет)арилнитрилов, что позволило получить соединения, недоступные или труднодоступные для альтернативных методов. Стоит отметить, что ранее данный метод был использован для получения лишь единичных примеров производных пиридина и его не использовали для синтеза производных 2,2'-бипиридина или его азааналогов.

На первом этапе была осуществлена гетероциклизация гидразона изонитрозоацетофенона **13a** с иминоэфирами **27a-e**, полученными *in situ* в результате взаимодействия метилата натрия и соответствующего цианосоединения **28a-e**, с

последующей циклизацией интермедиата в кипящей уксусной кислоте (Схема 9). Анализ ¹Н ЯМР спектров полученных соединений показал наличие ожидаемого однопротонного синглета в области 9.02-9.53 м.д., отвечающего резонансу протона С5-Н образованного 1,2,4-триазина, при наличии сигналов других заместителей. На следующем этапе для получения гетарилпиридинов **29а-е** и **30а,6** соответствующие 1,2,4-триазины были подвергнуты реакции аза-Дильса-Альдера посредством кипячения в *о*-ксилоле в присутствии 2,5-норборнадиена (для получения пиридинов **29а-е**), либо путем взаимодействия с 1-морфолинциклопентеном в отсутствие растворителя в инертной атмосфере с при 200°С (для получения соединений **30а,6**).

Получение пиридил-замещенных моноазатрифениленов

Достаточно часто азатрифенилены являются основными компонентами устройств молекулярной электроники, а также являются компонентами реагентов и проб для фотолюминесцентной визуализации/фотодинамической терапии биологических объектов (например, опухолей).

Поскольку триазатрифенилен **31a** также является и фенантро[9,10е][1,2,4]триазином - структурным аналогом 5,6-дифенил-1,2,4-триазина, то реакция гетероциклизации, используемая для образования 1,2,4-триазинов из 1,2-дионов является приемлемой и для получения триазатрифенилена **31a.** Амидразон **3** и фенантренхинон **32a**, а также дибромо- (**326-в**) и дийодо- (**32г-д**) фенантренхиноны, были использованы в качестве исходных синтонов, и их гетероциклизация с высокими выходами приводила к образованию соединений **31**. Следует отметить, что гетероциклизация монойод фенантренхинона **32д** ожидаемо приводит к образованию смеси монойодизомеров в соотношении 1:1. Достоинством метода является возможность выделения продуктов

реакции с выходами до 64% с использованием дробной кристаллизации с последующем фильтрованием, благодаря более низкой растворимости продуктов 31 по сравнению с исходными реагентами (Схема 10).

Для получения соответствующих лигандов моноазатрифениленов 33 аналогично описанному выше использовалась реакция аза-Дильса-Альдера с использованием в качестве диенофилов соответствующих морфолинциклоалкенов при 200°С в атмосфере аргона в отсутствии растворителя (для получения соединений 33а-г) или путем взаимодействия с 2,5-норборнадиеном (для **33д,е**) с заменой *о*-ксилола на более высококипящий 1,2-дихлорбензол (Схема 11).

Метод:

a -

б	NBS.	H₂SO₄	20°C	3ч
0	INDO,	19004	20 0,	0 1

- **31**B $R_1 = Br, R_2 = R_3 = H$ в Br₂, бензоил пероксид, 110°С, 16 ч **31r** $R_1 = H, R_2 = R_3 = I$
- г *N*-йодсукцинимид, H₂SO₄, 0-20°C, 24 ч

д I₂, KMnO₄, Ac₂O, AcOH, H₂SO₄, 35°C, 1 час

Схема 11

31a $R_1 = R_2 = R_3 = H$

316 $R_1 = H, R_2 = R_3 = Br$

31д R₁ = R₃ = H, R₂ = I

56%

60%

64%

45%

55%

В результате азатрифенилены ЗЗа-г были получены с выходами до 82%. Исключение составил случай получения дийодзамещенного азатрифенилена 33д из прекурсора 31г: получение ожидаемого продукта оказалось невозможным, поскольку в

результате взаимодействия в среде енамина образовывались неидентифицируемые смеси продуктов. Причина этого может заключаться в частичной замене лабильных атомов йода на фрагменты морфолина. Образование соединения **33**д с более низким выходом наблюдалось лишь в ходе взаимодействия **31**г с 2,5-норборнадиеном, которое протекает при кипячении в 1,2-дихлорбензоле и не приводит к каким-либо побочным продуктам. Получение азатрифениленов **33д-е**, не содержащих циклоалкеновый аннелированный фрагмент, возможно, но, вследствие меньшей растворимости конечных продуктов, представляет гораздо меньший интерес с практической точки зрения.

Структуры полученных соединений подтверждены данными ЯМР-спектроскопии, масс-спектрометрии, элементного анализа и РСА. В частности, в случае лиганда **336** был выполнен РСА его комплекса с иодидом кадмия (Рисунок 4).

Рисунок 4 - Структура кадмиевого комплекса соединения 336 по данным РСА

Получение моноазатрифениленов с расширенной системой сопряжения

Дибромсодержащие моноазатрифенилены **33в-г** были использованы в качестве исходных соединений для получения целевых структур **34а-г** с расширенной системой сопряжения (Схема 12).

Синтез был выполнен в результате реакции кросс-сочетания по методу Сузуки с арилборными кислотами **35а,6** в смеси воды, толуола и этанола в присутствии основания (карбонат калия). Достоинством подхода является приемлемый выход продуктов **34а-г** (64-72%), а также возможность очистки с использованием перекристаллизации из толуола. Структура продуктов **34а-г** была подтверждена данными масс-спектрометрии

(электроспрей), элементного анализа, а также ЯМР-спектроскопии. В частности, в спектрах ЯМР ¹Н для соединений **346,г** могут быть отмечены сигналы протонов триметоксифенильного заместителя в виде четырех синглетов протонов метоксигрупп и двух синглетов протонов бензольного кольца.

Получение (бензо)хинолиназатрифениленов

Другим подходом к увеличению системы сопряжения данных лигандов является использование заместителей, содержащих аннелированные ароматические фрагменты.

Хинолин- и бензохинолин-N-оксиды **36а,6** были использованы в качестве исходных соединений для синтеза (бензо)хинолин-замещенных азатрифениленов **37** (Схема 13). На начальном этапе путем цианирования N-оксидов **36а,6** непосредственно триметилсилилцианидом в присутствии диметилкарбомоил хлорида в 1,2-дихлорэтане, либо путем получения триметилсилилцианида *in situ* из цианистого калия и триметилсилил хлорида с выходами 85-91% были получены цианопроизводные **38а,6**.

Амидразоны **39а,6** были получены путем взаимодействия хинолин-2-карбонитрила **38а** или бензо[h]хинолин-2-карбонитрила **386** и гидразин гидрата в течение 10 часов в случае **39а** или 7 суток для **396** при комнатной температуре (Схема 13).

Схема 13

Последующая реакция гетероциклизации **39а,6** с фенантренхиноном **32а** в этаноле приводит к образованию триазатрифениленов **37а,6**, которые были выделены путем кристаллизации с выходами 58-66% (Схема 14).

Схема 14

Моноазатрифенилены **40** были получены в результате реакции аза-Дильса-Альдера с 1-морфолинциклопентеном (для **40а,б**) при 200°С в отсутствие растворителя в течение 2 ч., а также с 2,5-норборнадиеном (для **40в**) при кипении в 1,2-дихлорбензоле в течение 20 ч. (Схема 15).

Реагенты и условия:

Метод 1: 1-морфолинциклопентен, 200^оС, аргон, 3 ч (для **40а,б**) Метод 2: 2,5-норборнадиен, 1,2-дихлорбензол, кипение, 20 ч (для **40**в) а: R = H, n=3 : R+R = бензо, n=3 : R+R = бензо, n=0 **85%**

Исследование фотофизических свойств пиридилмоноазатрифениленов

С целью оценки возможного практического использования полученных соединений в рамках работы нами были произведены исследования фотофизических характеристик полученных азатрифениленов.

Установлено, что для большинства производных азатрифенилена увеличение системы сопряжения, как правило, приводит к значительному длинноволновому смещению максимумов поглощения, так и испускания в сравнении с незамещенным моноазатрифениленом **33e** (Рисунок 5, Таблица 2).

Аннелирование дополнительных ароматических колец к фрагменту пиридина (соединения **40а-в**) привело к незначительному длинноволновому сдвигу максимумов как поглощения, так и испускания. В то же время такие изменения в структуре стали причиной значительного изменения квантовых выходов люминесценции, причем наличие фрагмента хинолин-2-ила привело к его уменьшению до 3.1%, а фрагмента бензо[*h*]хинолин-2-ила, наоборот, привело к серьезному увеличению квантового выхода до 55% (для **406**) и 39% (для **40в**).

Введение фенильных заместителей в азатрифениленовый фрагмент (соединения **34а,в**) незначительно изменило профиль спектра люминесценции; имеет место лишь батохромное смещение максимумов испускания. Введение же триметоксифенильных остатков (соединения **346,г**) привело к значительному изменению характера спектра люминесценции и к еще более значительному батохромному смещению максимумов испускания, что, вероятно, объясняется более значительными изменениями в структуре хромофора. Наблюдалось некоторое снижение квантовых выходов в случае соединений **346,в**, но для двух остальных новых моноазатрифениленов **34а,г** значения квантовых выходов практически не изменилось.

Визуальное обнаружение нитроароматических соединений

Молекула (аза)трифенилена представляет собой изоэлектронный аналог молекулы 1,3,5-тринитробензола (ТНБ) и его производных – компонентов взрывчатых веществ (ВВ). В наиболее типичном случае между трифениленом и данными аналитами происходит образование устойчивых донорно-акцепторных комплексов за счет межмолекулярного π - π переноса заряда, что подтверждается большим массивом опубликованных в литературе об образовании трифенилена данных кристаллических комплексов с полинитроароматическими соединениями. Аналогичные комплексы характерны и для Образование азатрифениленов. молекулярного комплекса (аза)трифениленнитроароматическое соединение (т.е. донор-акцептор) сопровождается тушением фотолюминесценции (аза)трифенилена вследствие реализации различных механизмов данного процесса. Соответственно, азатрифенилены могут быть использованы для визуального обнаружения нитроароматических ВВ в различных фазах.

В рамках работы нами было проведено исследование тушения флуоресценции азатрифениленов в растворах ацетонитрила в присутствии нитроароматических соединений. На рисунках 6-7 показано тушение флуоресценции соединений **33e** и **346** в присутствии 2,4,6-тринитротолуола (ТНТ) и 2,4,6-тринитрофенола (пикриновой кислоты, ПК). Во всех случаях зависимости Штерна-Фольмера для всех азатрифениленов носят линейный характер с относительно высокими значениями констант K_{sv} для всех сенсоров при использовании всех нитроароматических тушителей (Таблица 2). Это говорит о высокой перспективности поиска хемосенсоров для обнаружения нитроароматических ВВ в ряду данных соединений.

Рисунок 5 - Спектры эмиссии моноазатрифениленов

Для соединений **33e** и **34б** было исследовано тушение флуоресценции при добавлении пикриновой кислоты и ТНТ. Измерение эмиссии проводилось при

концентрации сенсоров $1\cdot 10^{-5}$ M и последовательном увеличении концентрации тушителя 0 M до $5\cdot 10^{-3}$ M

Рисунок 6 - Тушение флуоресценции **33**е при увеличении концентрации ТНТ (слева) и пикриновой кислоты (справа).

Рисунок 7 - Тушение флуоресценции **346** при увеличении концентрации ТНТ (слева) и пикриновой кислоты (справа).

Соед.	λ_{max}^{ABC} , HM	$\lambda_{max}^{\text{3M}}$, HM	$K_{SV}^{\Pi K}$	К _{SV}	K_{SV}^{THT}	Φ, %
336	263, 313пл, 339, 357	364, 381, 403пл	6025	1502	1757	21.3
33e	258, 302, 340, 356	359, 377, 394 ^{пл}	16157	2829	3480	21.3
34a	289, 318пл	379, 398	14461	2733	1994	20.7
346	200, 294, 323	475	8947	4039	2746	13.9
34в	193, 281, 325пл, 368	379, 396, 423 ^{пл}	10787	1368	1739	14.6
34г	207, 284, 328, 370	481	12130	2123	2560	21.6
40a	263, 330, 343, 361	389	12621	1560	1944	3.1
406	253, 329, 348, 368	381, 397, 421 ^{пл}	13452	1074	1438	55.3
40в	251, 332, 348, 368	377, 396, 418 ^{пл}	2924	407	440	39.0

Таблица 2 - Фотофизические свойства моноазатрифениленов

Квантовые выходы измерены относительно хининсульфата ($\Phi = 54.6$ % в 0.1н водном растворе H₂SO₄).

Координационные свойства лигандов

В рамках исследования были изучены координационные свойства полученных пиридилмоноазатрифениленов на примере соединений **336** и **346**. Так, были установлены константы Штерна-Фольмера для данных соединений в растворе ацетонитрила при добавлении катионов металлов Zn²⁺, Cd²⁺ и Eu²⁺ (Таблица 3).

Пиридилмоноазатрифенилен **336**, структура которого содержит только аннелированный фрагмент циклопентена, не показало существенных результатов при определении катионов указанных металлов: тушение флуоресценции наблюдалось лишь для Zn^{2+} с Ksv = 2809 M⁻¹. Введение же в структуру триметоксифенильных заместителей привело не только к отклику на Cd²⁺ и Eu²⁺, но и существенно повысило константу Штерна-Фольмера для катионов Zn²⁺: K_{sv} = 525830 M⁻¹.

Таблица 3 - Константы Штерна-Фольмера

Соед	$Ksv(Zn^{2+}), M^{-1}$	$Ksv(Cd^{2+}), M^{-1}$	$Ksv(Eu^{2+}), M^{-1}$
336	2809	-	-
346	525830	2820	3742

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Предложен новый синтетический подход к (3),4-диарил-1-(пиридин-2ил)изохинолинам в результате ароматизации соответствующих тетрагидроизохинолинов, образование которых из (5),6-диарил-3-(пиридин-2-ил)-1,2,4-триазинов было эффективно осуществлено в результате реакции аза-Дильса-Альдера с обратными электронными требованиями в условиях отсутствия растворителя.

2. Предложен эффективный подход к синтезу пиридилхинолинов, содержащих атомы фтора в составе хинолинового фрагмента и/или циклопентеновый фрагмент и изучены их фотофизические свойства. Аннелированный фрагмент циклопентена привел к длинноволновому смещению максимумов испускания, а введение атомов фтора привело к гипсохромному сдвигу.

3. Синтезированы неописанные ранее 6-арил-5-фенил-2,2'-бипиридины, содержащие остатки полиароматических аренов (пирен, фенантрен, трифенилен), в результате нуклеофильного замещения водорода в ряду 1,2,4-триазинов и последующей реакции аза-Дильса-Альдера.

4. Разработан удобный метод введения остатка арил-*транс*-стильбенов в положение C5 6-арил-3-(пиридил-2-ил)-1,2,4-триазинов с использованием в качестве нуклеофила в реакции S_NH литиевых солей арилацетиленов. Установлено, что в присутствии окислителя DDQ в результате нуклеофильного замещения водорода селективно образуется 6-арил-5-

(арилэтинил)-3-(пиридин-2-ил)-1,2,4-триазин. На основе полученных соединений были синтезированы соответствующие лиганды 2,2'-бипиридинового ряда.

5. Дополнен и значительно расширен потенциал метода получения 3-гетарил-6фенил-1,2,4-триазинов из гидразона изонитрозоацетофенона и иминоэфиров, полученных *in situ* из гетарилнитрилов. Метод позволил получить аналоги α-незамещенных-2,2'бипиридинов из легкодоступных реагентов.

6. Предложены 2-(пиридин-2методы синтеза неописанных ранее ил)азатрифениленов, 2,2'-бипиридина являющихся аналогами И изучены ИХ фотофизические свойства. Установлено, что увеличение системы сопряжения этих соединений в результате реакций кросс-сочетания по Сузуки BO фрагменте азатрифенилена, либо путем аннелирования дополнительных ароматических колец к фрагменту пиридина приводит к значительному длинноволновому смещению максимумов как поглощения, так и испускания, и в ряде случаев имеет место значительное увеличение квантового выхода люминесценции. Полученные результаты могут быть использованы для тонкой настройки фотофизических характеристик соединений данного ряда.

7. Установлено, что в присутствии нитроароматических соединений (пикриновая кислота, 2,4-ДНТ и ТНТ) происходит тушение люминесценции моноазатрифениленов в растворе ацетонитрила. Полученные соединения могут быть использованы в качестве сенсоров для визуального обнаружения нитроароматических соединений (ВВ). Кроме того, показана возможность использования подобных соединений в качестве флуоресцентных индикаторов на катионы Zn^{2+} благодаря эффективному тушению люминесценции сенсора в растворе ацетонитрила

Перспективы дальнейшей разработки темы заключается в выявлении из разработанных соединений или их структурных аналогов таких, способных изменять свои электро- и фотолюминесцентные свойства в присутствие различных анионов, катионов металлов или других нейтральных молекул. Перспективным направлением развития темы исследования является получение сенсоров на другие виды взрывчатых веществ, а также синтезированных соединений потенциальную исследование на биологическую Кроме дальнейшая разработка активность. того, новых методов синтеза гетероциклических структур без использования дорогостоящих катализаторов и реагентов также представляет интерес как источник получения неописанных соединений с перспективными как фотофизическими, так и терапевтическими свойствами.

Основное содержание работы изложено в следующих публикациях. Статьи в рецензируемых научных журналах, определенных ВАК:

Khasanov, A. F. A rational protocol for the synthesis of 1-(2-pyridyl)isoquinolines / D.
S. Kopchuk, I. S. Kovalev, A. F. Khasanov, G. V. Zyryanov, P. A. Slepukhin, V. L. Rusinov, O.
N. Chupakhin. // *Mend. Comm.* – 2013. – V. 23. – I. 3. – P. 142-144. (0.13 п.л./0.06 п.л.).

Хасанов, А.Ф. Получение пиридилзамёщенных моноазатрифениленов / Д. С. Копчук, Г. В. Зырянов, И. С. Ковалев, А. Ф. Хасанов, А. С. Медведевских, В. Л. Русинов, О. Н. Чупахин. // ХГС. – 2013. – №. 3. – С. 535-537. (0.13 п.л./0.06 п.л.).

3. Khasanov, A. F. The synthesis of polyarene-modified 5-phenyl-2,2'-bipyridines via the S_N^H methodology and aza-Diels-Alder reaction / I. S. Kovalev, D. S. Kopchuk, A.F. Khasanov, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin. // *Mend. Comm.*, – 2014. – V. 24. – I. 2. – P. 117-118. (0.08 п.л./0.04 п.л.).

4. Хасанов, А. Ф. (Бензо[*h*])хинолинилмоноазатрифенилены: синтез и фотофизические свойства / Д. С. Копчук, А. Ф. Хасанов, И. С. Ковалев, Г. А. Ким, И. Л. Никонов, Г. В. Зырянов, В. Л. Русинов, О. Н. Чупахин. // *ХГС.* – 2014. – № 6. – С. 936 - 942. (0.29 п.л./0.15 п.л.).

5. **Хасанов, А. Ф.** Расширение системы сопряжения пиридилмоно-азатрифениленов для настройки их фотофизических свойств / Д. С. Копчук, **А. Ф. Хасанов**, И. С. Ковалев, Г. В. Зырянов, Г. А. Ким, И. Л. Никонов, В. Л. Русинов, О. Н. Чупахин. // *ХГС.* – 2014. – № 6. – С. 943 - 952. (0.42 п.л./0.21 п.л.).

 Хасанов, А. Ф. Функционализированные 2-(5-арилпиридин-2-ил)хинолины: синтез и фотофизические свойства / Д. С. Копчук, А. Ф. Хасанов, Г. А. Ким, Э. В. Носова, Г. В. Зырянов, И. С. Ковалев, В. Л. Русинов, О. Н. Чупахин // Изв. АН, Сер.хим. – 2015. – №4. – С.872-877. (0.25 п.л./0.12 п.л.).

7. Хасанов, А. Ф. Удобный синтез арилзамещенных 3-(пиразин-2-ил)- и 3-(пиримидин-2-ил)-1,2,4-триазинов / Д. С. Копчук, А. Ф. Хасанов, И. Л. Никонов, А. П. Криночкин, С. Сантра, И. С. Ковалев, Г. В. Зырянов, О. С. Тания, Д. Е. Павлюк, В. Л. Русинов, О. Н. Чупахин // Бутлеровские сообщения. – 2015. – Т. 42. – № 4. – С. 152-157. (0.25 п.л./0.12 п.л.).

8. **Khasanov, A. F.** Reaction of lithium 2-arylethynides with 6-aryl-3-(2-pyridyl)-1,2,4-triazines as an access to 6-aryl-5-arylvinyl-3-(2-pyridyl)-1,2,4-triazines // **A. F. Khasanov**, D. S. Kopchuk, I. S. Kovalev, O. S. Taniya, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin // *Mend*. *Comm.* – 2015. – V. 25. – I. 5. – P. 332-333. (0.08 п.л./0.04 п.л.).

9. **Khasanov, A. F.** Synthesis and characterizations of new cadmium complexes based on poly(aza)arene-annelated 2,2'-bipyridines / D. S. Kopchuk, P. A. Slepukhin, I. S. Kovalev, **A. F. Khasanov**, O. S. Taniya, O. V. Shabunina, G. V. Zyryanov, V. L. Rusinov, O. N. Chupakhin // *Polyhedron* – 2016. – V. 110. – P. 235-240. (0.25 п.л./0.12 п.л.).

Другие публикации:

10. **Хасанов, А. Ф.** Получение перспективных лигандов и люминесцентных биомаркеров на основе полиядерных азинов / **А. Ф. Хасанов**, И. Л. Никонов, Д. С. Копчук, Г. В. Зырянов, В. Л. Русинов, О. Н. Чупахин // Тезисы докладов IX Всероссийской

конференции «Химия и медицина» с молодежной научной школой по органической химии. – Уфа. – 2013. – С. 310-311. (0.08 п.л./0.04 п.л.).

11. Хасанов, А. Ф. Получение триазатрифениленовых катионов – перспективных хемосенсоров для нитроароматических соединений / Д. С. Копчук, И. Н. Егоров, Т. А. Цейтлер, А. Ф. Хасанов, И. С. Ковалев, Г. В. Зырянов // Тезисы докладов Кластера конференций по органической химии «Оргхим-2013». – Санкт-Петербург. – 2013. – С. 145-146. (0.08 п.л./0.04 п.л.).

Хасанов, А. Ф. Получение галогензамещенных пиридил-моноазатрифениленов / Д.
С. Копчук, А. Ф. Хасанов, И. С. Ковалев, Г. В. Зырянов // Тезисы докладов XVI молодежной школы-конференции по органической химии. – Пятигорск. – 2013. – С. 126. (0.04 п.л./0.02 п.л.).

Хасанов, А. Ф. Расширение системы сопряжения пиридилмоноазатрифениленов как метод настройки фотофизических свойств / А. Ф. Хасанов, Д. С. Копчук, Г. В. Зырянов, И. Л. Никонов, Г. А. Ким, И. С. Ковалев, Е. В. Осинников // Уральский научный форум «Современные проблемы органической химии». Сборник тезисов. – Екатеринбург. – 2014. – С. 235. (0.04 п.л./0.02 п.л.).

14. **Хасанов, А. Ф.** Получение 5-фенил-2,2'-бипиридинов, содержащих остатки полиядерных аренов – потенциальных сенсоров для обнаружения полинитроароматических соединений / Д. С. Копчук, И. С. Ковалев, Г. В. Зырянов, **А. Ф. Хасанов**, И. Л. Никонов, О. Н. Чупахин, В. Н. Чарушин. // Тезисы докладов XXVI международной Чугаевской конференции по координационной химии. – Казань. – 2014. – С. 262. (0.04 п.л./0.02 п.л.).

15. **Khasanov, A. F.** Straightforward synthesis of functionalized 5-phenyl-2,2'-bipyridines or their aza-analogues / **A. F. Khasanov**, D. S. Kopchuk, I. S. Kovalev, G. V. Zyryanov, O. N. Chupakhin // 1st European Young Chemists Meeting. Сборник тезисов. – Гимарайнш, Португалия. – 2016. – С. 96. (0.04 п.л./0.02 п.л.).

16. **Хасанов А. Ф**. Регулируемое введение арилэтинила или арилэтилена в ядро 1,2,4триазина с помощью методологии S_N^H и дальнейшее получение лигандов 2,2'бипиридинового ряда / **А. Ф. Хасанов**, Д. С. Копчук, Н. В. Чепчугов, А. П. Криночкин, И. С. Ковалев, Г. В. Зырянов, О. Н. Чупахин // XX Менделеевский съезд по общей и прикладной химии. Тезисы докладов. Т. 2b. – Екатеринбург. – 2016. – С. 155. (0.04 п.л./0.02 п.л.).

17. **Khasanov, A. F.** (Aza)-2,2'-bipyridines derived from hetaryl nitriles via «1,2,4-triazine» approach / **A. F. Khasanov**, A. P. Krinochkin, D. S. Kopchuk, S. Santra, I. S. Kovalev, G. V. Zyryanov, G. A. Kim, P. A. Slepukhin, O. N. Chupakhin // RSC-NOST Symposium on Organic & Biomolecular Chemistry. Сборник тезисов. – Лидс, Великобритания. – 2017. – С. 29. (0.04 п.л./0.02 п.л.).