На правах рукописи

Juny

Телегин Сергей Владимирович

ПОЛУЧЕНИЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИКРИСТАЛЛОВ И МОНОКРИСТАЛЛОВ ПЕРОВСКИТОПОДОБНЫХ СОЕДИНЕНИЙ EuBaC02-xO6-6

02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Екатеринбург – 2018

Работа выполнена на кафедре физической и неорганической химии Института естественных наук и математики ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель:	доктор химических наук, доцент Зуев Андрей Юрьевич			
Официальные оппоненты:	Митрофанов Валентин Яковлевич доктор физико-математических наук, ФГБУН Институт металлургии УрО РАН (г. Екатеринбург), ведущий научный сотрудник лаборатории статики и кинетики			
	Журавлев Виктор Дмитриевич кандидат химических наук, ФГБУН Институт химии твердого тела УрО РАН (г. Екатеринбург), заведующий лабораторией химии соединений редкоземельных элементов			
Ведущая организация:	ФГАОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (г. Нижний Новгород)			

Защита состоится 22 июня 2018 года в 13:00 на заседании диссертационного совета Д 212.285.23 на базе ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» (620000, Екатеринбург, пр. Ленина, 51, Зал диссертационных советов, комн. 248).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский университет имени первого Президента России федеральный Б.Н. Ельцина», http://lib.urfu.ru/mod/data/view.php?d=51&rid=278376

Автореферат разослан «___» 2018 г.

Ученый секретарь диссертационного совета, кандидат химических наук, доцент

Л.К. Неудачина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы

Сложнооксидные соединения со структурой перовскита LnMO₃ (Ln – редкоземельный элемент (P3Э), M – 3d-металл) формируют огромный класс веществ с уникальным сочетанием магнитных, электрических, каталитических и других свойств, благодаря которым они находят широкое применение в качестве многофункциональных материалов для устройств преобразования энергии, катализаторов и др. [1].

Среди этих соединений большой интерес вызывают двойные перовскиты с упорядочением по А-подрешетке LnBaM₂O_{6-δ} [2, 3]. Большая кислородная нестехиометрия, смешанная валентность 3d-металлов, эффект упорядочения/разупорядочения приводят к наличию у рассматриваемых соединений уникального комплекса физико-химических свойств. Эти соединения обладают высокой кислород-ионной проводимостью в среднетемпературной области (773 – 973 K) [4]. Кроме того, в двойных перовскитах наблюдаются переходы антиферромагнетик-ферромагнетик, изолятор-металл и структурный переход, связанный с изменением пространственной симметрии *Pmmm – P4/mmm* [3, 5].

Зd-переходные металлы не только могут находиться в разных степенях окисления, но и принимать различные спиновые состояния [6]. Например, ионы Co^{2+} могут находиться в низкоспиновом (HC) состоянии с электронной конфигурацией $t_{2g}{}^6e_g{}^1$ (S = $\frac{1}{2}$) или в высокоспиновом (BC) состоянии с электронной конфигурацией $t_{2g}{}^5e_g{}^2$ (S = $\frac{3}{2}$); ионы Co^{4+} – или в HC состоянии ($t_{2g}{}^5e_g{}^0$ (S = $\frac{1}{2}$)), или в промежуточноспиновом (ПС) состоянии ($t_{2g}{}^4e_g{}^1$ (S = $\frac{3}{2}$)), или в BC состоянии ($t_{2g}{}^3e_g{}^2$ (S = $\frac{5}{2}$)). Важной особенностью перовскитоподобных кобальтитов является возможность сосуществования всех трех спиновых состояний иона Co^{3+} : HC $t_{2g}{}^6e_g{}^0$ (S = 0), ПС $t_{2g}{}^5e_g{}^1$ (S = 1) и BC $t_{2g}{}^4e_g{}^2$ (S = 2). Переходы от одного спинового состояния к другому могут быть вызваны изменениями температуры, химического состава, давления или приложением магнитного поля. Кроме того, значительное влияние на спиновое состояние и онов кобальта оказывают катионные и анионные дефекты.

Несмотря на большое количество работ, посвящённых изучению физико-химических свойств двойных перовскитов, практически отсутствуют данные об изучении влияния катионных и связанных с ними анионных дефектов на строение и физико-химические свойства двойных слоистых кобальтитов с перовскитоподобной структурой. Подобные исследования позволят расширить базу новых функциональных материалов, которые обладают высокой смешанной электронной и кислород-ионной проводимостью, необходимой при создании мембран для получения сверхчистого кислорода, а также катодов твердооксидных топливных элементов (ТОТЭ). Необходимость и актуальность таких исследований подтверждается включением темы исследований в Госзадание ФАНО России (Проект № 01201463326, шифр «Спин»), НИИР УрО РАН (Проект № 15-9-2-4) и в поддержке РФФИ (Проект № 14-02-00432).

Цели и задачи работы

Настоящая работа направлена на исследование влияния катионных и анионных дефектов на кристаллическую структуру и физико-химические свойства поли- и монокристаллов кобальтитов EuBaCo_{2-x}O_{6- δ} со структурой двойного перовскита. Целью работы было определение кислородной нестехиометрии, установление реальной (кристаллической и дефектной) структуры EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10) и установление ее

влияния на электротранспортные и магнитные свойства поли- и монокристаллов исследуемых двойных перовскитов.

Поставленная цель достигалась решением следующих конкретных задач:

- 1. Определить область гомогенности по кобальту сложных оксидов EuBaCo_{2-x}O_{6-δ} на воздухе и установить влияние дефицита кобальта на область их термодинамической устойчивости.
- 2. Синтезировать однофазные поликристаллические кобальтиты EuBaCo_{2-x}O_{6- δ} (x = 0 0.10) и установить их кристаллическую структуру в зависимости от температуры на воздухе.
- 3. Определить оптимальные условия выращивания монокристаллов двойных перовскитов EuBaCo_{2-x}O_{6-δ} методом бестигельной зонной плавки.
- 4. Вырастить качественные монокристаллы EuBaCo_{2-x}O_{6-δ} методом бестигельной зонной плавки с радиационным (световым) нагревом и определить их пространственную ориентацию.
- 5. Методом термогравиметрического анализа определить зависимость содержания кислорода в оксидах EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) от температуры и парциального давления кислорода в интервалах 873 < T, K < 1323 и $10^{-4.5} < p_{O_2}$, атм < $10^{-0.68}$, соответственно.
- 6. Выполнить модельный анализ дефектной структуры двойных перовскитов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10) и вывести теоретические уравнения lg(p_{O_2} /атм) = $f(\delta, T)$. Провести верификацию предложенной модели минимизацией отклонений теоретических зависимостей от экспериментальных данных по кислородной нестехиометрии с установлением температурных зависимостей констант равновесия реакций дефектообразования.
- 7. Измерить общую электропроводность и термо-ЭДС поликристаллов сложных оксидов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) как функцию температуры и парциального давления кислорода в интервалах 273 1223 К и $10^{-6} < p_{0_2}$, атм $< 10^{-0.68}$, соответственно, а также общую электропроводность монокристалла EuBaCo_{1.90}O_{6-δ} как функцию температуры на воздухе в двух взаимоперпендикулярных плоскостях (I||[120]) и (I||[001]) и определить влияние на нее анизотропии.
- 8. Выполнить совместный анализ данных по дефектной структуре, электропроводности и коэффициенту термо-ЭДС двойных перовскитов EuBaCo_{2-x}O_{6-δ} (*x* = 0, 0.1). Установить природу доминирующих носителей заряда. Рассчитать основные параметры переноса: подвижность носителей заряда и энергию активации их переноса.
- 9. Установить зависимость обратной магнитной восприимчивости двойных перовскитов поликристаллов EuBaCo_{2.00}O_{5.50} и EuBaCo_{1.90}O_{5.35} в интервале температур 300 − 625 К и в слабом магнитном поле H = 2.65 кЭ.

<u>Научная новизна</u>

- 1. Впервые установлено, что дефицит кобальта в однофазном EuBaCo_{2-x}O_{6- δ} не превышает на воздухе *x* = 0.10, при этом понижает устойчивость фазы двойного перовскита относительно восстановления и температуру структурного перехода *Pmmm P4/mmm*, а также ведет к изотропному расширению элементарной ячейки EuBaCo_{2-x}O_{6- δ}.
- 2. Впервые определены оптимальные условия выращивания монокристаллов сложных оксидов EuBaCo_{2-x}O_{6-δ} методом бестигельной зонной плавки с радиационным нагревом

(атмосфера роста, скорость, состав исходной заготовки), в которых выращен качественный монокристалл EuBaCo_{2-x}O_{6-δ}.

- 3. Впервые обнаружена сильная анизотропия электропроводности монокристалла EuBaCo_{1.90}O_{6-δ} в двух взаимоперпендикулярных направлениях (I||[120]) и (I||[001]) с максимумом при 368 К.
- 4. Впервые измерены функциональные зависимости кислородной нестехиометрии δ от температуры и парциального давления кислорода в интервалах 873 < T, K < 1323 и $10^{-4.5} < p_{O_2}$, атм < $10^{-0.68}$, соответственно, и построена равновесная p_{O_2} -T- δ диаграмма для двойных перовскитов EuBaCo_{2-x}O_{6- δ} (x = 0, 0.10).
- 5. Впервые предложена модель дефектной структуры двойных перовскитов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10), хорошо согласующаяся с экспериментальными данными $\delta = f(p_{0_2}, T)$.
- Впервые установлены зависимости общей электропроводности и коэффициента термо-ЭДС двойных перовскитов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) от температуры и парциального давления кислорода в интервалах 1073 < T, K < 1223 и 10⁻⁶ < p₀₂, атм < 10^{-0.68}.
- 7. Впервые выполнен совместный анализ данных по дефектной структуре, электропроводности и термо-ЭДС двойных перовскитов EuBaCo_{2-x}O_{6-δ} (*x* = 0, 0.10) и определены подвижности и парциальные проводимости электронов и дырок в зависимости от температуры и парциального давления кислорода.
- Впервые измерена зависимость обратной магнитной восприимчивости поликристаллов сложных оксидов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) в интервале температур 300 – 625 K и показано, что дефицит кобальта практически не влияет на спиновые состояния ионов Co³⁺ в диапазоне температур 470 < T, K < 625.

Теоретическая и практическая значимость работы

Оптимальные условия выращивания монокристаллов двойных кобальтитов EuBaCo_{2-x}O_{6-δ} методом бестигельной зонной плавки, определенные в работе, делают возможным получение качественных монокристаллов других двойных перовскитов LnBaCo_{2-x}O_{6-δ}, где Ln – редкоземельный элемент.

Установленное влияние вакансий кобальта на электротранспортные свойства сложных оксидов EuBaCo_{2-x}O_{6-δ}, как катодных материалов СТ ТОТЭ, свидетельствует о необходимости точного контроля элементного состава родственных материалов.

Результаты модельного анализа дефектной структуры EuBaCo_{2-x}O_{6-δ} являются теоретической основой исследования разупорядочения кобальт-дефицитных двойных перовскитов LnBaCo_{2-x}O_{6-δ}, где Ln – редкоземельный элемент, и его влияния на целевые свойства этих материалов.

Представленные в работе соотношения спиновых состояний ионов кобальта двойных перовскитов EuBaCo_{2.00}O_{5.50} и EuBaCo_{1.90}O_{5.35} в интервале температур 470 – 625 К являются справочным материалом.

Методология и методы исследования

1. Синтез поликристаллических образцов исследуемых сложных оксидов со структурой двойных перовскитов был выполнен стандартным керамическим методом и методом Печини.

- 2. Выращивание монокристаллов проводили методом бестигельной зонной плавки с радиационным (световым) нагревом на установке УРН-2-3П (выполнено в лаборатории магнитных полупроводников ИФМ УрО РАН совместно с канд. физ.-мат. наук, с.н.с. С.В. Наумовым).
- 3. Фазовые равновесия и кристаллографические характеристики исследовали методом рентгеновской дифракции, используя дифрактометры ДРОН-2.0 и ДРОН-3 с высокотемпературной приставкой.
- 4. Элементный анализ и исследование микроструктуры проводили с помощью сканирующего (растрового) электронного микроскопа Inspect F (Thermo Fisher Scientific) с энергодисперсионным рентгеновским спектрометром EDAX при ускоряющем напряжении 25 кВ (выполнено в лаборатории электрических явлений ИФМ УрО РАН совместно с канд. хим. наук, с.н.с. Е.И. Патраковым).
- 5. Кислородная нестехиометрия была исследована методом термогравиметрии на термовесах STA 409 PC Luxx (NETZSCH GmgH, Германия). Парциальное давление кислорода задавали и контролировали в ячейке оригинальной конструкции под управлением регулятора Zirconia-M.
- 6. Измерение общей электропроводности и коэффициента термо-ЭДС осуществляли одновременно, используя 4-х контактный метод на постоянном токе. Парциальное давление кислорода задавали и контролировали в ячейке оригинальной конструкции под управлением регулятора Zirconia-M.
- 7. Измерения обратной магнитной восприимчивости проводили на магнитных весах Фарадея (выполнено в лаборатории магнитных полупроводников ИФМ УрО РАН совместно с канд. физ.-мат. наук, с.н.с. Т.И. Арбузовой).

Положения, выносимые на защиту

- 1. Сведения о границах существования однофазного двойного перовскита EuBaCo_{2-x}O_{6-δ}.
- 2. Зависимости параметров элементарной ячейки двойных перовскитов EuBaCo_{2-x}O_{6-δ} от содержания кобальта.
- 3. Сведения о фазовых превращениях в процессе плавления-кристаллизации сложных оксидов EuBaCo_{2-x}O_{6-δ}.
- 4. Оптимальные условия для выращивания монокристаллов сложных оксидов EuBaCo_{2-x}O₆₋₆ методом бестигельной зонной плавки с радиационным (световым) нагревом.
- 5. Сведения о самопроизвольном направлении кристаллизации сложных оксидов EuBaCo_{2-x}O_{6-δ} и данные рентгеновской дифракции и лауэграмм, с плоскостей перпендикулярной и параллельной направлению роста.
- 6. Функциональные зависимости абсолютной кислородной нестехиометрии δ сложных оксидов EuBaCo_{2-x}O_{6-δ} (*x* = 0, 0.10) от температуры и парциального давления кислорода.
- 7. Результаты синхронного термического анализа сложных оксидов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10) на воздухе.
- 8. Теоретическая модель дефектной структуры и результаты ее верификации с привлечением экспериментальных данных $\delta = f(p_{0_2}, T)$ для сложных оксидов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10).

- Зависимости общей электропроводности и коэффициентов термо-ЭДС поли- и монокристаллов сложных оксидов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) в интервале температур 323 − 1223 К.
- Функциональные зависимости общей электропроводности и коэффициентов термо-ЭДС сложных оксидов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) от температуры и парциального давления кислорода.
- 11. Результаты совместного анализа данных по дефектной структуре, электропроводности и коэффициентов термо-ЭДС двойных перовскитов EuBaCo_{2-x}O_{6-δ} (*x* = 0, 0.10).
- 12. Зависимость обратной магнитной восприимчивости поликристаллов двойных перовскитов EuBaCo_{2-x}O_{6-δ} (*x* = 0, 0.10) в интервале температур 300-625 К.
- 13. Спиновое состояние ионов кобальта в поликристаллах двойных перовскитов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10) в диапазоне температур 470 625 К.

<u>Личный вклад автора</u>

Все результаты, приведенные в диссертации, получены самим автором или при его непосредственном участии. Обсуждение полученных результатов и написание статей проводилось совместно с научным руководителем и соавторами работ. Ряд исследований выполнен совместно с к.ф.-м.н. Арбузвой Т.И., к.ф.-м.н. Наумовым С.В., к.х.н. Патраковым Е.И. Институт физики металлов УрО РАН (г. Екатеринбург) и к.х.н. Резницких О.Г. Институт химии твердого тела УрО РАН (г. Екатеринбург).

Степень достоверности и апробация результатов

Достоверность результатов работы определяется комплексным подходом к выбору методов исследования; всесторонним анализом полученных экспериментальных результатов; апробацией работы на международных и всероссийских конференциях, публикациями в высокорейтинговых зарубежных журналах. Основные результаты работы доложены на: X- XI Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физикохимия и технология неорганических материалов», Москва, 2013-2014; 11 Conference on Solid State Chemistry (SSC-2014), Trencianske Teplice, Slovakia, 2014; XV Всероссийская школасеминар по проблемам физики конденсированного состояния вещества (СПФКС-15), Екатеринбург, 2014; XX International Conference on Chemical Thermodynamics (RCCT-2015), Нижний Новгород, 2015; 15 European conference on solid state chemistry (ECSSC-15), Vienna, Austria, 2015; VI Euro-Asian Symp. «Trends in Magnetism» (EASTMAG-2016), Krasnovarsk, 2016; XX Менделеевский съезд по общей и прикладной химии (XX Mendeleev Congress on General and Applied Chemistry), Екатеринбург, 2016; 12th Conference on Solid State Chemistry (SSC 2016), Prague, Czech Republic, 2016; XXII Всероссийская конференция с международным участием «Рентгеновские и электронные спектры и химическая связь» (РЭСХС-22), Владивосток, 2016; Всероссийская конференция «Химия твердого тела и функциональные материалы – 2016», XI семинар «Термодинамика и материаловедение», Екатеринбург, 2016.

<u>Публикации</u>

По материалам диссертации опубликовано 4 статьи и 14 тезисов докладов на международных и всероссийских конференциях.

Структура и объем диссертации

Диссертационная работа состоит из введения, четырех глав, выводов и списка литературы. Материал изложен на 140 страницах, работа содержит 14 таблиц, 74 рисунка, список литературы – 161 наименование.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении приводится обоснование актуальности темы исследования, кратко описана степень ее разработанности, сформулированы основная цель и задачи диссертационной работы, ее научная новизна, теоретическая и практическая значимость полученных результатов, методология и методы диссертационного исследования, перечислены положения, выносимые на защиту.

В первой главе рассмотрены имеющиеся в литературе результаты исследований, касающиеся кристаллической структуры, фазовой устойчивости, дефектной структуры, кислородной нестехиометрии, электротранспортных, магнитных свойств и методов выращивания монокристаллов двойных перовскитов LnBaCo₂O_{6-δ} (Ln – P3Э).

Во второй главе на основе критического анализа литературных данных сформулирована цель работы и обозначены конкретные задачи для ее достижения.

В третьей главе описаны используемые в работе методики синтеза, аттестации и исследования, представлены характеристики исходных материалов и конструкции ячеек для измерения физико-химических свойств.

<u>Синтез поликристаллических образцов</u> EuBaCo_{2-x}O_{6- δ} (x = 0, 0.01, 0.05, 0.07, 0.10, 0.15) выполнен с помощью метода Печини, а EuBaCo_{2-x}O_{6- δ} (x = 0, 0.05, 0.15) – методом твердофазного взаимодействия. Синтез проводили ступенчато в интервале 1173 – 1423 К (с шагом 50 К) на воздухе с промежуточными перетираниями в яшмовой ступке в среде этанола.

<u>Синтез монокристаллов</u> EuBaCo_{2-x}O_{6- δ} (x = 0.10) выполнен методом бестигельной зонной плавки с радиационным (световым) нагревом.

<u>Рентгенографические исследования</u> проведены при комнатной температуре на рентгеновском дифрактометре ДРОН-2.0 в Сг*Ка*-излучении ($\lambda = 2.29092$ Å). Высокотемпературный рентгенофазовый анализ проведен «in situ» на рентгеновском дифрактометре ДРОН-3 с высокотемпературной приставкой в Си*Ка*-излучении ($\lambda = 1.5418$ Å). Идентификацию фазового состава и уточнение параметров кристаллической структуры исследуемых образцов проводили методом Ле-Бейла (profile-matching mode) в программной среде «Fullprof».

Элементный состав металлических компонентов поликристаллических образцов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.01, 0.05, 0.07, 0.10, 0.15) и монокристалла EuBaCo_{2-x}O_{6- δ} (*x* = 0.1) определен рентгеноспектральным микроанализом с помощью сканирующего (растрового) электронного микроскопа Inspect F (Thermo Fisher Scientific, США) с автоэмиссионным катодом Шоттки и с энергодисперсионным рентгеновским спектрометром EDAX при ускоряющем напряжении 25 кВ.

<u>Абсолютное содержание кислорода</u> поликристаллических образцов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10) определено посредством восстановления образцов в токе водорода в термогравиметрической установке STA 409 PC (Netzsch, Германия).

<u>Относительная кислородная нестехиометрия</u> поликристаллических образцов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10) определена в термогравиметрической установке STA 409 PC (Netzsch, Германия).

<u>Синхронный термический анализ</u> поликристаллических образцов EuBaCo_{2-x}O_{6- δ} (x = 0, 0.10) выполнен в установке STA 409 PC (Netzsch, Германия) со скоростью 5 К/мин в температурном интервале 298 – 1373 К в потоке воздуха.

<u>Общая электропроводность</u> измерена на монокристалле EuBaCo_{2-x}O_{6-δ} (x = 0.10) в двух взаимоперпендикулярных направлениях (I||[120]) и (I||[001]) и на поликристаллических спеченных образцах EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) четырехконтактным методом на постоянном токе в интервале 298 – 1223 К на воздухе. Измерения при пониженных парциальных давлениях кислорода проводили в интервале давлений $10^{-6} < p_{O_2}$, атм $< 10^{-0.68}$ и температур 1073 < T, K < 1223.

<u>Коэффициенты термо-ЭДС (Зеебека)</u> измерены одновременно с электропроводностью при температурном градиенте вдоль образца 10 – 15 К, полученные данные корректировали на значения коэффициентов термо-ЭДС платиновых контактов.

<u>Магнитная восприимчивость</u> поликристаллических образцов EuBaCo_{2.00}O_{5.50} и EuBaCo_{1.90}O_{5.35} измерена на магнитных весах Фарадея в интервале температур 300 - 625 К и в слабом магнитном поле H = 2.65 кЭ.

В четвертой главе приведены и проанализированы основные результаты синтеза поликристаллических (EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.01, 0.05, 0.07, 0.10, 0.15)) и монокристаллических двойных перовскитов (EuBaCo_{2-x}O_{6- δ} (*x* = 0.10)) и исследования фазовых переходов, дефектной структуры, электротранспортных и магнитных свойств двойных перовскитов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10).

Кристаллографические характеристики и химический состав двойных перовскитов EuBaCo_{2-x}O_{6-δ} (x = 0 – 0.15)

Рентгеновские дифрактограммы поликристаллических образцов EuBaCo_{2-x}O_{6-δ} (x = 0 - 0.15) медленно охлажденных (100 К/ч) на воздухе проиндицированы в рамках орторомбической симметрии (пр. гр. *Рттт*). Методом РФА установлены границы области гомогенности в системе. Граница существования фазы двойного перовскита EuBaCo_{2-x}O_{6-δ} находится в интервале x = 0.10 - 0.15. Составы с $x \le 0.10$ являются однофазными, а образец с x = 0.15 содержит следы второй фазы – оксида европия. Параметры элементарных ячеек сложных оксидов EuBaCo_{2-x}O_{6-δ} (x = 0 - 0.10), уточненные бесструктурным методом Ле-Бейла, представлены в таблице 1.

Состав	a, Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³
EuBaCo _{2.00} O _{6-δ}	3.882(0)	7.827(1)	7.543(8)	229.22
EuBaCo _{1.99} O _{6-δ}	3.882(4)	7.826(9)	7.544(3)	229.25
EuBaCo _{1.95} O _{6-δ}	3.882(9)	7.829(0)	7.547(7)	229.45
EuBaCo _{1.93} O _{6-δ}	3.884(8)	7.831(4)	7.551(4)	229.74
EuBaCo _{1.90} O _{6-δ}	3.885(1)	7.833(1)	7.551(3)	229.81

Таблица 1 – Параметры элементарных ячеек EuBaCo_{2-x}O_{6-δ}

Видно, что увеличение концентрации вакансий кобальта ведет к изотропному расширению элементарной ячейки двойного перовскита EuBaCo_{2-x}O₆₋₈. Относительное изменение параметров элементарной ячейки вдоль трех кристаллографических направлений

имеет близкие значения: (0.9±0.1) % на 1 моль вакансий кобальта в 1 моль двойного кобальтита.

Выращивание монокристаллов EuBaCo_{2-x}O_{6-δ} методом бестигельной зонной плавки: оптимальные условия, пространственная ориентация

Сложные оксиды LnBaCo₂O_{6-δ} характеризуются инконгруэнтным плавлением, поэтому ключевым фактором для получения качественных монокристаллов является определение оптимальных условий. Из поликристаллической заготовки состава EuBaCo_{2.00}O_{6-δ} в воздушной атмосфере со скоростью роста 5 мм/ч – выращен кристалл состава EuBaCo_{1.90}O_{6-δ}. Кристалл EuBaCo_{1.90}O_{6-δ} обладает ровной поверхностью самопроизвольного скола. Трещины, видимые на рисунке 1, вызваны структурным фазовым переходом *P4/mmm – Pmmm*, происходящим в процесс охлаждения выращенного кристалла.

Направление роста кристалла EuBaCo_{1.90}O_{6-δ} определено путем индицирования дифрактограмм, снятых с плоскостей, перпендикулярной и параллельной направлению роста. Направление роста кристалла соответствует кристаллографическому направлению [120]. Продольный скол, сделанный по самопроизвольно образовавшимся трещинам, соответствует направлению [001]. Лауэграмма (см. рисунок 2), полученная с продольного направления [001] кристалла EuBaCo_{1.90}O_{6-δ}, обладает четкими рефлексами, что говорит о хорошем качестве выращенного кристалла и отсутствии эффекта двойникования кристалла.

Рисунок 1 – Изображение поверхности излома кристалла, полученное в режиме упругоотраженных электронов

Рисунок 2 – Лауэграмма продольного сечения кристалла EuBaCo_{1.90}O_{6-δ}

Кислородная нестехиометрия и фазовые переходы двойных перовскитов EuBaCo_{2-x}O_{6- δ} (x = 0, 0.10)

Структурный фазовый переход, заключающийся в изменении орторомбической (пр. гр. *Ртмт*) симметрии решетки на тетрагональную (пр. гр. *Р4/тт*), обусловлен разупорядочением строго чередующихся заполненных и вакантных позиций кислорода в плоскостях, содержащих ионы редкоземельного элемента.

На рисунке 3 представлены фрагменты ДСК-кривых в температурной области 693 – 800 К, полученные при нагреве в потоке воздуха. Температура начала перехода при нагревании для двойного перовскита EuBaCo_{2.00}O_{6-δ} составляет 739 К, для EuBaCo_{1.90}O_{6-δ} – 728 К.

Рисунок 3 – Фрагменты ДСК-кривых (нагрев) EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*) в температурной области 673 – 800 К. Стрелками обозначены температуры начала переходов. Показано разделение теплового эффекта в EuBaCo_{1.90}O_{6-δ} на 75 % и 25 %

ЕиВаСо_{1.90}О_{6-δ} составляет 5 %.

На кривой ДСК, записанной для EuBaCo_{1.90}O_{6-δ}, пик, соответствующий структурному переходу Рттт-Р4/тт, превращается в триплет с максимумами при 734, 739 и 753 К. При этом на первые два пика приходится 75 % теплового эффекта фазового перехода, а на третий, соответственно, 25 % (см. рисунок 3). Суммарный тепловой эффект фазового перехода Рттт – Р4/ттт для двойного перовскита состава EuBaCo_{1.90}O₆₋₈ меньше теплового эффекта фазового перехода для ЕиВаСо_{2.00}О_{6-б} на ~6 %, что выходит за пределы погрешности определяемой величины. Полученное значение теплового эффекта понижения сопоставимо с количеством кобальтовых вакансий, содержание которых в образце

Таким образом, одна вакансия кобальта оказывает существенное влияние на ближайшее окружение. Об этом свидетельствуют образование триплета и соотношение площадей ДСК пиков для образца EuBaCo_{1.90}O_{5.35}.

ТГ-метод позволяет определить, как абсолютную величину δ, так и относительное изменение Δδ. Восстановлением образцов в потоке водорода в ТГ-установке было определено, что величина абсолютной кислородной нестехиометрии δ сложных оксидов EuBaCo_{2.00}O_{6-δ} и EuBaCo_{1.90}O_{6-δ}, медленно (100 К/ч) охлажденных от температуры синтеза до комнатной температуры на воздухе, составляет 0.50±0.02 и 0.65±0.02 соответственно. Таким образом, средняя степень окисления кобальта в этих двойных перовскитах сохраняется равной +3.0, а наличие вакансий кобальта в EuBaCo_{1.90}O_{5.35} приводит к пропорциональному образованию дополнительных вакансий кислорода по сравнению с EuBaCo_{2.00}O_{5.50} в соотношении: $V_{Co}^{\prime\prime\prime}: V_{0}^{\bullet\bullet} = 2:3$. Относительное изменение δ двойных перовскитов EuBaCo_{2-x}O_{6-δ} исследовано в зависимости от парциального давления кислорода в интервале температур 873 – 1323 К (см. рисунок 4).

Рисунок 4 – Содержание кислорода в EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*) в зависимости от парциального давления кислорода в интервале температур 873 – 1273 К

Парциальные молярные энтропия Δh_0 и энтропия Δs_0 выделения кислорода из решетки EuBaCo_{2-x}O_{6-δ}, рассчитанные из угловых коэффициентов линейных зависимостей $\ln(p_{O_2}) = f\left(\frac{1}{T}\right)_{\delta}$ и $T \cdot \ln(p_{O_2}) = f(T)_{\delta}$, соответственно, приведены на рисунке 5.

Рисунок 5 – Парциальные молярные энтальпия и энтропия выделения кислорода из решетки EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*) в зависимости от δ

Резкий и значительный рост зависимостей $\Delta h_0 = f(\delta)$ и $\Delta s_0 = f(\delta)$, сопровождаемый их перегибом при $\delta = 1$, полностью согласуется с изменением поведения зависимостей $\delta = f(p_{O_2})$, представленных на рисунке 4.

Анализ дефектной структуры двойных перовскитов EuBaCo_{2-x}O_{6- δ} (x = 0, 0.10)

Дефектная структура двойных перовскитов EuBaCo_{2-x}O_{6-δ} проанализирована в рамках квазихимического подхода с использованием системы точечных дефектов в номенклатуре Крегера-Винка. В качестве кристалла сравнения использовали двойной перовскит состава EuBaCo₂O₆. В таком случае можно записать следующие структурные и точечные дефекты: Eu_{Eu}^{\times} - ионы Eu в регулярных позициях; Ba'_{Eu} - ионы бария в подрешётке РЗЭ; Co_{Co}^{\times} - ионы Co в степени окисления +2 (электрон, локализованный на кобальтовом узле); Co_{Co}^{\times} - ионы Co в степени окисления +4 (электронная дырка, локализованная на кобальтовом узле); O_{O}^{\times} - ионы кислорода в регулярной позиции; $V_{O}^{\bullet\bullet}$ - двукратно ионизированные вакансии кислорода.

Для двойных перовскитов EuBaCo_{2-x}O_{6-δ} в рамках рассматриваемой модели дефектной структуры можно записать следующие квазихимические реакции образования точечных дефектов:

1. Обмен кислородом с газовой фазой, сопровождаемый изменением степени окисления кобальта:

$$O_{O}^{\times} + 2Co_{CO}^{\bullet} = 2Co_{CO}^{\times} + V_{O}^{\bullet\bullet} + \frac{1}{2}O_{2}, \qquad K_{1} = \frac{p_{O_{2}}^{1/2}[V_{O}^{\bullet\bullet}][Co_{CO}^{\times}]^{2}}{[O_{O}^{\bullet}][Co_{CO}^{\bullet}]^{2}}.$$
 (1)

2. Реакция диспропорционирования кобальта в результате переноса электрона между соседними ионами Co (*x* = 0, 0.10):

$$(2-x)Co_{Co}^{\times} = Co_{Co}' + Co_{Co}^{\bullet}, \qquad K_2 = \frac{[Co_{Co}'][Co_{Co}^{\bullet}]}{[Co_{Co}^{\times}]^{(2-x)}}.$$
(2)

3. Образование кислородных вакансий в слоях, содержащих редкоземельный элемент можно описать через образование кластеров (V₀^{••} − Eu_{Eu})^{••}:

$$V_0^{\bullet\bullet} + E u_{Eu}^{\times} \Leftrightarrow (V_0^{\bullet\bullet} - E u_{Eu}^{\times})^{\bullet\bullet}, \qquad K_3 = \frac{[(V_0^{\bullet\bullet} - E u_{Eu}^{\times})^{\bullet\bullet}]}{[V_0^{\bullet\bullet}][E u_{Eu}^{\times}]}.$$
(3)

Поскольку кислородная нестехиометрия двойных перовскитов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) исследована в относительно узком интервале температур 873 – 1323 К, энтальпии реакций образования дефектов в этом температурном интервале можно считать практически постоянными. Это позволяет ввести в модельные уравнения температурные зависимости констант равновесия как $K_i = K_i^0 exp\left(-\frac{\Delta H_i^0}{RT}\right)$. Такой подход обладает тем преимуществом, что позволяет анализировать весь массив экспериментальных данных $\delta = f(p_{0_2}, T)$ одновременно, не прибегая к последовательному анализу отдельных изотерм.

С учетом этого, набор выражений констант квазихимических реакций (1) – (3) наряду с условиями электронейтральности и постоянства отношения количеств различных узлов кристаллической решетки записывается в виде следующей системы уравнений:

$$\begin{cases} K_{1} = \frac{p_{O_{2}}^{1/2}[V_{0}^{\bullet\bullet}][Co_{Co}^{x}]^{2}}{[O_{0}^{x}][Co_{Co}^{\bullet}]^{2}} = K_{1}^{0}exp\left(-\frac{\Delta H_{1}^{0}}{RT}\right) \\ K_{2} = \frac{[Co_{Co}^{\prime}][Co_{Co}^{\bullet}]^{2}}{[Co_{Co}^{\times}]^{2}} = K_{2}^{0}exp\left(-\frac{\Delta H_{2}^{0}}{RT}\right) \\ K_{3} = \frac{[(V_{0}^{\bullet\bullet} - Eu_{Eu}^{\times})^{\bullet\bullet}]}{[V_{0}^{\bullet\bullet}][Eu_{Eu}^{\times}]} = K_{3}^{0}exp\left(-\frac{\Delta H_{3}^{0}}{RT}\right). \quad (4) \\ [Co_{Co}^{\bullet}] + 2\delta = 1 + [Co_{Co}^{\prime}] \\ [Co_{Co}^{\times}] + [Co_{Co}^{\prime}] + [Co_{Co}^{\bullet}] = 2 - x \\ [V_{0}^{\bullet\bullet}] + [(V_{0}^{\bullet\bullet} - Eu_{Eu}^{\times})^{\bullet\bullet}] = \delta \\ [Eu_{Eu}^{\times}] + [(V_{0}^{\bullet\bullet} - Eu_{Eu}^{\times})^{\bullet\bullet}] = 1 \\ [O_{0}^{\bullet}] = 6 - \delta \end{cases}$$

Аналитическое решение системы (4) в виде $lg(p_{O_2}/\text{атм}) = f(\delta, T, \Delta H_i^0, ln \text{ K}_i^0),$ было верифицировано при помощи нелинейной регрессии методом МНК экспериментальной К $lg p_{O_2} = f(\delta, T),$ зависимости представленной рисунке 6. на Результаты верификации представлены также на рисунке 6, а полученные параметры ΔH_i^0 и $ln \ K_i^0$ приведены таблице в 2.

Предложенная модель удовлетворительно описывает массив экспериментальных точек, что подтверждается значениями корреляционных факторов R^2 , близкими к единице.

Рисунок 6 – Результаты модельного анализа EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*) согласно предложенной модели дефектной структуры. Точки – экспериментальные данные, поверхность – расчёт по модели

	a			б		
Реакция дефектообразования	ΔH_i ,	InK.0	\mathbf{R}^2	ΔH_i ,	InK.0	\mathbf{R}^2
	кДж/моль	m_{l}	Λ	кДж/моль	m_{l}	Λ
$O_0^x + 2Co_{Co}^{\bullet} = 2Co_{Co}^x + V_0^{\bullet \bullet} + \frac{1}{2}O_2$	186.43	8.19		171.74	8.22	
$2Co_{Co}^{\times} = Co_{Co}' + Co_{Co}^{\bullet}$	29.94	2.35	0.983	30.12	1.81	0.978
$V_O^{\bullet\bullet} + Eu_{Eu}^{\times} \Leftrightarrow (V_O^{\bullet\bullet} - Eu_{Eu}^{\times})^{\bullet\bullet}$	-162.67	-4.90		-144.74	-3.72	

Таблица 2 – Результаты модельного анализа дефектной структуры двойных перовскитов EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*)

Таким образом, влияние вакансий кобальта на дефектную структуру заключается в незначительном изменении энтальпий и энтропий квазихимических реакций (см. таблицу 2).

С помощью полученных параметров были рассчитаны концентрации всех типов точечных дефектов в зависимости от Т, δ и p_{O_2} , которые были использованы в дальнейшем для модельного анализа электротранспортных и магнитных свойств. Отметим, что дефицит кобальта приводит к смещению равновесия реакции диспропорционирования (2) в сторону Co_{Co}^{\times} для EuBaCo_{1.90}O_{6- δ} по сравнению с кобальт-стехиометричным двойным перовскитом.

Электротранспортные свойства двойных перовскитов EuBaCo2-xO6-8 (x = 0, 0.10)

Температурная зависимость общей электропроводности в потоке воздуха $(lg(p_{O_2}/aтM) = -0.68)$ измерена для поликристаллических образцов EuBaCo_{2-x}O_{6-δ} (*x*=0, 0.10) и для монокристалла EuBaCo_{1.90}O_{6-δ} при направлении тока вдоль взаимоперпендикулярных направлений (I||[120]) и (I||[001]).

В исследуемой температурной области сложные оксиды EuBaCo_{2-x}O_{6-δ} (x=0, 0.10) характеризуются двумя фазовыми переходами: изолятор-металл (И-М) и структурным фазовым переходом (см. рисунок 7 (а) и (б)). Переход И-М сопровождается изменением наклона зависимости $\sigma = f(T)$ вблизи 400 К и сменой типа проводимости с квазиметаллический. полупроводникового на Структурный фазовый переход ИЗ пространственной симметрии Рттт в Р4/тт в поликристаллических образцах EuBaCo_{2-x}O_{6-б} проявляется в виде ступенчатого уменьшения проводимости. Температура начала данного перехода зависит от содержания кобальта в EuBaCo_{2-x}O_{6-δ} и смещается от 733 К для x = 0 до 728 К для x = 0.10, что хорошо согласуется с соответствующими значениями, найденными методами ДСК и высокотемпературного «in situ» РФА.

Отношение значений электропроводности $\sigma(I||[120])/\sigma(I||[001])$ в монокристаллических образцах, показанное на рисунке 8, обладает максимумом вблизи температуры перехода И-М и достигает значения 67 при температуре 368 К, что говорит о большой анизотропии этого свойства. С ростом температуры анизотропия электропроводности асимптотически стремится к 5, что характеризует большую подвижность носителей заряда в направлении [120], чем [001] во всем исследованном интервале температур. В монокристалле (I||[120]) наблюдается растянутый структурный переход в диапазоне температур 698-748 К. Можно предположить, что к такому эффекту приводит более медленная диффузия кислорода в объеме монокристалла по сравнению с поликристаллическими образцами.

Барические зависимости общей электропроводности и коэффициента термо-ЭДС сложных оксидов EuBaCo_{2-x}O_{6- δ} представлены на рисунках 9 и 10 соответственно. Положительные значения коэффициента термо-ЭДС, наблюдаемые в интервале температур 1073 – 1223 К и всем исследованном диапазоне $lg p_{O_2}$, свидетельствуют о дырочной природе доминирующих носителей заряда в исследуемых образцах.

Рисунок 9 – Барические зависимости общей электропроводности поликристаллических образцов EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*)

Рисунок 10 – Барические зависимости коэффициента термо-ЭДС для поликристаллических образцов EuBaCo_{2.0}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*)

Уменьшение электропроводности при понижении парциального давления кислорода связано с уменьшением концентрации электронных дырок, локализующихся на ионах кобальта, по реакции (1). Скачкообразное падение проводимости и соответствующий рост термо-ЭДС (см. рисунки 9 и 10) свидетельствуют о разложении фазы двойного кобальтита. Таким образом, дефицит кобальта приводит к небольшому сужению области термодинамической стабильности фазы EuBaCo_{2-x}O_{6-δ}.

Модельный анализ электротранспортных свойств двойных перовскитов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10)

Экспериментальные зависимости $Q = (lg p_{O_2})_T$ были пересчитаны в зависимости $Q = f(\delta)_T$ и представлены на рисунке 11. Двойные перовскиты EuBaCo_{2-x}O_{6-δ} обладают смешанной электронной и кислород-ионной проводимостью. Однако, вклад ионной проводимости незначителен, число переноса ионов кислорода в таких соединениях не превышает 0.1%. Вкладом ионной составляющей можно пренебречь, и коэффициент термо-ЭДС может быть определен как:

$$Q = t_e Q_e + t_h Q_h = \frac{[Co'_{Co}] \cdot Q_e + L \cdot [Co_{Co}] \cdot Q_e}{[Co'_{Co}] + L \cdot [Co_{Co}]},$$
(5)

где $L = \frac{u_h}{u_e}$ – отношение подвижностей электронных дырок и электронов, Q_e и Q_h парциальные коэффициенты термо-ЭДС, которые могут быть оценены в рамках прыжкового механизма переноса локализованных зарядов. В случае локализованных электронных дефектов парциальные коэффициенты термо-ЭДС электронов и электронных дырок определяются соотношениями Хайкеса [7]:

$$Q_h = \frac{k}{|e|} \left[ln \left(\frac{[Co_{Co}^{\times}]}{[Co_{Co}^{\times}]} \right) + \frac{s_h^*}{k} \right] \qquad \text{M} \qquad Q_e = -\frac{k}{|e|} \left[ln \left(\frac{[Co_{Co}^{\times}]}{[Co_{Co}^{\times}]} \right) + \frac{s_e^*}{k} \right], \tag{6}$$

где k – постоянная Больцмана, e – элементарный заряд, S_h^* , S_e^* и $[Co_{Co}^*]$, $[Co_{Co}']$. энтропии переноса и концентрации электронных дырок и электронов, локализованных на ионах кобальта, соответственно.

Результаты верификации представлены на рисунке 11 и в таблице 3.

Рисунок 11 – Результаты модельного анализа коэффициента термо-ЭДС EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*). Точки – экспериментальные данные, линии – расчет по уравнению (5)

Соединение	Т, К	L	$S_h^* \cdot 10^6$, $3B/K$	$S_e^* \cdot 10^6$, эВ/К	R^2	
EuBaCo _{2.00} O ₆₋₈	1073	4.02±0.14	-15.94±1.52	104.00±1.51	0.991	
	1123	4.16±013	-11.23±1.32	111.65±1.32	0.987	
	1173	4.29±0.12	-6.81±1.19	118.65±1.20	0.983	
	1223	4.40±0.11	-2.66±1.07	125.06±1.08	0.978	
EuBaCo _{1.90} O6-ô	1073	5.29±0.23	-51.91±1.85	91.64±1.85	0.998	
	1123	5.50±0.21	-47.41±1.61	99.45±1.61	0.997	
	1173	5.68±0.19	-43.08±1.44	106.51±1.45	0.990	
	1223	5.84±0.18	-39.02±1.29	113.03±1.31	0.988	

Таблица 3 – Результаты модельного анализа коэффициента термо-ЭДС сложных оксидов EuBaCo_{2.00}O_{6-δ} и EuBaCo_{1.90}O_{6-δ}

Пренебрегая вкладом ионной составляющей, общую электропроводимость двойных перовскитов EuBaCo_{2-x}O_{6-δ} можно выразить следующим соотношением:

$$\sigma_{\text{общ.}} = \sigma_e + \sigma_h = \frac{a \cdot |e|}{V} (u_e [Co'_{Co}] + u_h [Co^*_{Co}]), \tag{7}$$

где a = 1 – число формульных единиц сложного оксида EuBaCo_{2-x}O_{6-δ} в элементарной ячейке кристалла; V – объем элементарной ячейки кристалла (2.2922•10⁻²² см³ для x = 0 и 2.2981•10⁻²² см³ и для x = 0.10); e – заряд электрона; σ_e и σ_h – парциальные проводимости электронных и дырочных носителей заряда; u_e и u_h – подвижности электронных и дырочных носителей заряда; $[Co'_{Co}]$ и $[Co^{•}_{Co}]$ - концентрации локализованных электронов и дырок соответственно.

Зная значения отношений подвижностей $\frac{u_h}{u_e} = L$ и зависимости $[Co'_{Co}] = f_1(\delta)$ и $[Co^{\bullet}_{Co}] = f_2(\delta)$, можно рассчитать подвижности электронных и дырочных дефектов, а также парциальные проводимости, согласно следующим выражениям:

$$u_{e} = \frac{\sigma_{o \text{Gu}, \cdot V}}{a \cdot |e| \cdot ([Co'_{Co}] + L \cdot [Co^{*}_{Co}])}, \quad u_{h} = u_{e} \cdot L,$$

$$\sigma_{e} = \frac{a \cdot |e| \cdot u_{e} \cdot [Co'_{Co}]}{V} \quad \text{M} \qquad \sigma_{h} = \frac{a \cdot |e| \cdot u_{h} \cdot [Co^{*}_{Co}]}{V},$$
(8)
(9)

где все обозначения соответствуют таковым для уравнения (7).

Результаты соответствующих расчетов подвижностей и парциальных проводимостей представлены на рисунках 12 и 13 соответственно.

Рисунок 12 – Подвижности локализованных электронов и дырок в двойном перовските EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*) в зависимости от кислородной нестехиометрии при различных температурах. Линии приведены для удобства восприятия

Рисунок 13 – Парциальные проводимости электронов и электронных дырок в двойных перовскитах EuBaCo_{2.00}O_{6-δ} (*a*) и EuBaCo_{1.90}O_{6-δ} (*б*) в зависимости от кислородной нестехиометрии при различных температурах. Линии приведены для удобства восприятия

Подвижности дырок и электронов имеют типичные значения для локализованных зарядов, двигающихся по прыжковому механизму, и при этом первые в несколько раз подвижнее вторых, что, по всей видимости, является характерным для электронного транспорта в двойных перовскитах.

На основании полученных результатов, можно сделать вывод о том, что вакансии ионов кобальта в сложных оксидах EuBaCo_{2-x}O_{6-δ} не приводят к кардинальным изменениям их электротранспортных свойств. Смещение равновесия реакции диспропорционирования кобальта на ионы Co^{3+} , вследствие введения вакансий кобальта в двойном перовските EuBaCo_{1.90}O_{6-δ}, приводит к снижению парциальных проводимостей электронов и электронных дырок на ~15 % по сравнению с EuBaCo₂O_{6-δ}. Дефицит кобальта приводит к такому же понижению парциальных проводимостей электронных носителей заряда, что и для общей электропроводности EuBaCo_{2.00}O_{6-δ}, как было отмечено ранее (см. рисунок 7).

Магнитный свойства двойных перовскитов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10)

С помощью экстраполяции результатов модельного анализа дефектной структуры двойных перовскитах EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.1) выполнена оценка электронного равновесия и

рассчитаны доли ионов кобальта в различных степенях окисления для интервала температур $470 \le T$, K ≤ 625 , который соответствует парамагнитному поведению обратной магнитной восприимчивости. В парамагнитной области, в которой магнитные ионы не взаимодействуют друг с другом, температурные зависимости обратной восприимчивости имеют линейный вид и описываются законом Кюри-Вейса [8]:

$$\chi = \frac{c}{T-\theta} = \frac{N_A \mu_{eff}^2 \mu_B^2}{3k(T-\theta)},\tag{10}$$

где θ - асимптотическая температура Кюри, N_A – число Авогадро (6.022*10²³ моль⁻¹), $\mu_{\rm eff}$ – эффективный магнитный момент, μ_B – магнетон Бора, k – постоянная Больцмана, C – постоянная Кюри – Вейса, которая определяется согласно следующей формуле:

$$C = \frac{(T_1 - T_2)M}{\chi_1^{-1} - \chi_2^{-1}},\tag{11}$$

где M – молярная масса, χ_1 и χ_2 – обратная магнитная восприимчивость при температурах T_1 и T_2 , соответственно.

Закон Кюри – Вейса позволяет определить экспериментальные значения эффективного магнитного момента исследуемых соединений.

С учетом того, что при T > T_{И-M} ионам Co²⁺ более характерно BC состояние с электронной конфигурацией $t_{2g}{}^5e_g{}^2$ (S = $\frac{3}{2}$), а ионы Co⁴⁺ находятся только в HC состоянии с конфигурацией $t_{2g}{}^5e_g{}^0$ (S = $\frac{1}{2}$), выполнены расчеты эффективного магнитного момента [9]. Установлено, что в интервале 470 \leq T, K \leq 625 в двойных перовскитах EuBaCo_{2-x}O_{6-δ} ионы кобальта обладают следующим распределением по спиновым состояниям:

- EuBaCo_{2.00}O_{5.50}: 7.5 % Co_{BC}^{2+} ; 49.3 % $Co_{\Pi C}^{3+}$; 35.7 % Co_{BC}^{3+} ; 7.5 % Co_{HC}^{4+} ;
- EuBaCo_{1.90}O_{5.35}: 5.8 % Co_{BC}^{2+} ; 49.5 % $Co_{\Pi C}^{3+}$; 38.9 % Co_{BC}^{3+} ; 5.8 % Co_{HC}^{4+} .

Полученные распределения по спиновым состояниям близки между собой для обоих составов EuBaCo_{2.00}O_{5.50} и EuBaCo_{1.90}O_{5.35}. Вакансии кобальта практически не оказывают влияния на спиновые состояния ионов Co³⁺, что подтверждается близостью температур фазового перехода изолятор-металл.

ЗАКЛЮЧЕНИЕ

По результатам проделанной работы можно сделать следующие выводы:

- Методом рентгенофазового анализа установлено, что однофазный двойной перовскит EuBaCo_{2-x}O_{6-δ} существует на воздухе до x = 0.10, а при дефиците кобальта x > 0.10 наблюдается сосуществование фаз кобальт-дефицитного двойного перовскита и оксида европия.
- 2. Методом рентгеноструктурного анализа определено, что вакансии кобальта ведут к изотропному расширению элементарной ячейки двойного перовскита EuBaCo_{2-x}O_{6-δ}. Относительное изменение параметров элементарной ячейки вдоль трех кристаллографический направлений имеет близкие значения: (0.9±0.1) % на 1 моль вакансий кобальта в 1 моль двойного кобальтита.
- 3. Экспериментально определены оптимальные условия для выращивания монокристаллов сложных оксидов EuBaCo_{2-x}O_{6-δ} методом бестигельной зонной плавки с радиационным (световым) нагревом. Качественный монокристалл EuBaCo_{1.90}O_{6-δ} получен в атмосфере воздуха, со скоростью роста 5 мм/ч. Методами Лауэ и

рентгеновской дифракции определено, что кристаллы самопроизвольно кристаллизуются вдоль кристаллографического направления [120].

- Измерения общей электропроводности в монокристалле EuBaCo_{1.90}O_{6-δ} в двух взаимоперпендикулярных направлениях (I||[120]) и (I||[001]) характеризуются сильной анизотропией с максимумом при 368 К, что свидетельствует о большей подвижности носителей заряда в направлении [120], чем [001] во всем исследованном интервале температур.
- 5. Методами синхронного термического анализа и высокотемпературной рентгеновской дифракции установлено, что температура структурного фазового *Pmmm P4/mmm* перехода в кобальт-дефицитном сложном оксиде EuBaCo_{1.90}O_{6-δ} снижается на ~10 К относительно стехиометрического состава EuBaCo_{2.00}O_{6-δ}.
- 6. Методом термогравиметрического анализа в двойных перовскитах EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) определено содержание кислорода как функция температуры и парциального давления кислорода в интервалах 873 < T, K < 1323 И $10^{-4.5} < p_{O_2}$, атм $< 10^{-0.68}$. Построены равновесные p_{O_2} -T- δ диаграммы для исследованных оксидов.
- 7. Предложена модель дефектной структуры двойных перовскитов EuBaCo_{2-x}O_{6-δ}. В рамках модели аналитически выведено теоретическое уравнение $lg(p_{O_2}/atm) = f(\delta, T)$, которое верифицировано на основе экспериментальных данных $\delta = f(p_{O_2}, T)$. В рамках модели определены температурные зависимости констант равновесия процессов дефектообразования и рассчитаны концентрации всех типов дефектов в зависимости от кислородной нестехиометрии.
- Общая электропроводность и коэффициентов термо-ЭДС поликристаллов сложных оксидов EuBaCo_{2-x}O_{6-δ} (*x* = 0, 0.10) измерены в зависимости от температуры и парциального давления кислорода в интервалах 1073 − 1223 К и 10⁻⁶ < *p*₀₂, атм < 10^{-0.68}. Установлено, что дефицит кобальта 5 мол. % ведет к уменьшению проводимости на 20 % при 1173 К и снижению термодинамической стабильности фазы EuBaCo_{2.00}O_{6-δ}.
- 9. Выполнен совместный анализ данных по дефектной структуре, электропроводности и коэффициентов термо-ЭДС двойных перовскитов EuBaCo_{2.00}O_{6-δ} (x = 0, 0.10). Установлено, что модель локализованных электронных дефектов адекватно описывает электрические свойства в исследованных интервалах температур 1073 < T, K < 1223 и парциальных давлений кислорода $10^{-4.5} < p_{O_2}$, атм < $10^{-0.68}$. В рамках данной модели рассчитаны концентрации и подвижности носителей заряда. Показано, что вакансии в кобальтовой подрешетке смещают равновесие реакции диспропорционирования ионов кобальта в сторону Co³⁺ и снижают общее количество носителей заряда и уменьшают число мест, доступных для их перескока, что понижает подвижность носителей и увеличивает энергию активации их переноса.
- 10. Исследованы температурные зависимости обратной магнитной восприимчивости поликристаллов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10). Определено, что влияние дефицита кобальта практически не оказывает влияния на спиновые состояния ионов Co³⁺ в диапазоне температур 470 < T, K < 625.

Таким образом, в настоящей работе впервые выполнено комплексное исследование физико-химических свойств двойных перовскитов EuBaCo_{2-x}O_{6- δ} (*x* = 0, 0.10). Описаны условия синтеза и установлены оптимальные параметры роста монокристаллов двойных

перовскитов ЕuBaCo_{2-x}O_{6-δ}. Определены пределы термодинамической стабильности структуры двойного перовскита EuBaCo_{2-x}O_{6-δ} в зависимости от дефицита кобальта, температуры и парциального давления кислорода. Установлена корреляция между устойчивостью и составом данных соединений. Разработана и успешно верифицирована на базе экспериментальных данных модель дефектной структуры двойных перовскитов EuBaCo_{2-x}O_{6-δ}. Кроме того, впервые исследованы электротранспортные свойства EuBaCo_{2-x}O_{6-δ} в поли- и монокристаллических образцах. Для оксидов EuBaCo_{2-x}O_{6-δ} (x = 0, 0.10) электротранспортные свойства проанализированы в рамках модельных представлений о дефектной структуре, определены основные параметры электропереноса. Определено влияние кластеров ($V_{Co}^{\prime\prime\prime} - \frac{3}{2}V_{O}^{\bullet\bullet}$)[×] на спиновое состояние ионов кобальта в двойных перовскитах EuBaCo_{2-x}O_{6-δ} в диапазоне температур 470 < T, K < 625.

Дальнейшая работа в рамках данной тематики будет посвящена изучению магнитной восприимчивости в промежутке температур 20 – 300 К и построению магнитной фазовой диаграммы двойных перовскитов EuBaCo_{2-x}O_{6-δ}. Также будут продолжены исследования процессов фазообразования в процессе плавления-кристаллизации сложных оксидов EuBaCo_{2-x}O_{6-δ} и определены условия выращивания кобальт-стехиометрических качественных монокристаллов.

Цитируемая литература

- 1. Wold. A, Perowskite-type oxides of cobalt, chromium and vanadium with some rare earth elements / A. Wold, R. Ward // J. Am. Chem. Soc. 1954. V. 76, no. 4. P. 1029-1030.
- Maignan, A. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo₂O_{5+δ}, closely related to the "112" structure / A. Maignan, C. Martin, D. Pelloquim, N. Nguyen, B. Raveau // J. Solid State Chem. – 1999. – V. 142. – P. 247-260.
- Raveau, B. Ordered oxygen deficient "112" perovskites, LnBaCo₂O_{5.50+δ}: complex magnetism and transport properties / B. Raveau, M. M. Seikh, V. Pralong, V. Caignaert // Bulletin of Materials Science June. 2009. V. 32, no. 3. P. 305–312.
- Petrov, A.N. Thermodynamics, defect structure, and charge transfer in doped lanthanum cobaltites: an overview / A.N. Petrov, V.A. Cherepanov, A.Yu. Zuev // J. Solid. State electrochem. – 2006. – V. 10. – P. 517-537.
- 5. Seikh, M. New magnetic transitions in the ordered oxygen-deficient perovskite $LnBaCo_2O_{5.50+\delta}$ / M. Seikh, C. Simon, V. Caignaert, V. Pralong, M.B. Lepetit, S. Boudin, B. Raveau // Chem. Matter. 2008. V. 20. No, 1 P. 231-238.
- Korotin, M.A. Intermediate-spin state and protperties of LaCoO₃ / M.A. Korotin, S.Yu. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky // Phys. Rev. B. 1996. V. 54. P. 5309.
- 7. Heikes, R.R. Thermoelectricity: science and engineering / R.R. Heikes, R.W. Ure New York, London: Interscience Publishers, 1961. 576 p.
- 8. Смит, Я. Ферриты / Я. Смит, Х. Вейн // Москва: Издательство иностранной литературы, 1962. 504 с.
- Maignan, A. Thermoelectric power of HoBaCo₂O_{5.5}: possible evidence of the spin blockade in cobaltites / A. Maignan, V. Caignaert, B. Raveau, D. Khomskii, G. Sawatzky // Phys. Rev. Lett. – 2004. – V. 93. – P. 026401.

Основное содержание диссертации изложено в следующих публикациях: Статьи, опубликованные в рецензируемых научных журналах, определенных ВАК:

- 1. Арбузова, Т.И. Влияние структурных дефектов на магнитные свойства монокристалла EuBaCo_{1.90}O_{5.36} / Арбузова Т.И., Наумов С.В., Телегин С.В. // Физика твёрдого тела. 2018. Т. 60. С. 80—88. (0.56 п.л. / 0.18 п.л.)
- Telegin, S.V. Synthesis, single crystal growth, and properties of cobalt deficient double perovskite EuBaCo_{2-x}O_{6-δ} (x=0-0.1) / S.V. Telegin, A.Yu. Zuev, S.V. Naumov, E.I. Patrakov, D.S. Tsvetkov, // Journal of Chemistry Published. – 2017. – V. 5. – P. 3057873—3057877. (0.31 п.л./ 0.06 п.л.) (Scopus)
- Арбузова, Т.И. Спиновое состояние ионов Co³⁺ в EuBaCo_{2-x}O_{5.5-δ} в парамагнитной области температур / Т.И. Арбузова, С.В. Наумов, С.В. Телегин // Физика твёрдого тела. — 2017. — Т. 59. — С. 517—523. (0.43 п.л. / 0.14 п.л.)
- Телегин, С.В. Влияние дефицита кобальта на структурный фазовый переход в EuBaCo₂₋ _xO_{6-δ} / С.В. Телегин, С.В. Наумов, О.Г. Резницких, Е.И. Патраков // Физика твёрдого тела. — 2015. — Т. 57. — С. 2222—2227. (0.37 п.л. / 0.09 п.л.)

Тезисы докладов и научные труды конференций:

- 5. Н.И.Солин, Однонаправленная анизотропия в слоистых кобальтитах RBaCo₂O_{5,5} (R=Eu, Gd) / Н.И.Солин, С.В.Наумов, Е.В.Мостовщикова, С.В.Телегин, А.В.Королев // НАУЧНАЯ СЕССИЯ Института физики металлов УрО РАН по итогам 2016 года, 27-30 марта, 2017 / Тез.докл.-Екатеринбург: ИФМ УрО РАН. (0.06 п.л. / 0.01 п.л.)
- N.I. Solin, Unidirectional anisotropy of electrical resistance and temporary effects of layered cobaltite EuBaCo₂O_{5.5} / N.I. Solin, S.V. Naumov, S.V. Telegin, A.V. Korolev // VI Euro-Asian Symp. «Trends in Magnetism» (EASTMAG-2016), 15-19 августа, 2016 / Тез.докл.-Красноярск:ИФ СО РАН. (0.06 п.л. / 0.01 п.л.)
- T.I. Arbuzova, The spin state of cobalt ions in the EuBaCo_{2-x}O_{5.5-δ} / T.I. Arbuzova, S.V. Naumov, S.V. Telegin, E.I. Patrakov // VI Euro-Asian Symp. «Trends in Magnetism» (EASTMAG-2016), 15-19 августа, 2016 / Тез.докл.-Красноярск:ИФ СО РАН. (0.06 п.л. / 0.01 п.л.)
- E. Mostovshchikova, IR reflection spectra anisotropy of EuBaCo_{1.9}O_{5+δ} single crystals / E. Mostovshchikova, S. Naumov, S. Telegin // VI Euro-Asian Symp. «Trends in Magnetism» (EASTMAG-2016), 15-19 августа, 2016 / Тез.докл.-Красноярск:ИФ СО РАН. (0.06 п.л. / 0.01 п.л.)
- 9. С.В. Телегин, Фазовые равновесия в системе Еu-Ba-Co-O в условиях выращивания монокристаллов EuBaCo_{2-x}O_{5.5-δ} методом бестигельной зонной плавки / С.В. Телегин, С.В. Наумов, Е.И. Патраков // XX Менделеевский съезд по общей и прикладной химии (XX Mendeleev Congress on General and Applied Chemistry), 26-30 сентября, 2016 / Тез.докл.-в 5 томах.-Екатеринбург:Орг.ком. (0.06 п.л. / 0.01 п.л.)
- S.V. Telegin, Transport and magnetic properties of double perovskites EuBaCo_{2-x}O_{6-δ} / S.V. Telegin, N. Solin, S.V. Naumov, E.I. Patrakov, A. Markin, D. Lyakaev // 12th Conference on Solid State Chemistry (SSC 2016), 18-23 сентября, 2016 / Тез.докл.-Prague, Czech Republic:University of Chemistry and Technology, Prague. (0.06 п.л. / 0.01 п.л.)
- S.V. Telegin, Effect of cobalt-oxygen vacancies on electric properties of double perovskite EuBaCo_{2-x}O_{6-d} / S.V. Telegin, S.V. Naumov, O.G. Reznitskih, E.I. Patrakov, A.Yu. Zuev // 12th Conference on Solid State Chemistry (SSC 2016), 18-23 сентября, 2016 / Тез.докл.-

Prague, Czech Republic:University of Chemistry and Technology, Prague. (0.06 п.л. / 0.01 п.л.)

- 12. М.С. Удинцева, GdBaCo₂O_{5.5-δ} и EuBaCo₂O_{5.5-δ} после деформации кручением под давлением и размола в вибромельниц / М.С. Удинцева, В.В. Месилов, С.Н. Шамин, С.В. Наумов, С.В. Телегин, Б.А. Гижевский, В.Р. Галахов // XXII Всеросс. конф. с межд. участием «Рентгеновские и электронные спектры и химическая связь» (РЭСХС-22), 20-23 сентября, 2016 / Тез.докл.-Владивосток:ДВФУ. (0.06 п.л. / 0.01 п.л.)
- 13. S.V. Telegin, Crystal structure and phase transition in cobalt-deficient layered perovskite EuBaCo_{2-x}O_{6-δ} / S.V.Telegin, S.V.Naumov, O.G.Reznitskih, D.S.Tsvetkov // XX International Conference on Chemical Thermodynamics (RCCT-2015), 22-26 июня, 2015 / Тез.докл.-Нижний Новгород:Univ.Press. (0.06 п.л. / 0.01 п.л.)
- 14. S.V. Telegin, Effect of cobalt deficiency on physical properties of the polycrystalline samples EuBaCo_{2-x}O_{6-δ} and the single crystal EuBaCo_{1.9}O_{6-δ} / S.V. Telegin, S.V. Naumov, O.G. Reznitskih, N.I. Solin // 15 European conference on solid state chemistry (ECSSC-15), 23-26 августа, 2015 / Тез.докл.-Vienna,Austria:Org.com. (0.06 п.л. / 0.01 п.л.)
- 15. S. Telegin, Electrical properties and phase transitions of the single crystal EuBaCo_{2-x}O_{5+δ} with the «112« structure / S.Telegin, S.Naumov, D.Tsvetkov, E.Patrakov, O.Reznitskih, E.Platonov, V.Sereda // 11 Conference on Solid State Chemistry (SSC-2014), 6-11 июля, 2014 / Тез.докл.-Trencianske Teplice, Slovakia:Org.com. (0.06 п.л. / 0.01 п.л.)
- 16. С.В. Телегин, Кристаллическая структура и фазовый переход в EuBaCo_{2-x}O_{6-δ} (x=0: 0,1)
 / С.В.Телегин, С.В.Наумов, О.Г.Резницких // XV Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС-15), 13-20 ноября, 2014 / Тез.докл.-Екатеринбург. (0.06 п.л. / 0.01 п.л.)
- 17. С.В. Телегин, Структура и электрические свойства монокристалла EuBaCo_{1,9}O_{5,4} / С.В. Телегин // XI Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», 16-19 сентября, 2014 / Сб.матер.-Москва: Ин-т металлургии и материаловедения им. Байкова. (0.06 п.л. / 0.01 п.л.)
- 18. С.В. Телегин, Структура и свойства монокристалла EuBaCo_{1,90}O₅₊₈ / С.В. Телегин // Х Российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов», 22-25 октября, 2013 / Сб.матер.-Москва: Ин-т металлургии и материаловедения им. Байкова. (0.06 п.л. / 0.01 п.л.)