На правах рукописи

Bepo

ВЕРБИЦКИЙ Егор Владимирович

КАТАЛИЗИРУЕМЫЕ ПАЛЛАДИЕМ И НЕКАТАЛИЗИРУЕМЫЕ МЕТАЛЛАМИ КРОСС-СОЧЕТАНИЯ В МОДИФИКАЦИИ ПИРИМИДИНОВ

02.00.03 – Органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

доктора химических наук

Екатеринбург – 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт органического синтеза им. И. Я. Постовского Уральского отделения Российской академии наук

НАУЧНЫЙ КОНСУЛЬТАНТ:	академик РАН, доктор химических наук, профессор Чарушин Валерий Николаевич
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:	Вацадзе Сергей Зурабович, доктор химических наук, профессор, ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова», г. Москва, профессор кафедры органической химии химического факультета
	Третьяков Евгений Викторович, доктор химических наук, ФГБУН Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук, г. Новосибирск, заместитель директора по науке, заведущий лабораторией изучения нуклеофильных и ион-радикальных реакций
	Демидов Олег Петрович, доктор химических наук, доцент, ФГАОУ ВО «Северо-Кавказский федеральный университет», г. Ставрополь, старший научный сотрудник кафедры химии Института математики и естественных наук
ВЕДУЩАЯ ОРГАНИЗАЦИЯ:	ФГБУН Институт органической химии им. Н. Д. Зелинского Российской академии наук, г. Москва

Защита диссертации состоится «04» марта 2019 года в 14:00 на заседании диссертационного совета Д 212.285.08 на базе ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» по адресу: 620002, Екатеринбург, ул. Мира, 19, ауд. И-420 (зал Ученого совета).

С диссертацией можно ознакомиться в библиотеке и на сайте ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»: http://lib.urfu.ru/mod/data/view.php?d=51&rid=286940.

Автореферат разослан « » _____ 2018 года.

Учёный секретарь диссертационного совета

Jocues

Поспелова Татьяна Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы и степень разработанности темы исследования. Пиримидины относятся к одному из наиболее важных классов гетероциклических соединений и играют огромную роль в нашей жизни, благодаря присутствию пиримидинового цикла во всех клетках живых организмов. Достаточно отметить, что тимин, цитозин и урацил являются важными фрагментами нуклеиновых кислот. Неудивительно, что многие соединения этого семейства обладают широким спектром биологической активности и используются в качестве эффективных фармацевтических препаратов. Кроме того, π -сопряженные линейные, Vобразные и звездообразные пуш-пульные («push-pull») системы на основе пиримидинов нашли применение в различных областях техники как перспективные компоненты для создания жидких кристаллов, органических полупроводников, светоизлучающих и нелинейнооптических материалов.

По этим причинам химия пиримидинов является быстро развивающейся областью исследований и ареной активного применения новых синтетических методов. В литературе описаны два принципиально разных подхода к синтезу замещенных пиримидинов. Первый подход включает в себя построение пиримидинового кольца с использованием реакций конденсации, а второй – основан на функционализации пиримидинового цикла. Методы синтеза функционально замещенных пиримидинов посредством циклизации 1,3-дикарбонильных соединений или их синтетических аналогов с амидинами, хорошо известны и представлены во многих обзорах. Кроме того, огромное количество синтетических процедур, позволяющих вводить в пиримидиновое кольцо различные группировки с использованием катализируемых переходными металлами реакций кросс-сочетания бор-, олово-, цинк-, магний-, кремний- и др. металлоорганических соединений с галогенпроизводными или трифлатами пиримидинов, описаны в литературе последнего десятилетия. Так, кросс-сочетания по Сузуки, Стилле, Негиши. Соногашира и Корри-Кумада были выполнены для различных галогензамещенных пиримидинов. Подробное описание достижений в области функционализации производных пиримидина с применением катализируемых переходными металлами реакций кросс-сочетания представлено в обзоре 2016 года [Wimmer, L. Metal Catalyzed Cross-Coupling Reactions in the Decoration of Pyrimidine, Pyridazine, and Pyrazine / L. Wimmer, L. Rycek, M. Koley, M. Schnürch // Top. Heterocycl. Chem. - 2016. - 45. - P. 61-158].

Следует отметить, что реакции кросс-сочетания не лишены и значительных недостатков, таких как необходимость предварительной функционализации азинов галогенами (то есть, с неизбежностью прибегать к так называемым «хлорным» технологиям), использование дорогостоящих катализаторов на основе палладия и других переходных металлов, а также потребность в применении дополнительных (как правило, фосфиновых) лигандов.

В связи с этим, все большее внимание привлекает вхождение в теорию и практику органического синтеза прямых, некатализируемых металлами методов нуклеофильной С-Н функционализации с образованием связей «углерод-углерод» или «углерод-гетероатом» [Charushin, V. N. Metal-free C–H functionalization of aromatic compounds through the action of nucleophilic reagents / V. N. Charushin, O. N. Chupakhin / Top. Heterocycl. Chem. - 2014. - 37. -Р. 1–50.]. В этих методах, которые заметно меняют логику органического синтеза, связь С–Н рассматривается как группа, позволяющая сама по себе подвергаться функционализации, минуя предварительное введение легко замещаемых нуклеофугных групп, тем самым обеспечивая малостадийный и наиболее атом-эффективный, а также малоотходный путь трансформации молекул, отвечающий принципу PASE (Pot-Atom-Step-Economic). Прямая функционализация С-Н связей базируется на двух основных подходах – с использованием катализа переходными металлами или некатализируемой металлами методологии. Большое количество статей и обзоров, опубликованных за последнее десятилетие, показали, что реакции прямого катализируемого переходными металлами С-Н (гет)арилирования являются эффективным и мощным инструментом для региоселективного синтеза азаароматических соединений. Однако с точки зрения экологичности процессов, безусловно, более интересны свободные от катализа переходными металлами методы, одним из которых является реакция нуклеофильного ароматического замещения водорода (S_N^H). В то же время, в литературе отсутствовали сведения о кооперативном применении обеих синтетических стратегий.

Актуальность настоящей работы определяется необходимостью получения и систематизации данных о комбинированном использованием катализируемых переходными металлами и некатализируемых металлами реакциях кросс-сочетания, которые бы позволили выявить их сильные и слабые стороны и открыть путь к новым труднодоступным полигетероциклическим системам пиримидинового ряда.

Известно, что катализируемые переходными металлами кросс-сочетания могут идти по любому положению пиримидинового кольца, однако высокая стоимость и трудность синтеза ди-, три- и тетрагалогензамещенных пиримидинов, применяемых в качестве исходных соединений, является сдерживающим фактором в изучении данного класса соединений. С другой стороны, положение C(5) дезактивировано к атаке нуклеофилами, тогда как положения C(2), C(4) и C(6) уязвимы к нуклеофильной атаке. Несмотря на то, что положение C(2) является более реакционноспособным в условиях кинетического контроля, образующиеся при этом $\sigma^{\rm H}$ -аддукты менее устойчивы и их можно зарегистрировать только при низких температурах, что позволяет осуществлять S_N^H-реакции региоселективно по C(4) или C(6) положениям пиримидинового кольца при отсутствии атома галогена в данных положениях. Учитывая широкие возможности модификации галогензамещенных пиримидинов, способных участвовать в обоих типах процессов, исследования в этом направлении могут позволить получескими свойствами.

В связи с этим, целями диссертационной работы являлись:

• Разработка новых методов модификации производных пиримидина с использованием комбинаций реакций нуклеофильного ароматического замещения водорода и катализируемых палладием кросс-сочетаний для получения ранее неизвестных и труднодоступных моно(гет)арил-, ди(гет)арил- и три(гет)арилзамещенных пиримидинов.

• Изучение возможных трансформаций (гет)арилзамещенных пиримидинов и поиск общих закономерностей синтеза конденсированных полигетероциклических систем на их основе.

Для достижения целей необходимо было решить следующие задачи:

1. Изучить синтетический потенциал комбинированного применения катализируемых палладием С–С и С–N кросс-сочетаний, а также нуклеофильного ароматического замещения водорода в реакциях 5-бромзамещеных пиримидинов с широким кругом Снуклеофилов (гетеро)ароматического ряда.

2. Исследовать особенности S_N^H -реакций с π -избыточными ароматическими гетероциклами в качестве С-нуклеофильных агентов, определить строение интермедиатов, а также влияние условий ароматизации на структуру конечных продуктов.

3. Изучить возможность трансформации получаемых (гет)арилзамещенных пиримидинов в другие гетероциклические системы.

4. Разработать общие подходы к синтезу новых конденсированных полициклических систем на основе ди(гет)- и три(гет)арилзамещенных пиримидинов.

5. Исследовать антибактериальную активность в рядах полученных замещенных пиримидинов и выявить зависимости "структура–активность".

6. Разработать доступные методы синтеза фотоактивных пуш-пульных систем на пиримидиновой платформе и изучить фотофизические и электрохимические свойства полученных соединений.

7. Исследовать возможность применения пуш-пульных систем на основе пиримидинов в качестве сенсоров для обнаружения нитроароматических соединений.

Научная новизна и теоретическая значимость работы. Систематически исследованы комбинации реакций нуклеофильного ароматического замещения водорода и катализируемых палладием кросс-сочетаний (по Сузуки или Бухвальду-Хартвигу), открывшие путь к новым труднодоступным моно(гет)арил- или поли(гет)арилзамещенным пиримидинам. Данный подход расширяет возможности структурной модификации галогенпиримидинов и создает основу для эффективного синтеза широкого круга биологически активных и фотоактивных соединений.

Получены новые данные о механизме S_N^H -реакций с участием 5-бром- и 5-(гет)арилзамещенных пиримидинов. Зарегистрированы, выделены и охарактеризованы интермедиаты (σ^H -аддукты) этих реакций. Установлены факторы, влияющие на направление ароматизации по окислительному или элиминационному механизмам.

Впервые показана возможность трансформации 4-(гет)арилпиримидинов в соответствующие 6-(гет)арилзамещенные 2-амино-3-цианопиридины по типу перегруппировки Коста-Сагитуллина последовательной кватернизацией пиримидина и последующим взаимодействием с малонодинитрилом.

Впервые разработаны методы получения ранее неизвестных тиофеновых аналогов 1,3-диазатрифенилена – дитиено[2,3-f:3',2'-h]хиназолинов, дитиено[3,2-f:3',2'-h]хиназолинов и бензо[f]тиено[3,2-h]хиназолинов, а также дитиеноаннелированных 1,3-диазапиренов – бензо[g,h]дитиено[2,3-e:3',2'-j]перимидинов на основе внутримолекулярной реакции нуклеофильного ароматического замещения водорода, палладий-катализируемой внутримолекулярной циклизации в условиях микроволновой активации или окислительной фотоциклизации С(4)-, С(5)- и/или С(6)-замещенных (гет)арилпиримидинов. Структуры полученных полигетероциклических систем однозначно доказаны с привлечением рентгеноструктурного анализа.

Показана эффективность стратегии последовательного применения реакций S_N^H и кросс-сочетания по Сузуки в условиях микроволновой активации для сборки фотоактивных π -сопряженных линейных, V-образных и "разветвленных" пуш-пульных систем на основе пиримидинов.

Практическая значимость работы. Разработаны удобные и эффективные методы синтеза широкого ряда моно(гет)арил-, ди(гет)арил- и три(гет)арилзамещенных пиримидинов и пуш-пульных систем на их основе.

В ряду C(4)- и/или C(5)-моно(гет)арил- и ди(гет)арилзамещенных пиримидинов проведен системный анализ туберкулостатической активности и выявлены соединения, обладающие выраженной антибактериальной активностью в микромолярных концентрациях в экспериментах *in vitro* в отношении штаммов микобактерий *Mycobacterium tuberculosis* $H_{37}Rv$, *Mycobacterium avium*, *Mycobacterium terrae*, а также штаммов с множественной лекарственной устойчивостью.

Установлено, что *N*-арил-4-(5-нитрофурана-2-ил)пиримидин-5-амины, содержащие метильные и метоксигруппы в арильном заместителе, обладают низкой цитотоксичностью и выраженной антибактериальной активностью в отношении различных штаммов, в том числе лекарственно-устойчивых, кокковых инфекций *Neisseria gonorrhoeae*, *Streptococcus piogenes* и *Staphylococcus aureus*.

На основании данных фотофизических и электрохимических исследований показана потенциальная возможность применения получаемых конденсированных полициклических систем в качестве органических полупроводников.

Впервые осуществлен синтез красителей-сенсибилизаторов для солнечных батарей (ячеек Гретцеля) с пиримидиновой "якорной" группой – 4-(гет)арилзамещенных пиримидинов, с донорными фрагментами на основе трифениламина, 9-этил- и 9-фенилкарбазола с различными π-сопряженными системами. На основании квантово-химических расчетов и физико-химических исследований показана как теоретическая, так и практическая возможность использования полученных пуш-пульных систем в качестве сенсибилизаторов для солнечных батарей.

Осуществлен синтез красителей на основе новых 2-амино-6-(гет)арил-3цианопиридинов, для которых также на базе квантово-химических расчетов, спектральных и электрохимических данных была показана теоретическая возможность применения в качестве сенсибилизаторов для солнечных батарей.

Разработан эффективный препаративный метод синтеза серии новых линейных, Vобразных и "разветвленных" пуш-пульных систем на базе пиримидина, которые могут быть использованы как мономолекулярные флуоресцентные сенсоры для обнаружения нитроароматических соединений в ацетонитрильных растворах, так и в газовой фазе. С использованием полученных соединений были собраны прототипы сенсоров для мобильного детектора нитроароматических взрывчатых соединений «Нитроскан» (Завод «Промавтоматика», г. Екатеринбург), которые способны к многоразовому, обратимому и быстрому обнаружению следовых количеств паров нитробензола, 2,4-динитротолуола и 2,4,6-тринитротолуола в воздухе.

Методология и методы исследования. Установление состава и структуры соединений, а также контроль за протеканием реакции осуществлены с широким использованием методов спектроскопии ЯМР ¹H, ¹³C, ¹⁹F, двумерных корреляций, ИК-спектроскопии, газожидкостной масс-спектрометрии (ГЖХ-МС) и тонкослойной хроматографии, массспектрометрии высокого разрешения, элементного анализа, ВЭЖХ и рентгеноструктурного анализа. Фотофизические и электрохимические свойства синтезированных молекул исследованы методами УФ- и флуоресцентной спектроскопии, циклической вольтамперометрии и описаны квантово-химическими расчётными методами.

Положения, выносимые на защиту:

1. Систематические данные о комбинированном применении катализируемых палладием С–С и С–N кросс-сочетаниях, а также использовании реакций нуклеофильного ароматического замещения водорода как эффективной стратегии синтеза новых или труднодоступных моно(гет)арил-, ди(гет)арил- и три(гет)арилзамещенных пиримидинов, предназначенных в том числе для биотестирования.

2. Способы получения новых π-сопряженных линейных, V-образных и "разветвленных" пуш-пульных систем на базе пиримидинов, способных выступать в роли красителейсенсибилизаторов для солнечных батарей или флуоресцентных сенсоров для детектирования нитроароматических соединений.

3. Создание универсальной синтетической платформы для получения ранее неизвестных тиофеновых аналогов 1,3-диазатрифенилена и дитиеноаннелированных 1,3-диазапиренов на основе различных типов внутримолекулярных циклизаций C(4)-, C(5)-и/или C(6)-функционально замещенных (гет)арилпиримидинов.

Степень достоверности и апробация работы.

Высокая степень достоверности результатов обеспечена применением современных и стандартных методов исследования, а также воспроизводимостью результатов экспериментов. Анализ состава, структуры и чистоты полученных соединений осуществлялся на сертифицированных и поверенных приборах Центра коллективного пользования "Спектроскопия и анализ органических соединений" Института органического синтеза им. И. Я. Постовского УрО РАН.

Результаты работы представлены и обсуждены с опубликованием тезисов в рамках Международного симпозиума «Modern trends in functionalization of C-H bonds in arenes and heteroarenes», проводимого в рамках Международного конгресса по органической химии, посвященного 150-летию создания А.М. Бутлеровым теории химического строения органических соединений (Казань, 2011); IX Всероссийской конференции «Химия и медицина» с молодежной научной школой по органической химии (Уфа-Абзаково, 2013); European Symposium on Organic Chemistry (Марсель, 2013; Лиссабон, 2015); Уральского научного форума «Современные проблемы органической химии» (Екатеринбург, 2014); XXV Российской молодежной научной конференции, посвященной 95-летию основания Уральского университета «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2015); Первой всероссийской конференции по химии элементоорганических соединений и полимеров «ИНЭОС OPEN-2015» (Москва, 2015); Третьей Международной молодежной научной конференции «Физика. Технологии. Инновации» (ФТИ-2016) (Екатеринбург, 2016); Кластераконференций по органической химии «ОргХим-2016» (Санкт-Петербург, 2016); ХХ Менделеевского съезда по общей и прикладной химии (Екатеринбург, 2016); Научной конференции грантодержателей РНФ «Фундаментальные химические исследования XXI-го века» (Москва, 2016); XXVII Российской молодежной научной конференции, посвященной 175-летию со дня рождения профессора Н.А. Меншуткина «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2017); VII Молодежной конференции ИОХ РАН (Москва, 2017); IV Международной молодежной научной конференции «Физика. Технологии. Инновации» (ФТИ-2017) (Екатеринбург, 2017).

Диссертация выполнена как часть плановых научно-исследовательских работ проводимых в Институте органического синтеза им. И. Я. Постовского УрО РАН по темам (Гос. рег. № 01201254093, № 115092810130 и № 01201365981), в рамках проектов РФФИ (12-03-31574 мол_а, 13-03-12434 офи_м2, 13-03-90606 Арм_а, 14-03-31040 мол_а, 17-03-00011 А); грантов Президента Российской Федерации для государственной поддержки молодых российских ученых – кандидатов наук (МК-3939.2014.3) и Российского научного фонда (№ 15-13-00777 и №16-13-10435), а также в рамках Государственного контракта № 8430 по теме «Создание универсальной синтетической платформы для прямой функционализации C(sp²)-Н связи в аренах и гетаренах»; и Программы поддержки ведущих научных школ НШ № 5505.2012.3 по теме «Прямая функционализация C(sp²)-Н связи в аренах и гетаренах»

Личный вклад автора. В диссертационной работе обсуждены и обобщены результаты, полученные лично автором или в соавторстве, в том числе: определена тема исследования, сформулированы цели и задачи, выполнена часть синтетических экспериментов, проведена интерпретация и обобщение полученных результатов. В ходе выполнения научных исследований были защищены две диссертации на соискание ученой степени кандидата химических наук¹ и кандидата технических наук², в которых автор принимал непосредственное участие в роли консультанта в вопросах, касающихся органического синтеза и свойств получаемых соединений.

Публикации. По материалам диссертации опубликовано 2 обзора и 24 статьи, опубликованные в рецензируемых (*Web of Science, Scopus*) научных журналах, рекомендованных ВАК, получено 5 патентов РФ на изобретения, а также издано 25 тезисов докладов, представленных на российских и международных конференциях.

Объем и структура работы. Диссертационная работа состоит из введения, трех глав, заключения и 3 приложений. Работа изложена на 371 странице, содержит 123 схемы, 116 рисунков и 46 таблиц. Список цитируемой литературы содержит 401 наименование.

Благодарность. Автор выражает глубокую благодарность научному руководителю, академику РАН В.Н. Чарушину за постоянное внимание, поддержку и всестороннее содействие в выполнении работы; академику РАН О.Н. Чупахину за консультации, ценные советы и рекомендации; в.н.с., к.х.н. Г.Л. Русинову за каждодневную помощь и советы по работе; своим коллегам по лаборатории за ценные советы, помощь и поддержку; своим соавторам за плодотворное сотрудничество; профессору Н.П. Бельской, профессору В.Я. Сосновских и профессору Е.Н. Уломскому, а также всем сотрудникам Института органического синтеза им. И.Я. Постовского УрО РАН, кафедры органической и биомолекулярной химии, а также кафедры технологии органического синтеза ХТИ УрФУ за всестороннюю помощь и поддержку в исследованиях.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Введение содержит обоснование актуальности работы и выбора объектов исследования, в нем сформулированы цели, показана научная новизна и практическая значимость полученных результатов. В аналитическом обзоре литературы (глава 1) проанализированы основные подходы к прямой катализируемой и некатализируемой переходными металлами С-Н функционализации производных пиримидина, рассмотрены методы синтеза и прикладные свойства 1,3-диазатрифенилена и его тиофеновых аналогов (см. также обзоры E.V. Verbitskiy, G.L. Rusinov, V.N. Charushin // *ARKIVOC* 2017, i, 356-401; E. V. Verbitskiy, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // *Synthesis*, 2018, 50 (2), 193-210.). Результаты и

¹Е.М. Династия "Комбинация реакций нуклеофильного ароматического замещения водорода (S_N^H) и кросссочетания по Сузуки для модификации пиримидинов", Екатеринбург, 2017 г. (руководитель – академик В.Н. Чарушин)

²А.А. Баранова "Детектор следовых количеств нитросодержащих взрывчатых веществ", Томск, 2017 г. (руководитель – д.ф.-м.н., профессор Б.В. Шульгин)

обсуждения собственных исследований приведены в главе 2. В экспериментальной части (глава 3) описаны объекты исследования, оборудование, реактивы, материалы, методы и методики проведения синтеза и физико-химических исследований.

Глава 2. Обсуждение результатов

В главе 2 представлены результаты исследований реакций кросс-сочетаний по Сузуки, а также Бухвальду-Хартвигу в комбинации с нуклеофильным ароматическим замещением водорода (S_N^H), что позволяет получать широкий спектр ранее неизвестных моно(гет)арил-, ди(гет)арил- и три(гет)арилзамещенных пиримидинов, а также новых полициклических систем на их основе. Приведены данные по биологической активности, электрохимическим, фотофизическим и сенсорным свойствам полученных соединений.

2.1. Получение C(4), C(5) и/или C(6) (гет)арилзамещенных пиримидинов с использованием комбинации реакции катализируемых палладием кросс-сочетаний и нуклеофильного ароматического замещения водорода

2.1.1. Синтез С(4) и/или С(5) (гет)арилзамещенных пиримидинов с использованием S_N^H-реакций и кросс-сочетания по Сузуки

2.1.1.1. Синтез тиенил- и фурилзамещенных пиримидинов с использованием реакций SN^H и кросс-сочетания по Сузуки³

Установлено, что взаимодействие 5-бромпиримидина (1) с тиофенами (2a-d) в трифторуксусной кислоте при комнатной температуре в течение 24 часов, с последующей отгонкой растворителя и окислением образовавшихся 3,4-дигидропиримидиниевых солей K₃Fe(CN)₆ в водном растворе КОН, приводит к соответствующим S_N^H-продуктам – 5-бром-4-(5-R-тиен-2-ил)пиримидинам 4a-d (Схема 1, Таблица 1). На первой стадии происходит *присоединение* тиофенового заместителя по положению C(4) пиримидинового кольца с образованием σ^{H} -аддуктов – трифторацетата 5-бром-4-(5-R-тиен-2-ил)-3,4-дигидропиримидиния 3aе. В случае взаимодействия с тиофеном (2a) и 2-бромтиофеном (2b) соответствующие дигидропиримидины 3a,b были выделены в виде белых кристаллических продуктов с высокими выходами (3a – 80%, 3b – 65%), а их структуры подтверждены методом PCA (Puc. 1 и 2).⁴

³Разделы 2.1.1.1.– 2.1.1.3. были выполнены совместно с к.х.н. Е.М. Династия.

⁴Аддукты **3с-f** были использованы для дальнейших трансформаций без выделения в чистом виде.

	C		G			G
	Стадия		Стадия		SN ^H -	Состав реак-
No	"Присоединение"		"Ароматизации"		пролукт-	ционной смеси
•	Нуклеофил / кислота	Время	Реагенты	Время,	Выход. %	по данным
	Льюиса ^а	Dpoint	1 000 000 00	Ч	, , ,	ГЖХ-МС ^в , %
1	2а (2 ммоль) / СЕ ₃ СООН	24 ч	$K_3Fe(CN)_6$	1	4a – 42	4a – 95.0
-			(1 ммоль) в из-	-		3a – 5.0
2	2а (2 ммоль) / СF ₃ СООН	24 ч	бытке 33%-го	2	4a – 75	H.a.
	× , , , , , , , , , , , , , , , , , , ,		водного р-ра КОН			
2		24	$K_3Fe(CN)_6(2)$	-	4 00	
3	2a (2 ммоль) / CF ₃ COOH	24 ч	ммоль), КОН	6	4a – 82	H.a.
			(4 ммоль) / H ₂ O			5 1 7 0
4		24	$K_3Fe(CN)_6(1)$	1	4L 20	50 - 7.0
4	20 (2 MMOJIE) / CF3COOH	24 4	$\frac{1}{2}$ MMOJIE) B ИЗОЫТКЕ	1	40 - 39	40 - 70.0 3b 17.0
5	2h(2)m(arr)/CECOOH	24	55%-го водного р-	2	4b 60	30 - 17.0
5	20 (2 MMOJIE) / CF3COOH	24 4	$F_{\rm r}$	2	40 - 09	п.а.
6	2b $(1.5 \text{ M}) / CE COOH$	24 ц	$K_{31} \in (CN)_6 (2)$	6	4b 61	Ца
0	20 (1.5 MMOJE) / Cl ³ COOII	24 9	MMOJE), KOII (4 MMOJE) / H_2O	0	40-01	11.a.
						2c - 66
						4c = 82.0
7	2с (1.2 ммоль) /СF ₃ СООН	24 ч	$K_{2}Fe(CN)_{c}$	6	4c − 76	5c - 75
			MMOTE) KOH $(4$			Примеси – 3.9
			ммоль) / Н2О			2d - 251
8	2d (1.2 ммоль) /CF ₃ COOH	24 ч		6	4d - 23	4d - 557
Ŭ		2.1		0	14 23	5d – 19.2
						2c - 8.4
	2с (1.2 ммоль) / BF ₃ ·Et ₂ O		$K_3Fe(CN)_6(2)$			4c – 89.1
9	(2.4 ммоль) - МеОН	1 неделя	ммоль), КОН (4	6	4c – 84	5c - 1.2
			ммоль) / H ₂ O			Примеси – 1.3
						2c - 5.4
10	2с (1.2 ммоль) / BF ₃ ·Et ₂ O	1		6	10 50	4c – 72.2
10	(2.4 ммоль) - МеОН	т месяц		0	4C – 30	5c – 14.9
						Примеси – 7.5
	2d(12) (1, 2) (BEauEtaO					2d – 9.4
11	(2.4 MMOJE) - MeOH	1 неделя	$K_3Fe(CN)_6(2$	6	4d – 64	4d – 90.1
			ммоль), КОН (4			5d – 0.5
12	2d (1.2 ммоль) / BF ₃ ·Et ₂ O	1 месян	ммоль) / H ₂ O	6	4d – 87	4d – 95.4
12	(2.4 ммоль) - МеОН	тмеелц		0	-14 07	Примеси – 4.6
						5f – 5.6
13	2f (2 ммоль) / СЕзСООН	24 ч		24	4f – 64	4f – 63.6
						3f - 24.8
						Примеси – 6.0
1.4		0.4	Π	24	F c 20	5a - 55.0
14	2a (2 ммоль) / CF ₃ COOH	24 ч	Диэтиламин	24	5a – 38	4a - 11.0
						3a - 34.0
15	2а (2 ммоль) / CF ₃ COOH	24 ч	Пиперидин	24	5a – 75	$\mathbf{3a} = 32.0$
						11римеси – 18.0 5 2 – 87.0
16	2а (2 ммоль) / CF ₃ COOH	24 ч	Морфолин	24	5a – 82	3a = 07.0
						5h $= 74$
17	2b (2 ммоль) / СЕ-СООН	24 ш	Лиэтипамин	24	5h – 67	30 - 74 4b - 170
1/		271	Диэтиламин	2 ⁻⁷	50 - 07	3b - 90
						5b - 980
18	2b (2 ммоль) / CF ₃ COOH	24 ч	Пиперидин	24	5b – 78	Примеси – 2.0
<u> </u>		_		_		5b - 96.0
19	2b (2 ммоль) /CF ₃ COOH	24 ч	Морфолин	24	5b – 77	Примеси – 4.0
L	1		1	1	1	I I

Таблица 1 – Влияние условий реакции на структуру и выходы S_N^H -продуктов 4 и 5.

Н.а. – не анализировали;

^аСоотношения реагентов во всех случаях приведены в расчете на 1 ммоль исходного 5-бромпиримидина (1). ^bПод "составом реакционной смеси" (здесь и далее по тексту) подразумевается соотношение площадей соответствующих пиков, полученных по полному ионному току и нормированных на 100%. Окисление полученных σ^{H} -аддуктов **3а,b**, осуществленное согласно предложенной Гирке методике действием K₃Fe(CN)₆ (1 ммоль) в избытке 33%-го водного раствора КОН, приводит к целевым S_N^H-продуктам **4а,b** с умеренными выходами при проведении реакции в течение 1 часа (Таблица 1, строки 1 и 4), увеличение времени реакции до 2 часов приводит практически к двукратному увеличению выходов соединений **4а,b** (Таблица 1, строки 2 и 5). Состав реакционных смесей анализировали методом ГЖХ-МС.

В дальнейшем было показано, что достаточно использования 4-х эквивалентов КОН для нейтрализации остатков трифторуксусной кислоты в реакционной смеси и переведения σ^{H} -аддуктов из солевой в нейтральную форму, поскольку попытки окисления аддуктов, на примере соединения **3a**, как K₃Fe(CN)₆, так и DDQ без предварительной нейтрализации, приводили к сложным многокомпонентным смесям. Максимальные выходы пиримидинов **4a,b** были достигнуты при проведении стадии *ароматизации* в окислительных условиях в течение не менее 6 часов (Таблица 1, строки 3 и 6). Применение этих условий для реакции 5-бромпирмидина (**1**) с фураном (**2f**) позволило получить соответствующий 5-бром-4-(фуран-2-ил)пиримидин (**4f**) с выходом 64% (Таблица 1, строка 13).

Поскольку функционально замещенные олиготиофены широко используются как флуоресцентные маркеры в биологических и медицинских исследованиях, а также находят широкое применение в качестве материалов для органической электроники, нами были предприняты попытки функционализации пиримидинов в реакциях с 2-фенилтиофеном (2c), [2,2']битиофеном (2d) и [2,2':5',2"]тертиофеном (2e). Перенесение кислотных условий активации на более сложные производные тиофена 2c-е приводит к снижению выходов целевых S_N^H -продуктов 4c,d вследствие протекания побочных реакций олигомеризации в сильнокислых условиях в CF₃COOH (Таблица 1, строки 7 и 8).

С целью увеличения выхода пиримидинов **4с,d** для активации исходного пиримидина **1** на стадии присоединения нами была использована более мягкая кислота Льюиса – эфират трехфтористого бора в метаноле. Действительно, перемешивание смеси 5-бромпиримидина (1) с тиофенами **2с,d** с избытком BF₃·Et₂O в MeOH в течение недели приводит к значительно бо́льшим выходам S_N^H -продуктов **4с,d** (Таблица 1, строки 9 и 11), чем в среде CF₃COOH. При увеличение времени перемешивания реакционных смесей до 1 месяца наблюдалось увеличение степени конверсии исходного соединения **1** (Таблица 1, строки 10 и 12): если в случае взаимодействии с [2,2']битиофеном (**2d**) выход продукта **4d** увеличился с 64 до 87%, то в реакции с 2-фенилтиофеном (**2c**) произошло уменьшение выхода целевого продукта за счет протекания побочных реакций. Следует отдельно отметить, что реакция пиримидина **1** с [2,2':5',2"]тертиофеном (**2e**) в аналогичных условиях, как в случае применения CF₃COOH, так и BF₃·Et₂O в MeOH, вместо желаемого S_N^H-продукта **4e** дает сложную смесь смолистых продуктов, идентифицировать которые методом ГЖХ-МС не удалось.

Анализ реакционных смесей при взаимодействии 5-бромпиримидина (1) с тиофенами **2а-d** в окислительных условиях методом ГЖХ-МС показал, практически во всех случаях, наличие побочных продуктов *кине*-замещения водорода – соответствующих 4-(гет)арилпиримидинов **5b-d** (Таблица 1, строки 4,8,7-11,13).

Нами продемонстрирована возможность целенаправленного получения продуктов *кине*-замещения **5а,b** на примере реакций 5-бромпиримидна (1) с тиофенами **2а,b** в аналогичных условиях с последующей обработкой образующихся σ^{H} -аддуктах **3а,b** основаниями, в качестве которых были использованы вторичные амины, такие как диэтиламин, морфолин и пиперидин (Таблица 1, строки 14-19). Выбор именно вторичных алкиламинов обусловлен наибольшей основностью в ряду алкиламинов в растворах (это не относится к газовой фазе, так как там основность убывает в ряду от третичных к первичным алкиламинам). К сожалению, какой-либо выраженной зависимости выходов 4-(гет)арилпиримидинов **5а,b** от структуры и основности использованных аминов обнаружено не было.

Поскольку использование 5-бромпиримидина (1) для получения 4-(гет)арилпиримидинов **5а,b** с элиминированием молекулы НВг в условиях *кине*-замещения водорода не соответствует принципу PASE, был осуществлен встречный синтез соединений **5а-d** реакцией незамещенного пиримидина (6) с производными тиофенов **2а-d** в окислительных условиях (Схема 2, Рис. 3 и 4).

Поскольку положение C(5) в пиримидиновом цикле дезактивировано к атаке нуклеофилами, для его функционализации была использована катализируемая палладием реакция кросс-сочетания по Сузуки. Был получен широкий ряд 5-(гет)арилзамещенных пиримидинов **9а-d** и **10а-m** реакцией 5-бромпиримидина с различными тиенил- (**7а-d**) и арилбороновыми (**8а-m**) кислотами (Схема 3, Таблица 2).

Использование микроволновой активации позволяет сократить время протекания реакции Сузуки от нескольких (десятков) часов до 10-20 минут без потери в выходе целевых продуктов 9 и 10. Применение нового специфического катализатара *транс*бис(дициклогексиламин)палладия(II) ацетата (DAPCy)

позволило осуществить эти же превращения в мягких аэробных условиях с высокими выходами до 92% (Таблица 2). Исключениями являются соединения **10b,e,g,j**, содержащие атом фтора или CF₃-группу в *орто*-положении фенильного заместителя, образущиеся с низкими выходами, вследствие значительной чувствительности данной реакции к стерическим затруднениям. Несомненными же преимуществами использования DAPCy являются отсутствие необходимости предварительного дегазирования и инертной атмосферы в ходе проведения реакции, а также легкое масштабирование, позволяющее получать желаемые продукты в граммовых количествах.

Введение фрагментов битиофена и его аналогов в молекулу пиримидина обусловливает появление выраженных флуоресцентных свойств с высокими квантовым выходами. Однако соответствующие олиготиофеновые бороновые кислоты, как правило, имеют очень высокую стоимость и поэтому применение кросс-сочетания по Сузуки для синтеза 5-(олиго)тиенилзамещенных пиримидинов является экономически неоправданным. Поэтому с

Рисунок 3. Структура соединения **5с** в кристалле

Рисунок 4. Структура соединения 5d в кристалле

Таблица 2 – Выходы продуктов 9 и 10 реакций кросс-сочетания по Сузуки 5-бромпиримидина (1) с (гет)арилбороновыми (7а-d и

8а-т) кислотами.						
Условия проведения						
Pea-	реакции					
генты	Условия А	Условия Б				
	Продукт –	- Выход, %				
1+7a	9a – 65*	9a – 59				
1+7b	9b – 83*	9b - 79				
1+7c	9c − 65*	9c – 69				
1+7d	$9d - 72^*$	9d – 76				
1+8a	Н.о.	10a – 92				
1+8b	$10b - 44^{**}$	10b – 37				
1+8c	H.o.	10c – 61				
1+8d	H.o.	10d - 71				
1+8e	$10e - 57^{**}$	10e – 11				
1+8f	H.o.	10f – 79				
1+8g	$10g - 49^{**}$	Н.в.				
1+8h	Н.о.	10h – 63				
1+8i	H.o.	10i – 77				
1+8j	10j – 35**	Н.в.				
1+8k	H.o.	10k – 53				
1+8l	$10l - 82^*$	H.o.				
1+8m	H.o.	10m – 81				

целью расширения ряда потенциально фотоактивных соединений и определения влияния положения олиготиофенового фрагмента на оптические свойства С(4) и С(5) тиенилзамещенных пиримидинов была исследована возможность прямого палладийкатализируемого (гет)арилирования 2-фенилтиофена [2,2']битиофена (2c), $(2\mathbf{d})$ И [2,2':5',2"]тертиофена (2е) в реакции с 5-бромпиримидином (1) с образованием соответствующих 5-(гет)арилпиримидинов 11а-с (Схема 4).

В ходе протекания данных реакций возможно образование ди(гет)арилзамещенных производных [2,2']битиофена (II-IV) и его аналогов (VI, VII и IX). Практически все они, за исключением региоизомерных соединений IX, были идентифицированы в реакционных смесях методом ГЖХ-МС. С целью минимизировать образование этих побочных продуктов был использован избыток 2-(гет)арилзамещенных тиофенов 2с-е. Поскольку они относительно стабильны в данных реакционных условиях, непрореагировавший избыток тиофенов 2с-е выделяли после окончания реакции. Сравнение состава реакционных смесей и выходов 5-(гет)арилпиримидинов 11а-с в различных условиях А-Е показывает, оптимальными из перечисленных являются условия Б, в которых затрачивается меньшее количество тиофена 2с-е, а образование целевых продуктов 11а-с с выходами 52, 49 и 50%, соответственно, происходит за меньшее время (10 мин.).

2.1.1.2. Синтез пирролил- и индолилзамещенных пиримидинов с использованием S_N^H- реакций

Производные пиррола и индола являются структурными элементами множества природных соединений и синтетических лекарственных средств, проявляющих широкий спектр биологической активности. Поэтому разработка новых методов синтеза производных пиримидина, содержащих в своей структуре пиррольный или индольный фрагменты в положении C(4) пиримидинового кольца, представляет значительный интерес не только для органической, но и для медицинской химии.

Согласно данным ТСХ и ГЖХ-МС взаимодействие пирролов **2g,h** и индолов **2i,j** с 5бромпиримидином (1) в CF₃COOH протекает с образованием сложных многокомпонентных смесей. Однако применение эфирата трехфтористого бора в качестве кислоты Льюиса в реакциях пиримидина 1 с пирролом (**2g**), *N*-метилпирролом (**2h**), индолом (**2i**) и *N*-этилиндолом (**2j**) в метаноле при комнатной температуре приводит к соответствующим σ^{H} -аддуктам – тетрафторборатам 5-бром-4-(1-R-1*H*-пиррол-2-ил)-3,4-дигидропиримидин-1-ия (**3g,h**) и 5бром-4-(1-R-1*H*-индол-3-ил)-3,4-дигидропиримидин-1-ия (**3i,j**) с хорошими выходами от 48 до 73%, соответственно (Схемы 5 и 6).

В спектрах ЯМР ¹H σ^{H} -аддуктов **3g-j** зарегистрирован сигнал протона при *sp*³-атоме углерода в области 5.28-5.84 м.д., тогда как в спектрах ЯМР ¹³С этих же соединений присут-

ствуют пики в области 53.2-57.1 м.д., также соответствующие *sp*³-гибридизованному атому углерода, что свидетельствует об образовании дигидропиримидинов.

Схема 6

Более того, структура "пиррольных аддуктов" **3g,h** однозначно подтверждена данными рентгеноструктурного анализа (Рис. 5 и 6). Ароматизацию полученных σ^{H} -аддуктов **3g-j** до соответствующих S_N^{H} -продуктов – 5-бром-4-(1-R-1*H*-пиррол-2-ил)пиримидинов **4g,h** и 3-(5-бромпиримидин-4-ил)-1-R-1*H*-индолов **4i,j** осуществляли водным раствором K₃Fe(CN)₆– КОН в течение 2 часов. Продукты *кине*-замещения водорода – 4-(1-R-1*H*-пиррол-2ил)пиримидины (R= H для **5g**, R= Me для **5h**) и 1-R-3-(пиримидин-4-ил)-1*H*-индолы (R= H для **5i**, R= Et для **5j**) были получены с выходами от 23 до 51% дегидробромированием σ^{H} аддуктов **3g-j** в присутствии пиперидина (Схемы 5 и 6), который ранее показал наилучшие результаты при образовании 4-тиенил-замещенных пиримидинов в аналогичных реакциях.

Таким образом, показано, что методология нуклеофильного ароматического замещения водорода является удобным инструментом синтеза C(4) (гет)арилзамещенных пиримидинов, однако, в виду большей ацидофобности и чувствительности к окислителям пиррола и индола, соответствующие S_N^H -продукты были получены с более низкими выходами.

2.1.1.3. Синтез 4,5-ди(гет)арилпиримидинов с использованием реакций $S_N{}^H$ и кросссочетания по Сузуки

4,5-Ди(гет)арилпиримидины описаны в литературе крайне скупо, а общепринятым способом их синтеза является конденсация амидинов с соответствующими 1,2-ди(гет)арил-1,3-дикарбонильными соединениями или их синтетическими аналогами. С целью создания новых более удобных способов синтеза 4,5-ди(гет)арилпиримидинов была исследована реакционная способность полученных ранее 5-(гет)арилпиримидинов (9 и 10) в S_N^H-реакциях, а также 5-бром-4-(гет)арилпиримидинов (4) в катализируемых палладием кросс-сочетаниях.

5-(Гет)арилзамещенные пиримидины 9a-d и 10d,i,j,l были вовлечены в S_N^H -реакции с тем же набором π -избыточных гетероциклов 2a,b,f-j с образованием соответствующих 4,5-ди(гет)арилпиримидинов 13-22 (Схема 7). Промежуточные σ^H -аддукты не выделяли, однако их наличие в реакционных смесях было зафиксировано методом ЯМР ¹H-спектроскопии на примере трифторацетата 4-(5-бромтиофен-2-ил)-5-(тиофен-2-ил)-3,4-дигидропиримидиния

 $^{{}^{5}\}sigma^{H}$ -Аддукт **3g** был выделен в несолевой форме, после обработки водным раствором Na₂CO₃.

CXEMA /

Полученные результаты свидетельствуют о возможности протекания реакций нуклеофильного ароматического замещения водорода с 5-(гет)арилзамещенными пиримидинами в условиях кислотной активации, независимо от электронодонорного или акцепторного характера (гет)арильного заместителя в положении C(5) пиримидинового кольца. Данный факт может быть объяснен с позиции теории резонанса отсутствием влияния заместителя в C(5) положении пиримидинового цикла на положительный заряд соли, возникающий в результате протонирования, в результате его возможной делокализации по положениям C(4), C(6) и C(2) (Схема 8).

Схема 8

Следует также отметить, выраженную зависимость выходов S_N^H -продуктов от стерических затруднений, вызываемых как заместителем в C(5) положении кольца, так и объемным нуклеофилом вводимым в C(4) положение. А именно, с увеличением их размеров, выходы целевых 4,5-ди(гет)арилпиримидинов значительно снижаются.

Показано, что 5-(олиго)тиенилзамещенные пиримидины **11а-с** оказались не применимы для вовлечения в S_N^H -реакции. Так, при взаимодействии 5-([2,2']битиофен-5ил)пиримидина (**11b**) с тиофеном (**2a**) в ранее отработанных условиях кислотной активации содержание желаемого S_N^H -продукта **20а** в реакционной смеси по данным ГЖХ-МС составило всего лишь 5.5%, тогда как основными являлись продукты электрофильного замещения в тиофене **11с** и **20b** (Схема 9).

С целью увеличения выходов 4,5-ди(гет)арилзамещенных пиримидинов был рассмотрен другой вариант их синтеза путем реакций кросс-сочетания по Сузуки в условиях микроволновой активации 5-бром-4-(гет)арилпиримидинов 4 с различными тиенил- и фторарил бороновыми кислотами (Схема 10). Аналогичным образом была продемонстрирована возможность получения соответствующих 4-(гет)арил-5-стирилпиримидинов (23 и 24).

Практически во всех случаях выходы 4,5-дизамещенных пиримидинов, образующихся в реакциях кросс-сочетания по Сузуки, были высокими от 52 до 99%. Исключение составили 5-(2,4-*бис*-трифторметилфенил)-4-(гет)арилпиримидины **17** ј и **18** ј, полученные с выходами 49 и 39%, соответственно. По-видимому, причиной низких выходов в данном случае являются не только стерические затруднения, вызванные CF_3 -группой, поскольку выход соответствующего 5-(2,4-*бис*-трифторметилфенил)пиримидина (**10** ј) также был не высок – 35%, но и электронные факторы – согласованное влияние двух сильных элетроноакцепторных CF_3 -групп на уходящую $B(OH)_2$ -группу. Следует также отметить, что в случае кросссочетания с N–H-незамещенными 5-бром-4-(пиррол-2-ил)- (**4g**) и 5-бром-4-(индол-3-ил)- (**4i**) пиримидинами выделить соответствующие продукты **19с** и **21с** не удалось из-за образования сложных многокомпонентных смесей, содержание в которых по данным ГЖХ-МС целевых 4,5-ди(гет)арилпиримидинов **19с** и **21с** не превышало 1%.

Недостатком данного метода является невозможность получения с его помощью 4-(5бромтиофен-2-ил)-5-(гет)арилпиримидинов (13b-16b), продемонстрированная на примере реакции кросс-сочетания по Сузуки 5-бром-4-(5-бромтиофен-2-ил)пиримидина (4b) с 2тиенилбороновой кислотой (7а) (Схема 11).

Схема 11

Попытки получения 4,5-ди(гет)арилпиримидинов путем вовлечения 5-бром-4-(гет)арилпиримидинов в реакции прямого палладий-катализируемого (гет)арилирования с производными тиофена, по аналогии с описанным выше способом синтеза 5-(олиго)тиенилзамещенных пиримидинов (см. Схема 4) оказались неудачными. Так, реакции 5-бром-4-(тиофен-2-ил)пиримидина (4a) с 2-фенилтиофеном (2c) и [2,2']битиофеном (2d) в ранее найденных оптимальных условиях Б, а именно, в присутствии каталитической системы на основе ацетата палладия(II) и трициклогексилфосфина при микроволновой активации в течение 10 минут, протекали неселективно и давали сложные смеси (Схема 12).

Схема 12

Структуры значительного числа тиенилзамещенных производных 4,5-ди(гет)арил-пиримидинов 13a,d, 15a.c.d. 16b,c,d, 17a,i и 19а были однозначно подтверждены с использованием данных РСА. В отличии от 4-(гет)арилзамещенных пиримидинов, например 4-([2,2']битиофенил-5-ил)пиримидина (5d), имеющего планарное строение с отклонением атомов от среднеквадратичной плоскости менее чем на 0.25 Å (Рис. 4), все 4,5-ди(гет)арилпиримидины имеют неплоскую структуру, в которой заместитель в положении С(4) лежит в плоскости близкой к плоскости пиримидинового кольца, а тиенильный заместитель – в перпендикулярной (Рис. 7 и 8). Например, для 4,5-ди(тиофен-2-ил)пиримидина (13а) двугранные углы между плоскостями пиримидина и тиофенильных колец в положениях С(5) и С(4) составляют 71.6° и 19.6°, соответственно. Остальные пиримидины 15a,c,d, 16b,c,d, 17a,i и 19a имеют сходные кристаллические структуры с отклонением заместителя в положении C(4) от плоскости пиримидина не более чем на 20°, тогда как угол отклонения тиенильного заместителя при C(5) лежит в диапазоне от 70° до 90°.

Рисунок 7. Структура соединения 13а в кристалле

Рисунок 8. Структура соединения 13d в кристалле

Поскольку известно, что нитрофурильный заместитель является фармакоформным фрагментом, отвечающим за антибактериальную активность во множестве лекарственных препаратов, с целью поиска новых биологически активных соединений был разработан удобный способ синтеза широкого ряда 5-арилзамещенных 4-(5-нитрофуран-2ил)пиримидинов (26а-к) кросс-сочетанием соответствующего 5-бром-4-(5-нитрофуран-2ил)пиримидина (25) с фенилбороновой кислотой (3a), а также её фтор- (3b-f) и трифторметилзамещенными (3g-k) производными (Схема 13).

Для более легкого протекания реакции кросс-сочетания Сузуки при синтезе 5-арил-4-(5-нитрофуран-2-ил)пиримидинов (**26а-k**) была применена микроволновая активация (Схема 13, условия А). Следует отметить, что первоначально для синтеза была использована высокая температура 165 °C, успешно применяемая ранее, однако это приводило к сложным многокомпонентным смесям с относительно высоким содержанием от 20 до 30% побочных продуктов **27а-k** по данным ГЖХ-МС. С целью уменьшения содержания 4-ацетил-5арилпиримидинов (**27а-k**) в реакционных смесях температура проведения микроволнового синтеза была уменьшена до 80 °C, это позволило снизить протекание побочных процессов и получить желаемые 5-арил-4-(5-нитрофуран-2-ил)пиримидины (**26а-k**) с выходами от 10 до 71%.

Проведение этих же реакций в условиях "классического" кипячения в течение 10 часов (условия Б) позволило увеличить выходы реакций в ряде случаев в 3-4 раз. Фактически, более высокая скорость реакции в условиях микроволновой активации приводит к более низким выходам целевых продуктов **26а-к** и сопровождается побочными реакциями.

Схема 13

Таким образом, впервые была показана возможность и исследованы различные условия получения труднодоступных 4,5-ди(гет)арилзамещенных пиримидинов, в том числе содержащих фармакоформные фрагменты, с использованием некататализируемых и катализируемых палладием реакций кросс-сочетания. В свою очередь, данные о строении продуктов могут дать информацию при объяснении биологической активности и фотофизических свойств данного класса соединений.

2.1.1.4. Синтез *N*-арил-4-(5-нитрофуран-2-ил)пиримидин-5-аминов с использованием кросс-сочетания по Бухвальду-Хартвигу⁶

С целью расширения синтетического потенциала применяемых в работе палладийкатализируемых процессов, а также увеличения спектра потенциальных биологически акисследована тивных соединений была возможность получения новых 5-4-(5-нитрофуран-2-ил)пиримидинов 29а-ј ариламинозамещенных в условиях кросссочетания по Бухвальду-Хартвигу. На первом этапе нами была проведена оптимизация условий проведения кросс-сочетания 5-бром-4-(5-нитрофуран-2-ил)пиримидина (25) с анилином (28а) в присутствии различных каталитических систем на основе палладия (Схема 14, Таблица 3). Показано, что каталитические системы, включающие бидентатные фосфиновые лиганды – 1,1'-бис(дифенилфосфино)ферроцен (dppf) и 4,5-бис(дифенилфосфино)-9,9диметилксантен (Xantphos), дают наибольшие выходы продукта 4-(5-нитрофуран-2-ил)-*N*фенилпиримидин-5-амина (29а) (Таблица 3, строки 5 и 6). Однако, в виду более низкой стоимости, именно **dppf** был выбран нами для дальнейших исследований данных реакций.

⁶Раздел 2.1.1.4 был выполнен совместно с аспиранткой С.А. Баскаковой.

Схема 14

Таблица 3 – Оптимизация условий реакции 5-бром-4-(5-нитрофуран-2-ил)пиримидина (25) с анилином (28а) в условиях кросс-сочетания по Бухвальду-Хартвигу.

N⁰	Катализатор (экв.)	Лиганд (экв.)	Основание (2.5 экв.)	Растворитель	Выход продукта (29а), %
1	Pd ₂ (dba) ₃ (10 мол%)	Xantphos (0.2)	<i>t</i> BuONa	Толуол	13
2	Pd ₂ (dba) ₃ (10 мол%)	Xantphos (0.2)	<i>t</i> BuONa	1,4-диоксан	41
3	Pd2(dba)3 (10 мол%)	Xantphos (0.2)	K3PO4	1,4-диоксан	58
4	Рd(PPh3)4 (10 мол%)	-	K ₃ PO ₄	1,4-диоксан	0
5	Pd(OAc)2 (10 мол%)	Xantphos (0.2)	K3PO4	1,4-диоксан	76
6	Pd(OAc)2 (10 мол%)	dppf (0.2)	K3PO4	1,4-диоксан	67
7	Pd(OAc)2 (20 мол%)	dppf (0.4)	K ₃ PO ₄	1,4-диоксан	77
8	Pd(OAc)2 (10 мол%)	dppf (0.2)	CH3COOK	1,4-диоксан	0

Далее была изучена возможность вовлечения различных анилинов, содержащих метильные, метокси- или нитрогруппы, в реакции ариламинирования бромзамещенного пиримидина **25** в найденных оптимальных условиях (Схема 15). Практически все *N*-арил-4-(5-нитрофуран-2-ил)пиримидин-5-амины **29**, за исключением **29а** и **29g**, были получены с низкими выходами (2-45%) реакции, а конверсия исходного 5-бром-4-(5-нитрофуран-2-ил)пиримидина (**25**) в реакционных смесях по данным ГЖХ-МС не превышала 40%. Для увеличения выходов целевых продуктов **29а-ј** количества как фосфинового лиганда, так и Pd(OAc)₂ были увеличены в два раза. Это позволило получить соответствующие продукты **29а-ј** с хорошими выходами 29-77% (Схема 15, условия^а).

Схема 15

Примечательно, что как электроноизбыточные (**28b-g**), так и электронодефицитные (**28h-j**) анилины вступали в реакцию кросс-сочетания в равной степени, и какой-либо зависимости выходов реакции от электронных факторов выявлено не было. Однако реакции кросс-сочетания по Бухвальду-Хартвигу были весьма чувствительны к пространственным факторам, и со стерически затрудненными *орто*- (**28h**) и *мета*-замещенными (**28b,d,i**) анилинами приводили к соответствующим *N*-арил-4-(5-нитрофуран-2-ил)пиримидин-5-аминам **29** с более низкими выходами, чем с незамещенным (**28a**) и *пара*-замещенными (**28c,e,j**) анилинами, независимо от выбранных условий реакции.

Таким образом, исследованы комбинации катализируемых (реакция Сузуки и Бухвальда-Хартвига, а также реакция прямого (гет)арилирования) и некатализируемых (реакция нуклеофильного ароматического замещения водорода) палладием кросс-сочетаний и на их основе создана новая методология, позволяющая получать широкий спектр ранее неизвестных и труднодоступных C(4) и/или C(5) моно(гет)арил- и ди(гет)арилзамещенных пиримидинов, перспективных для дальнейшего биотестирования и изучения фотофизических свойств. Выбор той или последовательности реакций определяется взаимным влиянием как электронных, так и стерических факторов заместителей, вводимых в соседние C(4) и/или C(5) положения. Однако в общем случае, если требуется изучить зависимость какого-либо свойства от положения одного из заместителей C(4) или C(5), следует руководствоваться простым правилом: например, если нам нужно проанализировать зависимость в ряду с фиксированным заместителем в положении C(4), то сначала следует осуществить S_N^H-реакцию, а за тем – палладий-катализируемое кросс-сочетание. Если же необходимо варьировать заместитель в 5-ом положении, тогда наоборот – на первой стадии необходимо проводить кросс-сочетание, а потом – нуклеофильное ароматическое замещение водорода.

2.1.2. Синтез тризамещенных пиримидинов с использованием SN^H-реакций и кросссочетания по Сузуки

2.1.2.1. Синтез 4,5-ди(гет)арил-2-(тио)морфолинопиримидинов с использованием реакций SN^H и кросс-сочетания по Сузуки

Известно, что 5-(гет)арил-2-диалкиламино- и 4,5-ди(гет)арил-2-диалкиламинопиримидины, имеющие морфолиновый или тиоморфолиновый заместитель в положении C(2), представляют значительный интерес, проявляя широкий спектр биологической активности. Нашей целью являлась разработка новых методов синтеза 5-(гет)арил- и 4,5ди(гет)арил-2-(тио)морфолинопиримидинов с использованием различных комбинаций реакций S_N^{ipso} , S_N^H и кросс-сочетания по Сузуки на основе коммерчески доступного и дешевого 2-хлорпиримидина (**30**).

Первоначально был проведен синтез 5-бром-2-(тио)морфолинопиримидинов **32а,b** последовательным *ипсо*-замещением хлора в 2-хлорпиримидине (**30**) на морфолиновый или тиоморфолиновый остатки, и последующим бромированием полученных 2-(тио)морфолинозамещенных пиримидинов **31а,b** (Схема 16).

Далее был осуществлен поиск оптимальных условий для проведения реакций кросссочетания по Сузуки в условиях микроволновой активации на примере взаимодействия 5бром-2-(тио)морфолинопиримидинов (**32а,b**) с 3-нитрофенилбороновой кислотой (**8I**) (Схема 17). Для оптимизации условий этих реакций кросс-сочетания был исследован состав реакционных смесей методом ГЖХ-МС при использовании различных комбинаций палладиевых катализаторов [Pd(PPh₃)₄ или Pd(OAc)₂] и фосфиновых лигандов [PPh₃ или PCy₃, где Cy – циклогексил]. Найдено, что лучшим является применение каталитической системы Pd(PPh₃)₄ в смеси ТГФ-H₂O (3:4), поскольку в случае использования ацетата палладия(II) в присутствии PPh₃ или PCy₃ при сопоставимых значениях выходов содержание побочных продуктов Препаративные реакции выше. выходы соответствующих 5-(3-нитрофенил)-2-(тио)морфолинопиримидинов 331 и 341 составили 57 и 60%, соответственно.

Найденные оптимальные условия были использованы для проведения аналогичных реакций 5-бром-2-(тио)морфолинопиримидинов **32а,b** с 2-тиенилбороновой (**7a**), 2-бензо[*b*] тиенилбороновой (**7c**) и 3-бензо[*b*]тиенилбороновой (**7d**) кислотами, в результате которых получены новые производные 5-(гет)арил-2-(тио)морфолинопиримидина **33а,с,d** и **34а,с,d** с выходами от 40 до 57 % (Схема 17).

Схема 17

На примере соединений **33**I и **34**I была исследована возможность вовлечения полученных соединений в реакции нуклеофильного ароматического замещения водорода в условиях кислотной активации (Схема 18). Анализ реакционных смесей методом ГЖХ-МС показал низкую степень конверсии исходных соединений (**33**I и **34**I) и лишь незначительные количества 14 и 4% соответствующих S_N^H -продуктов – 2-морфолино-5-(3-нитрофенил)-4-(2-тиенил)пиримидина (**35**I) и 5-(3-нитрофенил)-4-(2-тиенил)-2-тиоморфолинопиримидина (**36**I) при проведении реакции в течение 3 суток. Увеличение продолжительности реакции до 1 месяца не привело к существенному возрастанию процентного содержания продуктов в реакционной смеси. Лишь 2-морфолино-5-(3-нитрофенил)-4-(2-тиенил)пиримидин (**35**I) удалось выделить с умеренным выходом 21% при использовании полупрепаративной ВЭЖХ. Также при этом был выделен исходный 2-морфолино-5-(3-нитрофенил)пиримидин (**33**I) с выходом 55% (от первоначально взятого количества).

Схема 18

По-видимому, низкие выходы продуктов **351** и **361** в S_N^H -реакциях обусловлены наличием в положении C(2) исходных пиримидинов **331** и **341** донорного (тио)морфолинового заместителя, присутствие которого снижает электрофильность пиримидинового цикла и дезактивирует пиримидин к атаке нуклеофилами.

Поскольку попытки кислотной активации пиримидинов **33** и **34** в S_N^H-реакциях оказались неэффективными, эти процессы были исследованы в условиях активации нуклеофила. Для этого 5-бром-2-(тио)морфолинопиримидины **32а,b** ввводили в реакцию с 2тиениллитием (XIV), получаемым *in situ* действием n-бутиллития на тиофен (2a). Образующиеся при этом промежуточные σ^{H} -аддукты (**XVa**,**b**) окисляли без выделения (Схема 19). Наряду с целевыми 5-бром-4-(2-тиенил)-2-(тио)морфолинопиримидинами (37а,b) происходило образование побочных продуктов **XVI** за счет S_N^H -реакции с *н*-бутиллитием, а также продуктов кине-замещения водорода XVIIb за счет элиминирования молекулы HBr. Кроме данным ГЖХ-МС реакционной смеси при взаимодействии того. по 5-бром-2морфолинопиримидина (**32a**) с 2-тиениллитием (**XIV**) наряду с неидентифицируемыми примесями образовалось соединение **XVIII** с молекулярным ионом m/z 489, которому на основании двумерных ¹H-¹H COSY и ¹H-¹³C HSQC/HMBC ЯМР-экспериментов была приписана структура 5-бром-2,2'-диморфолино-4'-(2-тиенил)-[4,5']бипиримидина.

Схема 19

Бромсодержащие пиримидины **37а,b** далее были вовлечены в реакции кросссочетания по Сузуки с 2-тиенилбороновой (**7a**) и 3-нитрофенилбороновой (**8l**) кислотами в ранее установленных оптимальных условиях при микроволновой активации (155 °C, 20 мин) (Схема 20). Выходы 5-(гет)арил-4-(2-тиенил)-2-(тио)морфолинопиримидинов (**35а,l** и **36 а,l**) составили 42-80%, в зависимости от используемой (гет)арилбороновой кислоты.

Схема 20

Таким образом, впервые показано, что использование тандемных и более сложных последовательностей реакций S_N^H, S_N^{ipso} и кросс-сочетания по Сузуки является эффективной стратегией синтеза новых 2,5-дизамещённых и 2,4,5-тризамещённых пиримидинов, представляющих интерес для дальнейшего биоскрининга.

2.1.2.2. Синтез 4,5,6-три(гет)арилпиримидинов с использованием реакций $S_N{}^H$ и кросссочетания по Сузуки

Синтез 4,5,6-три(гет)арилзамещенных пиримидинов планировалось осуществить путем последовательного введения (гет)арильного заместителя в C(6) незамещенное положение 5-бром-4-(гет)арилпиримидина (4), активное в реакциях нуклеофильного ароматического замещения водорода, и последующей функционализацией C(5) положения через палладийкатализируемые кросс-сочетания. Такая последовательность реакций была выбрана исходя из предыдущих исследований показавших бо́льшую чувствительность S_N^H -реакций к стерическим затруднениям, чем кросс-сочетания по Сузуки.

S_№^Н-реакций Первоначально были предприняты попытки проведения 4-(гет)арилзамещенных пиримидинов в условиях кислотной активации на примере взаимодействия соединений (4а и 5а) с тиофеном (2а) и 2-бромтиофеном (2b). Анализ реакционных смесей по данным ГЖХ-МС после проведения этих реакций в течение 24 часов в среде CF₃COOH и последующего окисления не выявил даже следовых количеств соответствующих 4,6-ди(тиофен-2-ил)пиримидинов (38аа-38bb) (Схема 21). По-видимому, низкая реакционная способность 4-(тиофен-2-ил)замещенных пиримидинов (4а и 5а) в данном случае обусловлена присутствием в С(4) положении электронодонорного тиофенового заместителя, снижающего электрофильность пиримидинового цикла (по аналогии с (тио)морфолиновым фрагментом).

Выявленные трудности удалось преодолеть путем активации нуклеофила. Взаимодействием 2-тиениллития с 5-бром-4-(тиофен-2-ил)пиримидином (4a) был получен соответствующий 5-бром-4,6-ди(тиофен-2-ил)пиримидин (38аа) с выходом 70% (Схема 22), структура которого была однозначно установлена с привлечением РСА (Рис. 9). Вовлечение полученного 5-бром-4,6-ди(тиофен-2-ил)пиримидина (**38аа**) в промотируемую микроволновым излучением реакцию кросс-сочетания по Сузуки с арилбороновыми кислотами **8а,i,m** в течение 20 минут позволило получить желаемые 5-(4-R-фенил)-4,6ди(тиофен-2-ил)пиримидины **39а,i,m** с высокими выходами 87-98%.

Таким образом, впервые предложен новый способ получения 4,5,6три(гет)арилпиримидинов из исходных 4-(гет)арилпиримидинов последовательным применением некатализируемых (S_N^H) и катализируемых палладием кросс-сочетаний по Сузуки.

2.1.3. Рециклизация 4-(2-тиенил)замещенных пиримидинов в 6-тиенилзамещенные 2-амино-3-цианопиридины.

Взаимодействие 4-(гет)арилпиримидинов с С-нуклеофилами путем атаки по С(6) незамещенному положению пиримидинового кольца может давать не только соответствующие S_N^H-продукты – 4,6-ди(гет)арилзамещенные пиримидины (см. предыдущий Раздел 2.2.1.2), но и сопровождаться более сложными превращениями, приводящим к образованию новых гетероциклов. Α именно, нами была исследована трансформация 4-(2тиенил)пиримидинов в соответствующие 6-тиенилзамещенные 2-амино-3-цианопиридины взаимодействием с малонодинитрилом, выступающим в качестве С-нуклеофила. Для большей легкости ее проведения была осуществлена кватернизация производных 6-(2тиенил)пиримидинов 5a-d йодистым метилом. Последующая реакция полученных солей 40ad с малонодинитрилом в присутствии триэтиламина, в качестве основания, привела к соответствующим 2-амино-6-(5-R-тиофен-2-ил)пиридин-3-карбонитрилам (41a-d) (Схема 23).

Схема 23

Дальнейшее бромирование соединения **41a** действием *N*-бромсукцинимида дало 2амино-5-бром-6-(тиофен-2-ил)пиридин-3-карбонитрил (**42**) вместо ожидаемого 2-амино-6-(5бромтиофен-2-ил)пиридин-3-карбонитрила (**41b**) (Схема 24). Обработка пиримидина **41a** избытком *N*-бромсукцинимида (3 экв.) в аналогичных условиях привела к 2-амино-5-бром-6-(5бромтиофен-2-ил)пиридин-3-карбонитрилу (**43**). Структура продукта бромирования **42** подтверждена данными PCA (Рис. 10).

Схема 24

С целью минимизации влияния негативных побочных реакций нами была исследована реакционная способность бромзамещенных 2-амино-3-цианопиридинов **41b**, **42** и **43** по отношению к 2-тиенилбороновой (**7a**), 3-тиенилбороновой (**7b**), 2-фурилбороновой (**7e**) и фенилбороновой (**8a**) кислотам в реакциях кросс-сочетания по Сузуки в мягких условиях (на воздухе, при комнатной температуре).

2-Амино-6-(5-R-тиофен-2-ил)пиридин-3-карбонитрилы (**40с-f**) были получены из 2амино-6-(5-бромтиофен-2-ил)пиридин-3-карбонитрила (**41b**) и (гет)арилбороновых кислот (**7а,b,e** и **8а**) (Схема 25).

Схема 25

Реакции 2-амино-5-бром-6-(тиофен-2-ил)пиридин-3-карбонитрила (42) с (гет)арилбороновыми кислотами (7а,b,e и 8а) были изучены с применением метода ГЖХ-МС (Схема 26). Во всех случаях продукты реакции 44с-f выделить не удалось даже при использовании полупрепаративной ВЭЖХ вследствие их низкого содержания 4.7-14.6% в реакционных смесях. Следует отметить, что хотя данные реакции не приводят к желаемым продуктам 44, при этом удалось вернуть исходный пиридин 42 с выходами от 69 до 89%.

Более сложные смеси побочных продуктов восстановительного дебромирования (42 и 44с-f) и продуктов частичного кросс-сочетания (XXc-f и XXIc-f) с одним атомом брома наблюдались в реакциях кросс-сочетания по Сузуки 2-амино-5-бром-6-(5-бромтиофен-2-ил)пиридин-3-карбонитрила (43) с теми же (гет)арилбороновыми кислотами (7а,b,e и 8а)

(Схема 27). Выделить какие-либо продукты кросс-сочетания в данных реакциях также не удалось, при этом исходное соединение **43** было регенерировано с меньшими выходами от 35 до 87%.

Ar= Ph (8a, 44c, 45c, XIXc, XXc, XXIc), 2-тиенил (7a, 44d, 45d, XIXd, XXd, XXId), 3-тиенил (7b, 44e, 45e, XIXe, XXe, XXIe), 2-фурил (7e, 44f, 45f, XIXf, XXf, XXIf); Су₂NH - дициклогексиламин (из катализатора)

Схема 27

Анализ реакционных смесей показал, что во всех случаях, независимо от использованного бромпроизводного, выходы продуктов кросс-сочетания увеличиваются последовательно от 2-фурилбороновой (7е) к 3-тиенилбороновой (7b) кислоте: $7e < 7a < 8a \le 7b$. Такая последовательность подтверждается литературными данными о весьма умеренных выходах продуктов реакций кросс-сочетания по Сузуки с электроноизбыточными арилбороновыми кислотами в присутствии DAPCy.

Таким образом, перегруппировка 4-тиенилзамещенных пиримидинов является удобным методом синтеза потенциально биологически активных 6-тиенилзамещенных производных 2-амино-3-цианопиридина, которые могут быть легко модифицированы путем последующего бромирования и вовлечения в реакцию кросс-сочетания по Сузуки.

2.2. Синтез новых полициклических систем – тиофеновых аналогов 1,3диазатрифенилена и 1,3-диазапирена

2.2.1. Синтез бензо[f]тиено[3,2-h]хиназолинов и дитиенохиназолинов с применением последовательности реакций S^{NH} и катализируемой палладием внутримолекулярной циклизации

Предложен простой путь синтеза бензо[*f*]тиено[3,2-*h*]хиназолинов (**47а-с**), дитиено[2,3-*f*:3',2'-*h*]хиназолинов (**47d,f**) и дитиено[3,2-*f*:3',2'-*h*]хиназолинов (**47e,g**) (Рис. 11) через катализируемое палладием внутримолекулярное прямое С–Н арилирование и *орто*элиминирование атома брома в соседнем арильном заместителе.

Рисунок 11. Структуры бензо[*f*]тиено[3,2-*h*]хиназолинов (**47а-с**), дитиено[2,3-*f*:3',2'*h*]хиназолинов (**47d,f**) и дитиено[3,2-*f*:3',2'-*h*]хиназолинов (**47е,g**)

Для проведения внутримолекулярной циклизации были выбраны соответствующие субстраты – 4-(3,5-дибромтиофен-2-ил)-5-(гет)арилпиримидины (**46а-g**) (Схема 28). Структура соединения **46a** была однозначно подтверждена данными РСА (Рис. 12). Интересной особенностью, строения соединения **46a**, в отличие от ранее наблюдавшейся зависимости для структур 4,5-ди(гет)арилпиримидинов (**13,15-17** и **19**) (см. Раздел 2.1.1.3), является то, что не только фенильный заместитель при C(5) расположен под углом 43.5° к плоскости пиримидинового кольца, но и дибромтиофеновый фрагмент также "вывернут" и образует двугранный угол 49.4° с плоскостью пиримидинового кольца. Наблюдаемая картина является следствием увеличившихся стерических затруднений вызываемых наличием дополнительного атома брома в C(3) положении тиофенового заместителя. Невысокие выходы (20-55%) S_N^H-продуктов **46а-g** также могут быть объяснены этими же причинами.

Для синтеза тиеноаценов **47а-g** были применены оптимальные условия, ранее использованные нами для прямого гетарилирования тиофенов (см. Раздел 2.1.1.1, Схема 4, условия Б). Реакции протекали в атмосфере аргона в ДМФА при микроволновом облучении при 180 °C в присутствии смеси Pd(OAc)₂ (10 мол%) и PCy₃ (20 мол%) в качестве катализатора и K₂CO₃ (3 экв.) в качестве основания (Схема 29). Выходы полициклических соединений **47а-g** оказались относительно низкими вследствие преобладающей побочной реакции восстановительного дебромирования. По этой же причине не наблюдалось образования бромзамещенных бензо[*f*]тиено[3,2-*h*]хиназолинов и дитиенохиназолинов **48а-g**, а основными побочными продуктами были 5-(гет)арил-4-(тиен-2-ил)пиримидины **13-17**. Отметим, что выделение тиеноаценов **47а-g** из реакционных смесей с использованием колоночной хроматографии является достаточно трудной задачей из-за их низкой растворимости в большинстве обычных органических растворителей.

Схема 29

С целью получения новых тиофеновых аналогов 1,3-диазатрифенилена (**47а-g**) с бо́льшими выходами нами был продолжен поиск более удобных подходов к их синтезу.

2.2.2. Использование окислительных фотоциклизаций для синтеза новых полициклических систем на основе 4,5-ди(гет)арил- и 4,5,6-три(гет)арилпиримидинов

Для изучения фотоциклизаций были выбраны ранее полученные 4,5дитиенилзамещенные пиримидины **13а-16а**. Соединения **13а-16а** подвергались окислительной фотоциклизации при облучении ультрафиолетовой лампой (450 Вт) при комнатной температуре в растворе толуола в присутствии избытка пропиленоксида, выступающего в роли поглотителя выделяющегося йодистого водорода.

После облучения в течение 20 часов целевые дитиено[2,3-f:3',2'-h]хиназолины (47d,f) и дитиено[3,2-f:3',2'-h]хиназолины (47e,g) были получены с выходами от умеренных до хороших 22-64% (Схема 30). Установлено, что препаративные выходы [1]бензотиенотиенохиназолинов 47e,g были ниже, чем у дитиенохиназолинов 47d,f. Эти результаты могут быть объяснены более низкой растворимостью как исходных пиримидинов 15a,16a, так и полициклических продуктов 47f,g, а также протеканием побочных радикальных реакций.

Схема 30

Была исследована возможность дальнейшей функционализации полученных тиеноаценовых систем на примере бромирования дитиенохиназолинов **47d**, е. По данным ГЖХ-МС при бромировании дитиено[2,3-*f*:3',2'-*h*]хиназолина (**47d**) избытком *N*-бромсукцинимида (5 экв.) в течение 24 часов в ДМФА при комнатной температуре происходит образование сложной смеси монобром- (**47h**,**k**,**l**) и дибромзамещенных (**47i**,**m**,**n**) продуктов, выделить которые в индивидуальном виде не удалось (Схема 31).

Схема 32

Для доказательства структуры монобромзамещенного дитиено[2,3-f:3',2'-h]хиназолина 47h был осуществен его встречный синтез окислительной фотоциклизацией ранее полученного 4-(5-бромтиофен-2-ил)-5-(тиофен-2-ил)пиримидина (13b) (Схема 33). Структура полученного 9-бромдитиено[2,3-f:3',2'-h]хиназолина (47h) была однозначно установлена с использованием РСА (Рис. 13). Структура бромдитиено[3,2-*f*:3',2'-*h*]хиназолин (**47j**) также была однозначно определена встречным синтезом с использованием окислительной фотоциклизации ранее полученного 4-(5-бромтиофен-2-ил)-5-(тиофен-3-ил)пиримидина (**14b**) (Схема 34). По данным ГЖХ-МС времена удержания и масс-спектры соединений **47h**,**j** совпали с таковыми для продуктов реакции бромирования дитиенохиназолинов **47d**,**e**.

Наконец, в результате бромирования 4,5-ди(тиофен-2-ил)пиримидина (**13a**) и последующей фотоциклизации в аналогичных условиях полученного 4,5-*бис*(5-бромтиофен-2ил)пиримидина (**13e**) был осуществлен синтез 6,9-дибромдитиено[2,3-*f*:3',2'-*h*]хиназолина (**47j**) с выходом 55% (Схема 35).

Таким образом, было установлено что бромирование дитиенохиназолинов является неселективным процессом, приводящим к сложным смесям продуктов, тогда как моно- и дибромзамещенные дитинохиназолины могут быть легко получены путем прямой фотоциклизации соответствующих бромзамещенных 4,5-дитиенилпиримидинов.

Далее была показана возможность проведения окислительной фотоциклизации на примере 5-(4-R-фенил)-4-(тиофен-2-ил)пиримидинов **17а,i,m**⁷ в растворе ацетонитрила в присутствии 1 экв. йода в качестве окислителя (Схема 36). Время протекания реакций увеличивается в ряду *t*-Bu<H<CF₃ групп в фенильном заместителе, что хорошо коррелирует с ростом электроноакцепторного характера заместителя R.

Попытки модификации бензо[f]тиено[3,2-h]хиназолинов (**47а-с**) с использованием S_N^H -реакций с тиофеном (**2a**) в условиях кислотной активации оказалась неудачными, и соответствующие продукты – 4-(тиофен-2-ил)-7-R-бензо[f]тиено[3,2-h]хиназолины (**47аа-47са**) не удалось зафиксировать даже в реакционных смесях методом ГЖХ-МС (Схема 36).

⁷Соединение **17m** получено с выходом 78% реакцией кросс-сочетания по Сузуки в условиях микроволновой активации 5-бром-4-(тиофен-2-ил)пиримидин (**4a**) с 4-*трет*бутилфенилбороновой кислотой в смеси 1,4-диоксан–H₂O (4:3) в присутствии Pd(PPh₃)₄ и K₂CO₃ (170 °C, 20 мин.).

Облучение 5-(4-R-фенил)-4,6-ди(тиофен-2-ил)пиримидинов **39а,i,m** УФ-лампой (450 Вт) в растворе ацетонитрила в присутствии 2 экв. йода в качестве окислителя позволило получить соответствующие 8-R-бензо[*gh*]дитиено[2,3-*e*:3',2'-*j*]перимидины **49а-с** с умеренными выходами до 51% (Схема 37). Следует отметить, что данный процесс протекает как двойная фотоциклизация поскольку по данным ГЖХ-МС молекулярные ионы, соответствующие молекулярным массам промежуточных 4-(тиофен-2-ил)-7-R-бензо[*f*]тиено[3,2-*h*]хиназолинов (**47аа-47са**), не были зафиксированы в реакционных смесях.

Структура 8-(трифторметил)бензо[*gh*]дитиено[2,3-*e*:3',2'-*j*]перимидина (**49b**) была установлена с применением PCA (Рис. 14). Согласно которым, соединение **49b** кристаллизуется в центросимметричной пространственной группе. Полициклическая система имеет плоское строение с отклонением не более 0.05 Å. Длины связей С–С в полиароматической системе варьируются от d(C19-C20)=1.332(5) Å до d(C13-C14)=1.456 (5) Å. Для соединения **49b** не наблюдается структур типа "ёлка", и расположение молекул в общем случае можно описать как одномерную сетку со сдвигом молекулярных стопок, межплоскостные расстояния между соседними молекулами в которых составляют 3.449 и 3.482 Å.

Таким образом, был разработан простой удобный метод получения ранее неизвестных полициклических систем с использованием окислительных фотоциклизаций легкодоступных 4,5-ди(гет)арил- и 4,5,6-три(гет)арилзамещенных пиримидинов. Единственным существенным недостатком данной синтетической методологии является длительное время облучения, необходимое для завершения реакций циклизации.

2.2.3. Синтез тиофеновых аналогов 1,3-диазатрифенилена с использованием внутримолекулярной S_N^H-реакции

Был рассмотрен и другой вариант замыкания 1,3-диазатрифениленового цикла – когда С–С связь наводится между биарильным фрагментом при С(5) и пиримидиновым циклом в положении С(4) в условиях реакции внутримолекулярного ароматического замещения водорода. В качестве исходных пиримидинов с биарильным фргаментом была выбрана серия 5-[2-(гет)арилбензо[*b*]тиофен-3-ил]пиримидинов (**52а-е**) с различными (гет)арильными фрагментами (Схема 38).

Схема 38

Полученные пиримидины (**52а-е**) были вовлечены во внутримолекулярные S_N^H реакции в условиях кислотной активации, предполагаемый механизм которых приведен на схеме 39. Из тиенилзамещенных пиримидинов **52а,b** получены полициклические продукты **47g** и **53** с выходами 71 и 64%, соответственно.

При попытке циклизации в аналогичных условиях арилзамещенных пиримидинов **52с-е** по данным ГЖХ-МС реакционных смесей образование ожидаемых продуктов **54-56** не фиксировалось, а исходные соединения **52с-е** были регенерированы с применением колоночной хроматографией с выходами 76-90%. По-видимому, это можно объяснить более низкой нуклеофильностью арильных заместителей в сравнении с тиенильными циклами или же возможным протонированием трифторуксусной кислотой атомов азота в этих фрагментах при проведении циклизации, которое может превратить их из нуклеофилов в электрофилы, и, следовательно, существенно затруднить их нуклеофильную атаку на пиримидиновый фрагмент молекулы.

Таким образом, в результате исследований, проведенных в данном разделе, было впервые показано, что внутримолекулярное нуклеофильное ароматическое замещение водорода также являются удобным способом синтеза тиеноценовых структур на основе пиримидина.

Схема 39

2.2.4. Фотофизические и электрохимические свойства новых полициклических систем на основе пиримидина

Согласно литературным данным, трифенилен и его гетероаналоги представляют интерес в качестве компонентов для создания органических полупроводниковых материалов. Полупроводниковые свойства в органических соединениях определяются шириной (энергией) запрещенной зоны. Энергия запрещенной зоны (E_g) обозначает разницу между энергиями высшей занятой молекулярной орбитали (НОМО) и низшей свободной молекулярной орбиталью (LUMO), по аналогии с валентной зоной и зоной проводимости в неорганических полупроводников, соответственно. Типичные органические полупроводники имеют значения энергиии запрещенной зоны ~2-3 эВ.

С целью прогноза полупроводниковых свойств для полученных тиофеновых аналогов 1,3-диазатрифенилена (**47а-g** и **53**) были выполнены квантово-химические расчеты⁸ с использованием теории функционала плотности (DFT) в газовой фазе в базисе B3LYP/6-31+G* с использованием программного пакета Orca 4.0.1. Согласно проведенным расчетам электронная плотность равномерно распределена по сопряженной полициклической системе и введение как электронодонорного (47b), так и электроноакцепторного (47c) периферийного заместителя не вызывает ее существенного сдвига. Следует также отметить, что полученные расчетные значения энергий ВЗМО в вакууме в диапазоне от -6.03 до -6.65 эВ, являются характерными для тиеноценовых структур и лежат ниже порогового критерия энергии ВЗМО равного -5.0 эВ, учитываемого при разработке органических полевых транзисторов. Расчетная ширина запрещенной зоны (Eg^{calc}) имеет значения от 3.94 до 4.46 эВ, что по значениям более близко́ к изоляторам, чем к полупроводникам. Однако, принимая во внимание влияние растворителей, экспериментальные значения энергий граничных орбиталей могут значительно отличаться от расчетных. Поэтому нами была проведена экспериментальная оценка энергетических характеристик полученных полициклических систем (47а-д и 53) на основе данных циклической вольтамперометрии (ЦВА). Значения потенциалов начала окисления (E_{Ox}^{onset}) и начала восстановления (*E*_{Red}^{onset}) определеяли при комнатной температуре с использованием ферроцена в качестве внутреннего стандарта. Величины энергий НСМО и ВЗМО могут быть вычислены, соответственно, по формулам (1) и (2):

$$E_{\text{B3MO}} = -[E_{\text{Ox}}^{\text{onset}} - E_{1/2}(\text{Fc/Fc}^{+}) + 5.1] \Im B \qquad (1),$$

$$E_{\text{HCMO}} = -[E_{\text{Red}}^{\text{onset}} - E_{1/2}(\text{Fc/Fc}^{+}) + 5.1] \Im B \qquad (2),$$

где $E_{1/2}(Fc/Fc^+)$ – потенциал полуволны пары Fc/Fc⁺ по отношению к Ag/Ag⁺ электроду, а величина 5.1 эВ – окислительный потенциал пары ферроцен–ферроцений (Fc/Fc⁺) относительно вакуума. Полученные результаты электрохимических исследований для соединений **47аg** и **53** обобщены в Таблице 4.

Попытки определения как потенциалов окисления, так и потенциалов восстановления для дитиено[2,3-f:3',2'-h]хиназолинов (**47d,f**) и дитиено[3,2-f:3',2'-h]хиназолинов (**47e,g**) в растворе ТГФ оказались безуспешными. Циклическая вольтамперограммы, выполненные в безводном дихлорметане, для бензо[f]тиено[3,2-h]хиназолинов (**47a-c**) и бензо[b]тиено[3,2-f]тиено[2,3-h]хиназолина (**53**) демонстрируют необратимый характер окисления этих полициклических систем. Значения энергий низших свободных молекулярных орбиталей (E_{LUMO}^*) для соединений **47a-c** и **53** были вычислены суммированием значения оптической энергетической щели определено по УФ-спектрам соединений **47a-c** и **53**, исходя из энергии излучения соответствующей началу длинноволновой полосы поглощения.

Таким образом, несмотря на то, что экспериментально наблюдаемые значения энергий граничных орбиталей и энергетических щелей для полициклических систем (**47а-g** и **53**) являются более низкими (в некоторых случаях до ~1.5 эВ) по сравнению с данными квантово-химических расчетов, наблюдается хорошая корреляция между ними. Кроме того, про-

⁸Расчеты энергий граничных молекулярных орбиталей выполнены м.н.с. лаборатории гетероциклических соединений Г. А. Кимом (ИОС УрО РАН)

слеживается четкая зависимость уменьшения энергии оптической энергетической щели (E_g^{opt}) от 0.1 до 0.37 эВ при переходе от бензо[*f*]тиено[3,2-*h*]хиназолинов (**47а-с**) к дитиенохиназолинам (**47d-g** и **53**), ранее замеченная при переходе от аценовых к тиеноаценовым структурам. Полученные значения энергий оптической щели 3.16-3.53 эВ для соединений **47а-g** и **53** близки к значению $E_g^{opt} = 3.29$ эВ для ранее описанного структурно близкого тиеноцена **DTNQ**, обладающего полупроводниковыми свойствами.⁹

Соелинение	Растворитель	Eox ^{onset} , EHOMO,	Elumo*,	$E_{g^{opt}},$	Поглощение λ _{max} (нм) /ε	
		эВ	эВ	эВ	эВ	(10 ³ л·моль ⁻¹ · см ⁻¹)
						350 / 3.4
47a	CH ₂ Cl ₂	0.33	-4.95	-1.49	3.46	333 / 5.4
-r/u	0112012	0100		11.7	0110	319 / 6.6
						294 / 18.9
						353/3.8
47b	CH_2Cl_2	0.38	-5.00	-1.56	3.44	33073.0
						294 / 18 7
						349/ 2.8
		0.72	5 20	1.07	2.52	332 / 4.7
47c	CH_2Cl_2	0.72	-5.39	-1.86	3.53	321 / 6.5
						297 / 15.5
	ΤΓΦ	-	-	-		361 / 4.1
47d					3.32	344 / 4.7
-1/u						329 / 4.6
						285 / 48.0
		-	-	-		351/6.5
47e	ΤΓΦ				3.36	335 / 7.3
						278/27.2
						249/34.3
		_	_			356 / 5 9
47f	ΤΓΦ			-	3.16	337 / 7.8
	11 1					304 / 38.8
						254 / 26.9
						374 / 8.3
47 a	ТГФ				3 20	355 / 8.2
47g	$\Pi \Psi$	-	-	-	5.20	340 / 9.7
						274 / 43.9
		1.34				367 / 3.5
53	CH ₂ Cl ₂		-6.20	-3.04	3.16	348 / 3.9
						275 / 11.9
						238 / 10.4

Таблица 4 – Электрохимические и оптические свойства полициклических систем (47а-g и 53).

 $E_{\text{ox}}^{\text{onset}}$ – потенциал начала окисления (Onset oxidation potential);

 $E_{LUMO}^* = E_{HOMO} + E_g$ –энергия низшей свободной молекулярная орбитали (HCMO).

Для экспериментального исследования оптических свойств соединений 8-Rбензо[*gh*]дитиено[2,3-*e*:3',2'-*j*]перимидинов (**49а-с**) в сравнении с исходными 5-(4-R-фенил)-4,6-ди(тиофен-2-ил)пиримидинами (**39а,i,m**) и 5-бром-4,6-ди(тиофен-2-ил)пиримидином (**38аа**) были записаны спектры поглощения электромагнитного излучения в УФ и видимой областях спектра, а также их спектры фотолюминесценции (Таблица 5).¹⁰ Положение наблюдаемых максимумов поглощения не зависит от заместителя R в фенильной части молекул. Сходство спектральных характеристик 4,5,6-три(гет)арилпиримидинов **39а,i,m** и 5-бром-4,6-

⁹Black, H. T. Synthesis, Crystal Structures, and Electronic Properties of Nonlinear Fused Thienoacene Semiconductors / H. T. Black, S. Liu, V. S. Ashby // Org. Lett. – 2011. – 13(24). – P. 6492–6495.

¹⁰Выражаю признательность академику В. И. Минкину, д.х.н. А. В. Метелица и к.х.н. Н. И. Макаровой (НИИ ФОХ ЮФУ) за помощь в исследовании оптических свойств соединений.

ди(тиофен-2-ил)пиримидина (**38аа**) можно объяснить тем, что фенильный заместитель в положении C(5) благодаря стерическим факторам развернут относительно плоскости пиримидинового цикла.

Таблица 5 – Оптические свойства 8-R-бензо[<i>gh</i>]дитиено[2,3- <i>e</i> :3',2'- <i>j</i>]перимидинов (49а-с), а
также исходных 5-(4-R-фенил)-4,6-ди(тиофен-2-ил)пиримидинов (39а,i,m) и 5-бром-4,6-
ли(тиофен-2-ил)пиримилина (38аа)

Сооти	Поглощение	Фотој	пюминесценция			
Соеди-	λ (_{max} HM) /ε	Возбуждение	Испускание	— а		
нение	$(10^3 \text{л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1})$	λ _{max} (нм)	λтах (нм)	${oldsymbol{\Psi}}_{\mathrm{F}}$		
3800	340 / 2.59					
30 00	278 / 2.17	-	-	-		
30 a	336 / 1.86	337	206	0.07		
39a	276 / 1.48	275	390	0.07		
20m	336 / 2.01	337	405	0.06		
39 III	276 / 1.64	275	403	0.00		
20;	336 / 2.51	337	200	0.05		
391	276 / 2.01	275	300			
	381 / 2.07	381	450			
40 a	361 / 2.13	362	428	0.11		
49a	302 / 2.99	303	405	0.11		
	254 / 2.20	254	383			
	387 / 2.04	387	460			
40b	367 / 2.10	366	434	0.13		
470	303 / 3.02	303	411	0.15		
	257 / 2.56	262	389			
	380 / 1.86	380	450			
400	361 / 1.97	360	426	0.10		
770	305 / 3.36	305	403	0.10		
	257 / 1.99	262	381			

^аКвантовые выходы флуоресценции (\pm 10%), определены относительно бисульфата хинина в 0.05 М H₂SO₄ в качестве стандарта ($\Phi_{\rm F} = 0.52$).

Для определения окислительно-восстановительных потенциалов производных 1,3диазапирена **49а-с** была выполнена циклическая вольтамперометрия (Таблица 6). Поскольку для 1,3-диазапиренов **49а-с** также не удалось зафиксировать пик восстановления в катодной области, то значения энергий их низших свободных молекулярных орбиталей (E_{LUMO}^*) были вычислены суммированием значений оптической энергетической щели (E_g^{opt}) и энергии высшей занятой молекулярной орбитали (E_{HOMO}).

Таблица 6 – Электрохимические свойства 8-R-бензо[gh]дитиено[2,3-e:3',2'-j]перимидинов

	(49 a-c).						
N₂	Соединение	$E_{\text{ox}}^{\text{onset}}$, $\Im \mathbf{B}$	<i>Е</i> номо, эВ	E lumo*, \Im B	$E_{ m g}^{ m opt}$, $ m f B$		
1	49a	0.30	-4.92	-1.67	3.25		
2	49b	0.70	-5.32	-2.12	3.20		
3	49c	0.58	-5.20	-1.94	3.26		

Теоретически предсказанные энергии ВЗМО, НСМО и энергетической щели (Таблица 6) отличаются от значений, полученных экспериментально, из-за приближенного характера используемого обменно-корреляционного функционала. Тем не менее, основные тенденции их изменений в ряду соединений **49а-с**, рассчитанные теоретически и полученные экспериментально, находятся в хорошем соответствии между собой. Значения оптической ширины запрещенной зоны 3.20-3.26 эВ для 1,3-диазапиренов (**49а-с**), близки к значениям энергий оптической щели 3.16-3.53 эВ для тиофеновых аналогов 1,3-диазатрифенилена (**47а-g** и **53**) и харктерны для типичных органических полупродниковых материалов ~3 эВ.

Таким образом, были не только разработаны синтетические подходы к новым тиеноаценовым структурам на основе пиримидина, но и на основе квантово-химических расчетов и экспериментальных данных продемонстрирована возможность наличия у них полупроводниковых свойств.

2.3. Практическое применение полученных (гет)арилзамещенных пиримидинов

Нами были рассмотрены и исследованы три возможных направления практического приложения получаемых функциональных пиримидинов:

1. Изучение биологической (противотуберкулезной и антибактериальной активности);

2. Возможность применения в качестве красителей-сенсибилизаторов для солнечных батарей;

3. Использование в качестве мономолекулярных сенсоров на нитроароматические соединения.

2.3.1. Оценка биологической активности характерных представителей синтезированных соединений

2.3.1.1. Туберкулостатическая активность¹¹

Первичный скрининг *in vitro* на туберкулостатическую активность был осуществлен в лаборатории диагностических и экспериментальных методов исследования Уральского научно-исследовательского института фтизиопульмонологии (г. Екатеринбург) методом вертикальной диффузии с использованием как лабораторных штаммов *Mycobacterium tuberculosis* H₃₇Rv, *Mycobacterium avium*, *Mycobacterium terrae*, так и резистентного к Рифампицину и Изониазиду штамма *Mycobacterium tuberculosis*, выделенного сотрудниками УНИ-ИФ из мокроты пациентов Уральского региона. В качестве препаратов сравнения использовали лекарственные препараты – Изониазид и Пиразинамид, испытанные в аналогичных условиях. Для наиболее активных соединений была изучена острая токсичность на белых мышах. Об осторой токсичности соединений судили по величинам среднесмертельных доз (ЛД₅₀, *мг/кг*), вызывающих гибель 50% животных. ЛД₅₀ рассчитывали по Литчфильду-Уилкоксону.

Первоначально был осуществлен скрининг туберкулостатической активности в ряду 4-(гет)арил-5-стирилпиримидинов (**23а-d** и **24а-d**). Большая часть (**23а,b,d** и **24а,b,d**) протестированных соединений имела умеренный уровень туберкулостатической активности со значениями минимальной ингибирующей концентрации 6.25-12.5 *мкг/мл*, тогда как введение [2,2']битиофенильного заместителя в положение C(4) пиримидинового кольца сопровождается значительным, более чем в 8 раз, увеличением противотуберкулезной активности пиримидинов **23с** и **24c** (МИК =1.5 *мкг/мл*). Хотя полученные значения минимальной ингибирующей конецентрации для соединений **23c** и **24c** были ниже значений МИК для препарата сравнения пиразинамид, их острая токсичность оказались в 1.3-1.7 раза выше, чем у изониазида.

В продолжение исследований в данном направлении проведен скрининг и анализ "структура – антимикобактериальная активность" в ряду 32 производных C(4) и/или C(5) моно(тиенил)- и ди(тиенил)замещенных пиримидинов (4с,d, 13а-d, 14а-d, 15а-d и 16а-d). Как 4-незамещенные 5-тиенилпиримидины (9а-с,е и 11а,b), так ии 5-незамещенные 4-тиенилпиримидины (5а-d) продемонстрировали низкий уровень туберкулостатической активности (МИК = 6.25-12.5 *мкг/мл*). Напротив, 5-бромзамещенные пиримидины 4а-d показали значительный уровень ингибирующих свойств в отношении различных штаммов микобактерий (МИК до 0.35 мкг/мл). Показано, что замена атома брома в положении C(5) на тиенилный фрагмент, как правило, приводит к снижению туберкулостатической активности (МИК = 6.25-12.5 *мкг/мл*). Введение [2,2']битиофенильного и 5-фенилтиенильного заместителей в положение C(4) сопровождается значительным увеличением противотуберкулезной активности пиримидинов (например, для 4d, 11а,b, 14d и 15d), достигая максимальных значений минимальной ингибирующей концентрации 0.37 и 0.15 *мкг/мл* для соединений 16d и 16с, соответственно, сопоставимых с активностью препарата сравнения изониазид (МИК = 0.1 *мкг/мл*). Для наиболее активных соединения 4а,с, 9d, 13d и 16b,d с МИК $\leq 1.5 \, mkr/m$

¹¹Выражаю признательность к.б.н. М.А. Кравченко, д.м.н. И. Д. Медвинскому, д.м.н. С.Н. Скорнякову (УНИ-ИФ) за помощь в исследовании туберкулостатической активности и острой токсичности полученных производных пиримидина.

ла определена острая токсичность на белых мышах. Некоторые из протестированных соединений оказались менее токсичными, чем изониазид. Так, в случае 5-бромзамещенных соединений **4а,с** острая токсичность была почти в два раза ниже, чем для соединения **13d**. Тем не менее, наиболее активные 4,5-ди(гет)арилпиримидины **16с,d** оказались более токсичными, чем препараты сравнения.

Аналогичным образом, был проведен скрининг и анализ туберкулостатической активности в ряду 5-(фтор)арилзамещенных пиримидинов (**10а-k**) в сравнении с 5фенилзамещенными пиримидинами (**17а-k** и **18а-k**). Значительное число протестированных соединений (**10а,b,d,h-j**, **17b-f** и **18b,d,e,h,i**) обладало низкой туберкулостатической активностью с МИК = 12.5 *мкг/мл*. Кроме того, замечено, что введение атома фтора в фенильном заместителе при C(5) положении пиримидинов (**10b-d**, **17b-f** и **18b,d-f**) не приводит к росту их противотуберкулезной активности. Исключениями являются наличие либо одного атома фтора при C(3) в фенильном заместителе (соединение **18c** с МИК = 1.5 *мкг/мл*), либо двух атомов фтора в C(2) и C(4) положениях 5-арильного заместителя в соединении **10e** (МИК = $3.1 \ mkr/mn$) или в C(3) и C(5) 5-арильного заместителя в соединении **10f** (МИК = 0.7 *мкг/mл*).

Напротив, 5-арилзамещенные пиримидины **10k**, **17h**, **18j** и **18k**, содержащие одну или две CF₃-группы, продемонстрировали значительный уровень ингибирующих свойств в отношении различных штаммов микобактерий (МИК от 3.1 до 0.35 мкг/мл). Нефторированный 5-фенилпиримидин **18a** также имел высокое значение МИК, равное 0.35 *мкг/мл*.

Следует отметить, что в рядах как 5-фенилзамещенных (10а, 17а, 18а), так и 5-(2,4бис-трифторметилфенил)замещенных (10j, 17j и 18j) пиримидинов противотуберкулезная активность растет в следующей последовательности 10а, j<17а, j<18a, j: от C(4) незамещенных (10a, j) к 4-(2-фурил)замещенным (18a, j) пиримидинам. В ряду C(3) и C(5) фторфенилили трифторметилфенилзамещенных пиримидинов нет однозначной зависимости изменения активности от положения и числа заместителей, однако пиримидины, несущие атом фтора в положении C(3) фенильной группы, обычно более активны, чем их аналоги с CF₃-группой (например, для сравнения 10с и 10h, 10f и 10k, 18c и 18h).

Для наиболее активных соединений **10f**, **18a** и **18j**, имеющих величины МИК ≤ 0.7 *мкг/мл* против штамма *Mycobacterium tuberculosis* H₃₇Rv, была определена острая токсичность. Все три рассмотренные соединения показали более высокие значения ЛД₅₀ (от 150 до 600 *мг/кг*), чем у изониазида (ЛД₅₀ = 133 *мг/кг*). При этом для нефторированного 5-фенил-4-(2-фурил)пиримидина (**18a**) острая токсичность оказалась в два и четыре раза ниже, чем у фторированных производных **10f** и **18j**, соответственно. Таким образом, пиримидины **10f** и **18j** можно рассматривать как потенциальные кандидаты для разработки новых противотуберкулезных агентов.

Скрининг в ряду 2-(тио)морфолинопиримидинов (**33с,d,l**, **34d,l**, **35l**, **36l** и **37a,b**) не выявил активных соединений (МИК от 12.5 до 6.25 *мкг/мл*).

2.3.1.2. Антибактериальная активность¹²

Для полученных 4-(5-нитрофуран-2-ил)замещенных пиримидинов (**25**, **26а-k и 29а-j**) сотрудниками научного экспериментально-лабораторного отдела Уральского научноисследовательского института дерматовенерологии и иммунопатологии (Екатеринбург) был проведен скрининг на антибактериальную активность. Для изучения антибактериальной активности пиримидинов **25**, **26а-k** и **29а-j** проведено определение минимальных ингибирующих концентраций по отношению к контрольным штаммам *Neisseria gonorrhoeae* NCTC12700/ATCC49226, NCTC 8375/ATCC19424 и клиническим штаммам *Neisseria gonorrhoeae* SpeS, AzmR и *Neisseria gonorrhoeae* SpeS, AzmS, а также в отношении контрольных штаммов патогенных и условно-патогенных микроорганизмов из международных коллекций ATCC и российской Государственной коллекции патогенных микроорганизмов: грамотрицательным палочкам (*Escherichia coli* ATCC 8739, *Citrobacter braakii* ATCC 101/57, *Shigella flexneri* 1a8516, *Proteus vulgaris* ГКПМ 160125 (222), *Serratia marcescens* ATCC 13880,

¹²Выражаю признательность к.б.н. Н.А. Герасимовой и д.м.н. Н. П. Евстигнеевой (УрНИИДВиИ) за помощь в исследовании антибактериальной активности и цитотоксичности полученных производных пиримидина.

Klebsiella pneumoniae ATCC 13883), неферментирующим грамотрицательным палочкам (*Pseudomonas aeruginosa* ATCC 9027) и грамположительные коккам (*Streptococcus piogenes* ATCC 19615, *Staphylococcus aureus* ATCC 25923/NCTC 12981(F-49), *Staphylococcus aureus MRSA* NCTC12493). В качестве лекарственного препарата сравнения для изучения бактериостатической активности был использован спектиномицин.

gonorrhoeae Скрининг в отношении контрольных штаммамов Neisseria NCTC12700/ATCC49226 и Neisseria gonorrhoeae NCTC 8375/ATCC19424 выявил восемь соединений (25 и 26а-е.д.) с высоким уровнем противогонококковой активности (МИК до 0.97), для которых были проведены расширенные испытания. Установлено, что соединения 25 и 26а-с являются высокоактивными против штаммов N. gonorrhoeae и S. aureus с величинами МИК до 0.97 и 7.8 мкг/мл, соответственно. Кроме того, пиримидин 25 показал значительную ингибирующую активность в отношении S. flexneri RCPM 1a8516 с величиной МИК равной 7.8 мкг/мл. Примечательно, что 5-(фтор)арил-4-(5-нитрофуран-2-ил)пиримидины, несущие атом фтора в различных положениях фенильной группы, обычно более активны, чем их аналоги с CF₃-группой (например, величины МИК для 26b<26g, 26c<26h, 26d<26i).

Протестированные пиримидины 25 и 26а оказались в два и три раза менее токсичными в экспериментах на белых мышах, чем препарат сравнения изониазид.

Аналогичным образом, был проведен скрининг и анализ антибактериальной активности в ряду 5-ариламино-4-(5-нитрофуран-2-ил)пиримидинов (**29а-j**). Общая тенденция в данном ряду соединений заключается в том, что NO₂-фенилзамещенные производные **29h-j** обладали более низкой антибактериальной активностью, чем аналогичные CH₃- или CH₃Oфенилзамещенные пиримидины **29b-g**. Пиримидины **29b,d** с CH₃- или CH₃O-группами в *мета*-полжении фенильного кольца проявили значительно более высокую активность против штаммов *S. pyogenes* и *S. aureus*, которая от 4 до 278 раз превышает активность препарата сравнения спектиномицина. С другой стороны, было установлено, что 4-(5-нитрофуран-2ил)-*N*-(3,4,5-триметоксифенил)пиримидин-5-амин (**29g**) является наиболее эффективным агентом, с величинами МИК от 3.9 до 0.45 *мкг/мл*, против бактерий *N. gonorrhoeae*, включая штаммы с множественной лекарственной устойчивостью.

Пять соединений **29а,с,е-д**, проявивших высокий уровень активности против *Neisseria* gonorrhoeae NCTC8375/ATCC19424 (МИК от 0.9 до 3.9 *мкг/мл*), также были протестированы в отношении микобактерий *M. tuberculosis* H₃₇Rv. Обнаружено, что только 4-(5-нитрофуран-2-ил)-*N*-фенилпиримидин-5-амин (**29а**) демонстрирует относительно высокий уровень туберкулостатической активности (МИК = $1.5 \ mkr/mn$), тогда как все остальные соединения **29с,е-д**, показали низкий уровень активности против микобактерий *M. tuberculosis* H₃₇Rv (МИК = $12.5 \ mkr/mn$).

Большинство испытанных соединений **29с-h** проявили низкий цитотоксический эффект на клетках McCoy B. Интересно, что шесть соединений (**29с-h**), демонстрирующих наиболее высокую антибактериальную активность и низкую цитотоксичность, имели CH₃или CH₃O-группы в различных положения анилинового фрагмента.

Из полученных результатов сделано заключение о перспективности поиска в ряду полученных соединений эффективных медицинских препаратов для лечения больных с заболеваниями мочеполовой системы, вызванными гонококками и/или золотистым стафилококком, а также гнойно-воспалительных инфекционных заболеваний кожи и слизистых оболочек, вызванными стафилококками и стрептококками.

2.3.2. Применение полученных соединений в качестве красителей-сенсибилизаторов для солнечных батарей

2.3.2.1. Красители-сенсибилизаторы для солнечных батарей на основе производных пиримидина

Работа сенсибилизированных красителями солнечных батарей (ячеек Гретцеля) основана на поглощении света мезопористыми нанокристаллическими широкозонными полупроводниками, как правило, на основе TiO₂ с адсорбированными на них органическими красителями. Нами осуществлен целенаправленный синтез новых красителей, содержащих в качестве "антенны"-донора – трифениламиновый или карбазольный фрагменты, а в качестве акцепторной части пиримидиновый цикл, разделенные тиофеновыми и фениленовыми спейсерами. В качестве исходных соединений были выбраны ранее полученный с использованием S_N^H -методологии 4-(5-бромтиофен-2-ил)пиримидин (**5b**), а также специально синтезированные 4-[5-(4-бромфенил)тиофен-2-ил]пиримидин (**5k**) и 4-(5'-бром-[2,2']битиофен-5ил)пиримидин (**5l**) (Схемы 40 и 41).

Целевые красители на основе пиримидина **57-59** были синтезированы с высокими выходами (61-89%) реакций кросс-сочетания по Сузуки в условиях микроволновой активации исходных бромзамещенных пиримидинов **5b,k,l** с 4-(дифениламино)фенилбороновой кислотой (**51a**), а также пинаконовыми эфирами 9-этил-9*H*-карбазол-3-бороновой (**51b**) и 9*H*карбазол-9-(4-фенил)бороновой (**51c**) кислот (Схема 42).

С целью изучения влияния полярности растворителя на фотофизические свойства флуорофоров **57а-с** и **58а-с** и корреляция этих эффектов с их структурами были исследованы оптические свойства в двух растворителях, имеющих разную относительную диэлектрическую проницаемость [для толуола ($\varepsilon_r = 2.38$), для ацетонитрила ($\varepsilon_r = 36.64$)]. Влияние структуры молекул на абсорбционные свойства проявляется в батохромном сдвиге полос длинноволнового поглощения при переходе от карбазольных производных **47а-с** к трифениламиновым – **46а-с**. Влияние растворителей проявляется в отрицательном сольватохромизме, то есть в гипсохромном сдвиге максимумов длинноволновых полос поглощения соединений **57а-с** и **58а-с** на 2-6 нм при переходе от слабополярного толуола к полярному ацетонитрилу.

Схема 42

Оптические свойства пиримидиновых красителей **59а-с**, содержащих 9-фенил-9*H*-карбазольный фрагмент, были исследованы в шести разных апротонных растворителях с различными величинами параметра полярности Димрота-Рейнхардта [$E_T(30)$, ккал× моль⁻¹] а

именно: *п*-гептан (31.1), толуол (33.9), хлороформ (39.1), дихлорметан (40.7), ацетон (42.2) и диметилсульфоксид (45.1). Красители **59а-с**, имеющие 9-фенил-9*H*-карбазольный фрагмент, проявляют синее смещение в спектрах поглощения ($\Delta\lambda = 21-36$ нм в толуоле) и флуоресценции ($\Delta\lambda = 39-44$ нм в толуоле) в сравнении с аналогичными соединениями **57а-с**, содержащими трифениламиновый заместитель. Существенное влияние на абсорбционные свойства соединений **59а-с** оказывает структурная модификация π -сопряженного спейсера. Увеличение π -системы спейсера между донорным и акцепторным фрагментами молекулы в соединении **59с** за счет введения второго тиофенового цикла приводит во всех растворителях к значительному длинноволновому смещению полос поглощения ($\Delta\lambda_{max} = 27-38$ нм) по сравнению с пиримидином **59а**. С другой стороны, при добавлении фенильного цикла в молекулу красителя **57b** наблюдается гипсохромный сдвиг длинноволнового максимума полосы поглощения на 9 нм в гептане и 2 нм в толуоле, либо небольшой батохромный сдвиг до 2 нм в остальных случаях, по сравнению с красителем **59a**. Вероятно, это связано с нарушением π -сопряжения в молекулах соединения **59b**, обусловленным неплоским строением дифенильного фрагмента в растворах.

Установлено, что полярность растворителей оказывают слабое влияние на электронные спектры поглощения соединений **59а-с** и, в частности, на положение длинноволновых максимумов полос поглощения. Это может свидетельствовать о незначительном изменении дипольных моментов в возбужденном Франк-Кондоновском состоянии.

Влияние структуры красителей **59а-с** на спектры флуоресценции аналогично влиянию на спектры поглощения. В тоже время, если в спектрах поглощения соединений **59а-с** происходят незначительные изменения при изменении полярности растворителей, то спектры флуоресценции демонстрируют существенную зависимость максимумов полос испускания в интервале 406-512 нм. Максимумы полос флуоресценции испытывают красный сдвиг при увеличении полярности растворителя и охватывают широкий спектральный диапазон, придавая свечению растворов окраску от голубой до зеленой.

Для доказательства эффективного координационного связывания красителей **57-59** с поверхностью наночастиц TiO_2 , были записаны ИК спектры для порошков индивидуальных красителей и этих же соединений адсорбированных на наночастицах TiO_2 . Характеристические полосы C=N или C=C связей пиримидинового кольца отчетливо наблюдались в интервалах 1517-1537 и 1569-1577 см⁻¹. После нанесения красителей **57-59** на поверхность TiO_2 наблюдалось значительное снижение интенсивности или исчезновение этих полос и появление новой интенсивной полосы в области 1593-1600 см⁻¹, которая связана с координацией пиримидинового фргамента с льюисовкими кислотными центрами на поверхности наночастиц TiO_2 . Эти результаты хорошо согласуются с аналогичными литературными данными для пиридильных "якорных" групп.

Изучение возможности переноса электрона из возбужденного состояния молекулы красителя-сенсибилизатора **57-59** в зону проводимости полупроводника TiO₂ и оценка энергий их граничных молекулярных орбиталей были выполнены с использованием циклической вольтамперометрии (Таблица 7).

N⁰	Соединение	Eox ^{onset} , эВ	E_{HOMO} , эВ	$E_{\text{LUMO}}^*, \Im B$	$E_{ m g}^{ m opt}$, $ m f B$
1	57a	0.55	-5.20	-2.07	3.13
2	57b	0.57	-5.22	-1.95	3.27
3	57c	0.47	-5.12	-2.15	2.97
4	58a	0.70	-5.35	-2.01	3.25
5	58b	0.70	-5.35	-2.03	3.32
6	58c	0.55	-5.20	-2.18	3.02
7	59a	1.03	-5.39	-2.36	3.03
8	59b	1.02	-5.38	-2.33	3.05
9	59c	0.96	-5.32	-2.63	2.69

Таблица 7 – Электрохимические свойства пиримидиновых красителей 57-59.

Полученные значения энергий HCMO (от -1.95 до -2.63 эВ) для всех красителей **57-59** лежат выше края энергии зоны проводимости TiO₂ (~ -4.0 эВ), что обеспечивает необходи-

мую движущую силу для эффективного процесса переноса электронов (Рис. 15). Несмотря на то что, уровень ВЗМО красителей **57-59** расположен от -5.12 до -5.39 эВ и лишь незначительно ниже экспериментально полученного значения окислительно-восстановительного потенциала редокс-системы Γ/I_3^- (-4.8 эВ), ширина этой энергетической щели достаточна для протекания процесса восстановления окисленной формы красителей (после отдачи электрона на TiO₂).

Рисунок 15. Диаграмма энергетических уровней (ВЗМО и НСМО) красителей 57-59, редокссистемы Г/І₃⁻, зоны проводимости (*E*_{cb}) наночастиц ТіО₂ и зоны проводимости (*E*_{cb}^{*}) проводящего стекла на основе оксида индия–олова (ITO)

Результаты TD-DFT расчетов, выполненные в двух базисах B3LYP/6-31+G(d,p) и CAM-B3LYP/6-31+G(d,p), находятся в хорошем соответствии с полученными экспериментальными данными.¹³

Кроме того, была собрана модельная ячейка Гретцеля на основе нанокристаллического диоксида титана с адсорбированным красителем-сенсибилизатором **59b** и исследованы её фотоэлектрические параметры.¹⁴ При освещении мощностью 100 мВт/см² ячейка имеет бестоковый потенциал E_{pu} 0.525 В в условиях разомкнутой цепи, а плотность тока короткого замыкания I_{κ_3} составляет 2.04 мА см⁻². При филфакторе равном 0.85 коэффициент преобразования световой энергии в электрическую (η) составил 0.91%.

Таким образом, была впервые показана не только теоретическая, но и практическая возможность использования полученных пуш-пульных систем с пиримидиновой "якорной" группой в качестве красителей-сенсибилизаторов для солнечных батарей.

2.3.2.2. Красители-сенсибилизаторы для солнечных батарей на основе 2-амино-5-(гет)арил-6-(тиофен-2-ил)-3-цианопиридинов

Целевые красители-сенсибилизаторы **60а,b** получены с высокими выходами (63 и 80%, соответственно) реакцией кросс-сочетания по Сузуки бромпиридина **42** с 4-(дифениламино)фенилбороновой кислотой (**51a**) или пинаконовым эфиром 9-этил-9*H*-карбазолил-3-бороновой кислоты (**51b**) в условиях микроволновой активации (Схема 43).

Оба красителя **60а,b** имеют максимумы поглощения в районе средней и ближней ультрафиолетовой области спектра (239–422 нм), а так же проявляют ярко выраженные люминесцентные свойства с высокими значениями Стоксова сдвига 7303–15461 см⁻¹, однако их квантовые выходы при этом не превышают 41%. На основании изменения в ИК спектрах чистых красителей **60а,b** и адсорбированных на поверхности наночастиц TiO₂ показана возможность координации с льюисовскими кислотными центрами (катионы Tiⁿ⁺) на поверхности оксида титана(IV). Полученные из данных ЦВА и спектров поглощения значения HCMO для обоих красителей **60а,b** (-1.14 и -0.28 эВ, соответственно) лежат выше края зоны прово-

¹³Квантово-химические расчеты выполнены сотрудником кафедры органической химии УрФУ к.х.н. Субботиной Ю.О. (для соединений **57а-с**, **58а-с** и **60а,b**) и к.х.н., с.н.с. лаборатории квантовой химии НИИ ФОХ ЮФУ Дороганом И. В. (для соединений **59а-с**).

¹⁴Сборка ячейки Гретцеля на основе нанокристаллического TiO₂ с адсорбированным красителемсенсибилизатором **59b** и измерение ее характеристик были выполнены в.н.с., д.х.н. С. А. Козюхиным (Институт общей и неорганической химии им. Н.С. Курнакова РАН), д.х.н., г.н.с. В. В. Емецом и д.х.н., г.н.с. В. А. Гринбергом (Институт физической химии и электрохимии им. А.Н. Фрумкина РАН)

димости TiO₂ (E_{cb} -4.0 эВ), а уровень ВЗМО (-5.26 и -5.19 эВ, соответственно) располагается ниже потенциала окислительно-восстановительной системы Γ/I^{3-} , создавая необходимую движущую силу для эффективного процесса переноса электрона и возможности регенерации электролита (Рис. 16).

Результаты квантово-химических расчетов, выполненные с использованием базиса CAM-B3LYP/6-31+G(d,p), находятся в хорошем соответствии с полученными экспериментальными данными.

Таким образом, соединения **60а,b** теоретически могут быть использованы как сенсибилизаторы в солнечных батареях, однако существенным недостатком полученных красителей являются высокие значения энергетических щелей ($E_{g} \sim 4 \div 5$ эВ), что затрудняет "перескок" электрона с ВЗМО на НСМО, тогда как по современным представлениям это значение E_{g} для сенсибилизированных красителями солнечных батарей должно быть в пределах 2.5 эВ.

2.3.3. Применение пуш-пульных систем на основе пиримидина в качестве мономолекулярных сенсоров на нитроароматические соединения¹⁵

2.3.3.1. Линейные и V-образные пуш-пульные системы на основе 4-(гет)арил- и 4,5ди(гет)арилпиримидинов

Создание новых хемосенсоров для определения нитросодержащих алифатических и ароматических соединений как опасных экотоксикантов и взрывчатых веществ остается актуальным направлением аналитической и органической химии в связи с увеличением загрязнения окружающей среды и растущей террористической угрозой.

Наиболее распространенными взрывчатыми веществами являются нитроароматические соединения. Многие самодельные взрывные устройства изготовлены с использованием нечистого 2,4,6-тринитротолуола (TNT), в котором основная примесь – это 2,4динитротолуол (2,4-DNT), используемый в качестве исходного соединения для синтеза TNT. Другие предшественники TNT, такие как 2,6-динитротолуол, *пара*-нитротолуол (4-NT) и нитробензол (NB), также являются маркерами наличия взрывчатых материалов. Существующие методы детектирования нитроароматических взрывчатых веществ основаны на использовании биодетекторов (собак), рентгеновских установок или других аналитических приборов с применением сложных методов, таких как хромато-масс-спектрометрия, спектрометрия ионной подвижности в переменном электрическом поле, детектирование микроскопических частиц с помощью инфракрасного излучения, причем ни один из этих методов не является легкодоступным.

¹⁵Раздел 2.3.3 выполнен совместно с сотрудниками кафедры экспериментальной физики ФТИ УрФУ к.ф.-м.н. Хохловым К.О. и к.т.н. Барановой А.А.

Методы детектирования, основанные на тушении флуоресценции, являются достаточно простыми и более чувствительными. Основными рабочими элементами в таких хемосенсорах являются плоские полиароматические донорные структуры (производные карбазола, трифениламина или пирена), а также их каркасные и полимерные аналоги, способные обратимо образовывать π -комплексы с нитроароматическими соединениями. Другими перспективными соединениями для создания сенсоров на взрывчатые вещества являются производных тертиофена. Кроме того, отмечно, что введение атома азота пиридинового типа в ароматическое кольцо, с одной стороны, понижает его π -избыточный характер и способность образовывать π -комплексы с нитроароматическими соединениями. А с другой стороны, азотистый гетероцикл может служить удобной платформой для сборки эффективного фотолюминесцентного хемосенсора путем объединения π -избыточной рецепторной и флуорофорной частей в одной молекуле, а также для улучшения рецепторных свойств молекул за счет образования π -сопряженных донорно-акцепторных ансамблей (пуш-пульных систем). Таким образом, сочетание в одной молекуле пиримидинового заместителя и аналога тертиофена (дитиенильного или фенилтиенильного π-спейсера) представлялось весьма перспективным для создания нового класса молекул-хемосенсоров на нитроароматические соединения.

В данном разделе описано изучение сенсорных свойств на нитроароматические соединения серии линейных пуш-пульных систем **57-59**, дополненных 4-(5-пирен-1-ил-тиофен-2-ил)пиримидином (**61a**), так и целенаправленно полученных V-образных пуш-пульных систем на основе 4,5-ди(гет)арилзамещенных пиримидинов, несущих аналогичные донорные заместители как непосредственно в пиримидиновом цикле **62a-d**, так и через тиофеновый спейсер **63a-d** (Схемы 44-46).

Для изучения сенсорных свойств новых флуорофоров были использованы модельные нитроароматические соединения, а также 2,3-диметил-2,3-динитробутан (DDBu) – общепринятый маркер, обязательный по закону для всех коммерческих пластиковых взрывчатых веществах стран НАТО (Рис. 17).

Для оценки эффективности сенсорных свойств соединений **57-59**, **61-63** были определены значения констант Штерна–Фольмера – *K*sv, и пределов обнаружения нитроароматических соединений – DL (detection limit). Константа Штерна–Фольмера – константа тушения, она же константа ассоциации полученного комплекса предлагаемого соединения с нитроароматическим соединением.

Установлено, что значения констант тушения и пределы обнаружения нитросоединений снижаются при переходе от 4-(гет)арилпиримидинов (**57-59**, **61a**) (DL = $10^{-5} \div 10^{-7}$ моль/л) к V-образным 4,5-*бис*[(гет)арил]пиримидинам (**63a-d**) (DL = $10^{-3} \div 10^{-5}$ моль/л). Увеличение арильного заместителя в положении C(5) вызывает рост стерических затруднений, ухудшая взаимодействие флуорофора с тушителем, а также нарушая π -сопряжение в пуш-пульной системе и способствуя росту вероятности безызлучательных процессов за счет появления у молекул дополнительных колебательных и вращательных мод.

На базе двух соединений (**57a** и **62b**), имевших наибольшие пределы обнаружения в ацетонитрильных растворах, были собраны прототипы сенсоров для мобильного обнаружителя нитровзрывчатых веществ «Нитроскан»¹⁶ (Рис. 18).

Рисунок 17. Тушители флуоресценции.

Рисунок 18. Фотографии сенсорных элементов¹⁶ на основе сухой бумажной салфетки, содержащей флуорофор 57а при освещении дневным светом (*a*) и УФ излучением (λ = 375 нм) (*b* и *c*): без экспозиции (*a* и *b*) и с экспозицией (*c*) в насыщенных парах DNT

В результате иссследований коммерчески доступных материалов для подложки сенсорного элемента [нетканого материала «Спанлейс» (S-I) и сухой бумажной салфетки (S-II)], а также способа нанесения на неё флуорофора было установлено, что наиболее оптимальным для сборки прототипов сенсоров,

является применение нетканого материала «Спанлейс», пропитанного ацетонитрильным раствором флуорофора с концентрацией 10⁻³ моль/л.

Сенсоры на основе флуорофоров **57a** и **62b** продемонстрировали способность к обратимому самовосстановлению после прекращения воздействия паров BB, а также высокую чувствительность по отношению к насыщенным парам DNT (модельное BB). Кроме того, на примере сенсоров на основе флуорофора **62b** показана высокая селективность по отношению

¹⁶Конструкции мобильного обнаружителя нитроврывчатых соединений и конструкция сенсорного элемента для него разработаны совместно сотрудниками кафедры экспериментальной физики ФТИ УрФУ к.ф.-м.н., доц. Хохловым К.О., к.т.н., доц. Барановой А.А. и сотрудниками ХТИ УрФУ д.х.н., проф. Г.В. Зыряновым, к.х.н., доц. И.С. Ковалевым и к.х.н., н.с. Копчуком Д.С. С осени 2017 года прибор «Нитроскан» (НПО «Интермолекулярные системы безопасности» и завод «Промавтоматика», г. Екатеринбург, <u>http://nitroscan.pro</u>) снят с производства и заменен модернизированной версией – мобильным обнаружителем взрывчатых веществ «Заслон-М» (ООО ЭнергоСпецКомплектСервис», Московская область, г. Мытищи, <u>http://escs-zaslon.ru/</u>)

к парам DNT в сравнении с другими взрывчатыми веществами [2,4,6-тринитротолуол (TNT), *N*-метил-2,4,6-тринитрофенилнитрамин (Tetryl), циклотриметилентринитрамин (RDX), тетранитропентаэритрит (PETN)], а также мешающими реагентами, такими как, этанол, этиленгликоль, ацетон, CH₃COOH, толуол, нитробензол, фенол и 1,2-дихлорбензол (Puc. 19).

Рис. 19. Эффективность тушения флуоресценции в первом цикле для сенсоров на нетканом материале «Спанлейс» (S-Ib) и сухой бумажной салфетке (S-Ib) на основе соединения 62b (при пропитке раствором флуорофора с концентрацией *C*=10⁻³ моль/л) в мобильном обнаружителе взрывчатых веществ «Нитроскан» при экспозиции парами различных нитровзрывчатых веществ (*a*) и мешающих реагентов (*b*) при комнатной температуре

Для V-образных пуш-пульных систем **63а-с**, имеющих более низкие значения пределов обнаружения и констант Штерна-Фольмера, изготовление прототипов сенсоров и детектирование паров DNT с применением мобильного обнаружителя нитровзрывчатых веществ «Нитроскан» для данной серии флуорофоров не проводили.

Линейная (61a) и V-образные (62d и 63d) пуш-пульные системы с пиреновыми заместителями также имели высокую чувствительность к парам NB (до 6 ppb) и TNT (до 5 ppb), однако их недостатком являлась большая склонность к деградации во времени при экспозиции парами нитроароатического соединения.

Таким образом, на основе методологии комбинирования катализируемых и некатализируемых переходными металламии реакций кросс-сочетания был разработан способ синтеза новых линейных и V-образных пуш-пульных систем на базе пиримидина, способных выступать в качестве эффективных мономолекулярных флуоресцентных сенсоров для многоразового, обратимого и быстрого обнаружения следовых количеств паров нитробензола, 2,4динитротолуола и 2,4,6-тринитротолуола в воздухе.

2.3.3.2. «Разветвленные» пуш-пульные системы на основе 4,5-ди(гет)арил- и 4,5,6три(гет)арилпиримидинов

С целью дальнейшего исследования влияния структуры пуш-пульных пиримидиновых систем на их сенсорные свойства в отношении нитроароматических соединений был получены новые «разветвленные» пуш-пульные системы на основе 4,5ди(гет)арилпиримидинов (Схема 47) и 4,5,6-три(гет)арилпиримидинов (Схема 48), содержащие два донорных фрагмента в различных положениях.

Для изученния влияния трех донорных 9-этил-9*H*-карбазольных заместителей на сенсорные свойства пуш-пульных систем был осуществлен синтез 3,3'-{5,5'-[5-(5-(9-этил-9*H*карбазол-3-ил)-3-гексилтиофен-2-ил)пиримидин-4,6-диил]*бис*(тиофен-5,2-диил)}*бис*(9-этил-9*H*-карбазола) (**75**) (Схема 49). Предполагалось, что введение третьего карбазольного фрагмента будет способствовать улучшению чувствительности флуорофора по отношению к аналитам за счет увеличения числа центров связывания с нитросоединением. Использование тиофенового π -спейсера, содержащего гексильную группу, обусловлено необходимостью повышения растворимости флуорофора 75 в органических растворителях, снижение которой имеет место для подобного рода пуш-пульных систем типа 63b и 72b с усложнением их структуры.

Схема 49

Величины констант Штерна-Фольмера и пределов обнаружения для «разветвленных» пуш-пульных систем (70, 72a,b и 75) оказались несколько ниже значений, полученных для линейных и V-образных флуорофоров (57-59 и 61-63) (Таблица 11). То есть положительный эффект от введения дополнительных донорных заместителей в значительной мере нивелируется ростом стерических затруднений. Следует отметить, что в случае флуорофоров 72a,b нитробензол оказалась даже более эффективным тушителем, чем фенольные производные. По-видимому, наиболее разумным объяснением этого факта является увеличение стерических помех в нитросоединении с добавлением заместителей в бензольном кольце и, как следствие, ослабление взаимодествия с «разветвленным» флуорофором.

Сенсоры на основе «разветвленных» пуш-пульных систем (**70**, **72a**,**b**,**d** и **75**) также обнаружили высокую чувствительность по отношению к парам нитроароматических соединений в воздухе. В частности, чувствительность сенсоров на основе флуорофоров **72a**,**b**,**d** составила: к парам 2,4-динитротолуола до 0.13 ppm, к парам 2,4,6-тринитротолуола до 0.05 ppm и к парам нитробензола до 0.6 ppm. Кроме того, сенсоры **72a** и **72b** демонстрируют хорошую селективность по отношению к NB по сравнению с другими нитросоединениями и мешающими реагентами (Рис. 20).

Нитро-	<i>K</i> sv, л/моль / DL, моль/л						
соединение	Флуорофор 70	Флуорофор 72а	Флуорофор 72b	Флуорофор 75			
NB	271 / 3.35×10 ⁻³	1443 / 7.98×10 ⁻³	3509 / 6.64×10 ⁻⁶	83213 / 1.04×10 ⁻⁴			
1,3-DNB	-	293 / 2.92×10 ⁻²	1138 / 9.53×10 ⁻⁶	16847 / 5.12×10 ⁻⁴			
1,3,5-TNB	-	274 / 4.20×10 ⁻²	520 / 2.32×10 ⁻⁵	13747 / 6.27×10 ⁻⁴			
2-NP	-	75 / 1.54×10 ⁻¹	428 / 2.39×10 ⁻⁵	44248 /1.95×10 ⁻⁴			
4-NP	-	205 / 5.62×10 ⁻²	363 / 3.16×10 ⁻⁵	52194 / 1.65×10 ⁻⁴			
2,4-DNP	-	159 / 7.22×10 ⁻²	156 / 5.30×10 ⁻⁵	126098 / 6.83×10 ⁻⁵			
PA	695667 / 1.86×10 ⁻⁵	160 / 7.30×10 ⁻²	195 / 8.68×10 ⁻⁵	135068 / 6.38×10 ⁻⁵			
SA	294111 / 3.08×10 ⁻⁴	268 / 4.29×10 ⁻²	802 / 1.63×10 ⁻⁵	98813 / 8.72×10 ⁻⁵			
4-NT	-	350 / 3.29×10 ⁻²	124 / 6.20×10 ⁻⁵	15743 / 5.47×10 ⁻⁴			
2,4-DNT	489 / 1.86×10 ⁻²	314 / 3.67×10 ⁻²	83 / 8.99×10 ⁻⁵	15270 / 5.64×10 ⁻⁴			
TNT	136 / 6.68×10 ⁻¹	67 / 1.71×10 ⁻¹	245 / 2.68×10 ⁻⁵	12986 / 6.64×10 ⁻⁴			
DNAN	207 / 4.38×10 ⁻¹	114 / 1.01×10 ⁻¹	224 / 4.51×10 ⁻⁵	10652 / 8.09×10 ⁻⁴			
TNAN	-	113 / 1.00×10 ⁻¹	111 / 7.35×10 ⁻⁵	10841 / 7.95×10 ⁻⁴			
ТАТВ	4924 / 1.84×10 ⁻³	605 / 1.90×10 ⁻²	135 / 4.08×10 ⁻⁵	21571 / 4.00×10 ⁻⁴			
DDBu	-	466 / 2.47×10 ⁻²	92 / 8.46×10 ⁻⁵	26544 / 3.25×10 ⁻⁴			
TETNB	6703 / 1.35×10 ⁻³	-	-	-			

Таблица 11 – Значения констант тушения флуоресценции (*Ksv*) и пределов обнаружения (DL) нитроароматических соединений для флуорофоров **70**, **72а**,**b** и **75**.

Таким образом, в результате исследований, проведенных в данном разделе, были разработаны удобные методы синтеза "разветвленных" пуш-пульных систем с различным числом донорных фрагментов и исследованы их сенсорные свойства в отношении различных нитроароматических соединений, как в растворах, так и в парах, содержащихся в воздухе. Установлено, что линейные флуорофоры, на основе монозамещнных пирмидинов имеют более высокие значения констант Штерна-Фольмра и пределов обнаружения (10^{-5} ÷ 10^{-7} моль/л), чем соответствующие V-образные и разветвленные системы, на основе ди- и тризамещенных пиримидинов (10⁻¹÷10⁻⁵ моль/л). Эта закономерность может быть обусловлена как увеличением стерических затруднений за счет введения дополнительных объемных заместителей, так и ростом вероятности безызлучательных процессов за счет появления у молекул дополнительных колебательно-вращательных мод.

Рис. 20. Эффективность тушения флуоресценции в первом цикле для сенсоров на нетканом материале «Спанлейс» на основе соединений **72a,b,d** (при пропитке раствором флуорофора с концентрацией *C*=10⁻³ моль/л) в мобильном обнаружителе взрывчатых веществ «Нитроскан» при экспозиции насыщенными парами различных нитровзрывчатых веществ и мешающих реагентов при комнатной температуре

2.3.3.3. Механизм тушения флуоресценции в полученных пуш-пульных системах

С целью выяснения механизма тушения флуоресцении в синтезированных пушпульных системах были проведены квантово-химические расчеты взаимодействия двух наиболее перспективных флуорофоров **57а** и **62b** с модельным взрывчатым веществом – 2,4динитротолуом. Проведенные расчеты¹⁷ свидетельствуют о превалировании статического механизма тушения флуоресценции, вследствие образования устойчивого нефлуоресцентного комплекса между флуорофором и нитросоединением (Рис. 21 и 22).

Рис. 21. Геометрия основного состояния комплекса 57а-DNT (*a*) и изоповерхность изменения электронной плотности в состоянии S₁, где синим цветом показано уменьшение электронной плотности, а желтым – ее увеличение относительно основного состояния S₀ (*b*)

Рис. 22. Схематичные представления граничных молекулярных орбиталей комплекса 62b-DNT с оптимизированной геометрией основного состояния, рассчитанные в базисе B3LYP/def2-TZVP

Правильность теоретических расчетов была подтверждена экспериментальными данными на примере взаимодействия V-образных пуш-пульных систем **62а-с** и **63а-с** с 2,4динитроанизолом (DNAN), а именно: линейным характером изменения (в диапазоне малых

¹⁷Квантово-химические расчеты выполнены инженером кафедры технологии органического синтеза УрФУ Шафиковым М.З.

концентраций до 10⁻⁵ моль/л) и высокими значениями констант комлексообразования *Ksv* (10³-10⁷ моль/л), а также постоянством времен жизни возбужденного состояния фотолюминесценции хемосенсоров при повышени концентрации нитроароматического соединения, которые также свидетельствуют о статическом механизме тушения флуресцении.

ЗАКЛЮЧЕНИЕ:

Полученные результаты вносят существенный вклад в химию производных пиримидина, обладающих широким спектром практического применения:

1. На основе систематического исследования возможностей использования комбинаций реакций кросс-сочетаний по Сузуки или Бухвальду-Хартвигу, а также прямой С–Н функционализации пиримидинов посредством нуклеофильного ароматического замещения водорода (S_N^H) развит новый синтетический подход к широкому ряду ранее неизвестных моно-, ди - и три(гет)арилзамещенных пиримидинов.

2. Установлено, что С–H/С–H функционализация пиримидинов под действием π избыточных пятичленных ароматических гетероциклов в качестве С-нуклеофилов, реализуется через стадию образования промежуточных σ^{H} -аддуктов. Структуры этих аддуктов были впервые доказаны данными рентгеноструктурного анализа на примере реакций 5бромпиримидина с производными тиофена. Подобраны условия ароматизации σ^{H} -аддуктов до соответствующих S_N^{H} -продуктов как по окислительному, так и по элиминационному механизмам.

3. Показано, что перегруппировка 4-тиенилпиримидинов является удобным методом получения новых 6-тиенилзамещенных 2-амино-3-цианопиридинов; разработаны пути их дальнейших модификаций по реакции Сузуки в мягких условиях (при комнатной температуре), а также в условиях микроволновой активации.

4. Разработаны три метода получения тиофеновых аналогов 1,3-диазатрифенилена, а именно, дитиено[2,3-f:3',2'-h]хиназолинов, дитиено[3,2-f:3',2'-h]хиназолинов и бензо[f]тиено[3,2-h]хиназолинов с использованием внутримолекулярной реакции нуклеофильного ароматического замещения водорода, палладий-катализируемой внутримолекулярной циклизации (протекающей в условиях микроволновой активации) или окислительной фотоциклизации для полученных C(5) и C(4) моно(гет)арил- и ди(гет)арилиримидинов. Показано, что двойная окислительная фотоциклизация 5-арил-4,6-ди(тиофен-2-ил)пиримидинов является эффективным способом построения новой полициклической системы — бензо[g,h]дитиено[2,3-e:3',2'-j]перимидина.

5. Проведена оценка широкого спектра антибактериальной активности *in vitro* представительного ряда синтезированных моно-, ди- и тризамещенных пиримидинов. Для C(4) и/или C(5) моно- и ди(гет)арилзамещенных пиримидинов проведен системный анализ туберкулостатической активности и выявлены соединения, обладающие выраженной активностью *in vitro* в отношении микобактерий *Mycobacterium tuberculosis* $H_{37}Rv$, *Mycobacterium avium*, *Mycobacterium terrae*, а также штаммов с множественной лекарственной устойчивостью. Показано, что *N*-арил-4-(5-нитрофурана-2-ил)пиримидин-5-амины, содержащие метильные и метоксигруппы в арильном заместителе, обладают низкой цитотоксичностью и выраженной антибактериальной активностью в отношении различных штаммов, в том числе лекарственно-устойчивых, кокковых инфекций *Neisseria gonorrhoeae*, *Streptococcus piogenes* и *Staphylococcus aureus*.

6. Осуществлен целевой синтез красителей-сенсибилизаторов для солнечных батарей Гретцеля) оригинальной "якорной" акцепторной группой (ячеек с на основе 4-(гет)арилзамещенных пиримидинов и классическими донорными фрагментами, такими как трифениламин, 9-этил- и 9-фенилкарбазол, с различными π-сопряженными спейсерными системами. Получены также красители на основе 2-амино-6-(гет)арил-3-цианопиридинов. На основании квантово-химических расчетов и данных физико-химических исследований теоретически и экспериментально показана возможность использования полученных пушпульных систем в качестве сенсибилизаторов для солнечных батарей.

7. Разработаны мономолекулярные флуоресцентные сенсоры для обнаружения нитроароматических соединений на основе серии новых π-сопряженных линейных, V-образных и «разветвленных» пуш-пульных систем пиримидинового ряда. На их основе собраны прототипы сенсоров для мобильного детектора нитровзрывчатых соединений «Нитроскан» (Завод «Промавтоматика», г. Екатеринбург), применимые для многоразового, обратимого и быстрого обнаружения следовых количеств паров нитробензола, 2,4-динитротолуола и 2,4,6тринитротолуола в воздухе.

Основное содержание работы изложено в следующих публикациях:

Статьи в рецензируемых научных изданиях, определённых ВАК:

- Verbitskiy, E. V. Combination of the Suzuki-Miyaura cross-coupling and nucleophilic aromatic substitution of hydrogen (S_N^H) reactions as a versatile route to pyrimidines bearing thiophene fragments / E. V. Verbitskiy, E. M. Cheprakova, P. A. Slepukhin, M. I. Kodess, M. A. Ezhikova, M. G. Pervova, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Tetrahedron – 2012. – 68(27-28). – P. 5445–5452 (0,92 п.л./0,31 п.л.).
- Verbitskiy, E. V. Consecutive S_N^H and Suzuki-Miyaura Cross-Coupling Reactions an Efficient Strategy to Pyrimidine Bearing Pyrrole and Indole Fragments / E. V. Verbitskiy, G. L. Rusinov, V. N. Charushin, O. N. Chupakhin, E. M. Cheprakova, P. A. Slepukhin, M. G. Pervova, M. A. Ezhikova, M. I. Kodess // Eur. J. Org. Chem. 2012. 33. P. 6612–6621 (1,16 п.л./0,26 п.л.).
- Verbitskiy, E. V. Microwave-assisted palladium-catalyzed C-C coupling versus nucleophilic aromatic substitution of hydrogen (S_N^H) in 5-bromopyrimidine by action of bithiophene and its analogues / E. V. Verbitskiy, E. M. Cheprakova, E. F. Zhilina, M. I. Kodess, M. A. Ezhikova, M. G. Pervova, P. A. Slepukhin, J. O. Subbotina, A. V. Schepochkin, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Tetrahedron 2013. 69(25). P. 5164–5172 (1,04 п.л./0,26 п.л.).
- Verbitskiy, E. V. Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells / E. V. Verbitskiy, E. M. Cheprakova, J. O. Subbotina, A. V. Schepochkin, P. A. Slepukhin, G. L. Rusinov, V. N. Charushin, O. N. Chupakhin, N. I. Makarova, A. V. Metelitsa, V. I. Minkin // Dyes and Pigments – 2014. – 100(1). – P. 201–214 (1,62 п.л./0,32 п.л.).
- Verbitskiy, E. V. Synthesis and antituberculosis activity of novel 5-styryl-4-(hetero)arylpyrimidines via combination of the Pd-catalyzed Suzuki cross-coupling and S_N^H reactions / M. A. Kravchenko, E. V. Verbitskiy, I. D. Medvinskiy, G. L. Rusinov, V. N. Charushin // Bioorg. Med. Chem. Lett. – 2014. – 24(14). – P. 3118–3120 (0,35 п.л./0,14 п.л.).
- Вербицкий, Е. В. Синтез 5-(гет)арил- и 4,5-ди(гет)арил-2-(тио)морфолинопиримидинов из 2-хлорпиримидина с использованием реакций S_N^H и кросс-сочетания / Е. М. Чепракова, Е. В. Вербицкий, М. А. Ежикова, М. И. Кодесс, М. Г. Первова, П. А. Слепухин, М. С. Топорова, М. А. Кравченко, И. Д. Медвинский, Г. Л. Русинов, В. Н. Чарушин // Известия РАН. Серия химическая. – 2014. – 6. – С. 1350–1359 (1,16 п.л./0,21 п.л.).
- Вербицкий, Е. В. 2-Амино-5-(гет)арил-6-(2-тиенил)-3-цианопиридины в качестве органических красителей для сенсибилизированных красителями солнечных батарей: синтез, квантово-химические расчеты, спектральные и электрохимические свойства / Е. В. Вербицкий, П. А. Слепухин, Ю. О. Субботина, М. С. Валова, А. В. Щепочкин, Е. М. Чепракова, Г. Л. Русинов, В. Н. Чарушин // Химия гетероциклических соединений. 2014. 6. С. 883–896 (1,62 п.л./0,41 п.л.).
- Verbitskiy, E. V. Dithienoquinazolines A Convenient Synthesis by the Oxidative Photocyclization of 4,5-Dithienyl-Substituted Pyrimidines and Their Photophysical Properties / E. V. Verbitskiy, P. A. Slepukhin, M. S. Valova, E. M. Cheprakova, A. V. Schepochkin, G. L. Rusinov, V. N. Charushin // Eur. J. Org. Chem. 2014. 36. P. 8133–8141 (1,04 п.л./0,35 п.л.).
- Вербицкий, Е. В. Синтез 6-тиенилзамещенных 2-амино-3-цианопиридинов / Е. В. Вербицкий, Е. М. Чепракова, М. Г. Первова, Г. Г. Данагулян, Г. Л. Русинов, О. Н. Чупахин, В. Н. Чарушин // Известия РАН. Серия химическая. 2015. 3. С. 689–694 (0,58 п.л./0,17 п.л.).

- Verbitskiy, E. V. Synthesis, Photophysical and Redox Properties of the D-π-A Type Pyrimidine Dyes Bearing the 9-Phenyl-9*H*-Carbazole Moiety / E. V. Verbitskiy, A. V. Schepochkin, N. I. Makarova, I. V. Dorogan, A. V. Metelitsa, V. I. Minkin, S. A. Kozyukhin, V. V. Emets, V. A. Grindberg, O. N. Chupakhin, G. L. Rusinov, V. N. Charushin // J. Fluoresc. – 2015. – 25(3). – P. 763–775 (1,50 п.л./0,25 п.л.).
- 11. Verbitskiy, E. V. Synthesis, and structure–activity relationship for C(4) and/or C(5) thienyl substituted pyrimidines, as a new family of antimycobacterial compounds / E. V. Verbitskiy, E. M. Cheprakova, P. A. Slepukhin, M. A. Kravchenko, S. N. Skornyakov, G. L. Rusinov, O. N. Chupakhin, V.N. Charushin // Eur. J. Med. Chem. 2015. 97. P. 225–234 (1,16 п.л./0,29 п.л.).
- Verbitskiy, E. V. Synthesis and evaluation of antitubercular activity of fluorinated 5-aryl-4-(hetero)aryl substituted pyrimidines / E. V. Verbitskiy, S. A. Baskakova, M. A. Kravchenko, S. N. Skornyakov, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Bioorg. Med. Chem. – 2016. – 24(16). – P. 3771–3780 (1,16 п.л./0,33 п.л.).
- 13. Verbitskiy, E. V. Heteroacenes Bearing the Pyrimidine Scaffold: Synthesis, Photophysical and Electrochemical Properties / E. V. Verbitskiy, E. M. Cheprakova, N. I. Makarova, I. V. Dorogan, A. V. Metelitsa, V. I. Minkin, P. A. Slepukhin, T. S. Svalova, A. V. Ivanova, A. N. Kozitsina, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Eur. J. Org. Chem. – 2016. – 7. – P. 1420–1428 (1,04 п.л./0,24 п.л.).
- 14. Verbitskiy, E. V. A new route towards dithienoquinazoline and benzo[*f*]thieno[3,2-*h*]quinazoline systems using Pd-catalyzed intramolecular cyclization under microwave irradiation / E. V. Verbitskiy, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // ARKIVOC 2016. iv. P. 204–216 (1,50 п.л./0,56 п.л.).
- 15. Verbitskiy, E. V. Detection of nitroaromatic explosives by new D–π–A sensing fluorophores on the basis of the pyrimidine scaffold / E. V. Verbitskiy, A. A. Baranova, K. I. Lugovik, M. Z. Shafikov, K. O. Khokhlov, E. M. Cheprakova, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Anal. Bioanal. Chem. 2016. 408(15). P. 4093–4101 (1,04 п.л./0,23 п.л.).
- 16. Verbitskiy, E. V. New V-shaped push-pull systems based on 4,5-di(hetero)aryl substituted pyrimidines: their synthesis and application to the detection of nitroaromatic explosives / E. V. Verbitskiy, A. A. Baranova, K. I. Lugovik, K. O. Khokhlov, E. M. Cheprakova, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // ARKIVOC 2016. iii. P. 360–373 (1,62 п.л./0,41 п.л.).
- Вербицкий, Е. В. Микроволновый синтез производных 4-(2,2'-битиофенил-5-ил)-5фенилпиримидина и их применение в качестве сенсоров нитроароматических взрывчатых веществ / Е. В. Вербицкий, Е. М. Чепракова, А. А. Баранова, К. О. Хохлов, К. И. Луговик, Г. Л. Русинов, О. Н. Чупахин, В. Н. Чарушин // Химия гетероциклических соединений – 2016. – 52(11). – С. 904–909 (0,69 п.л./0,17 п.л.).
- 18. Verbitskiy, E.V. Diazatriphenylenes and their thiophene analogues: synthesis and applications / E.V. Verbitskiy, G.L. Rusinov, V.N. Charushin // ARKIVOC 2017. i. P. 356–401 (5,31 п.л./3,54 п.л.).
- 19. Вербицкий, Е. В. Синтез дитиенохиназолинов из пиримидинов с использованием внутримолекулярной реакции нуклеофильного ароматического замещения водорода / Е. В. Вербицкий, Е. М. Династия, А. А. Баранова, О. С. Ельцов, Г. Л. Русинов, О. Н. Чупахин, В. Н. Чарушин // Химия гетероциклических соединений – 2017. – 53(10). – Р. 1156–1160 (0,58 п.л./0,17 п.л.).
- 20. Verbitskiy, E. V. The portable detector of nitro-explosives in vapor phase with new sensing elements on the base of pyrimidine scaffolds / A. A. Baranova, K. O. Khokhlov, R. D. Chuvashov, E. V. Verbitskiy, E. M. Cheprakova, G. L. Rusinov, V. N. Charushin // Journal of Physics: Conference Series 2017. 830. 012159 (6 pages) (0,69 п.л./0,15 п.л.).
- Verbitskiy, E. V. New "turn-off" fluorescence sensors to detect vapors of nitro-explosives on the basis of 4,6-*bis*[5-(heteroaryl)thiophen-2-yl] substituted 5-(4-*tert*-butylphenyl)pyrimidines / E. V. Verbitskiy, A. A. Baranova, Y. A. Yakovleva, R. D. Chuvashov, K. O. Khokhlov, E. M. Dinastiya, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // ARKIVOC – 2017. – v. – P. 341–355 (1,73 п.л./0,48 п.л.).

- 22. Verbitskiy, E. V. New 4,5-di(hetero)arylpyrimidines as sensing elements for detection of nitroaromatic explosives in vapor phase / E. V. Verbitskiy, A. A. Baranova, K. I. Lugovik, K. O. Khokhlov, E. M. Cheprakova, M. Z. Shafikov, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Dyes and Pigments – 2017. –137. – P. 360–371 (1,16 п.л./0,20 п.л.).
- 23. Verbitskiy, E. V. Recent Advances in Direct C–H Functionalization of Pyrimidines / E. V. Verbitskiy, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Synthesis 2018. 50(2). P. 193–210 (2,08 п.л./1,04 п.л.).
- 24. Вербицкий, Е. В. Новая пуш-пульная система на основе 4,5,6-три(гет)арилпиримидина, содержащего карбазольные заместители: синтез и исследование сенсорных свойств для обнаружения нитроароматических соединений / Е. В. Вербицкий, А. А. Баранова, К. О. Хохлов, Ю. А. Яковлева, Р. Д. Чувашов, Г. А. Ким, Е. В. Моисейкин, Е. М. Династия, Г. Л. Русинов, О. Н. Чупахин, В. Н. Чарушин // Химия гетероциклических соединений 2018. 54(6). С. 604–611 (0,92 п.л./0,28 п.л.).
- 25. Verbitskiy, E. V. Linear and V-shaped push-pull systems on a base of pyrimidine scaffold with a pyrene-donative fragment for detection of nitroaromatic compounds / E. V. Verbitskiy, A. A. Baranova, K. I. Lugovik, K. O. Khokhlov, R. D. Chuvashov, E. M. Dinastiya, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // J. Iran. Chem. Soc. 2018. 15(4). P. 787–797 (1,27 п.л./0,35 п.л.).
- 26. Verbitskiy, E. V. New V-shaped 2,4-di(hetero)arylpyrimidine push-pull systems: Synthesis, solvatochromism and sensitivity towards nitroaromatic compounds / E. V. Verbitskiy, E. M. Dinastiya, A. A. Baranova, K. O. Khokhlov, R. D. Chuvashov, Y. A. Yakovleva, N. I. Makarova, E. V. Vetrova, A. V. Metelitsa, P. A. Slepukhin, G. L. Rusinov, O. N. Chupakhin, V. N. Charushin // Dyes and Pigments 2018. 159. P. 35–44 (1,16 п.л./0,27 п.л.).

Патенты:

- 27. Патент РФ 2547844 С1. МПК⁷ С07D409/14, С07D413/14, С07D417/14. Способ получения 5-(гет)арил-4-(2-тиенил)-2-(тио)морфолилпиримидина / В. Н. Чарушин, Г. Л. Русинов, **Е. В. Вербицкий**, Е. М. Чепракова 2013148239/04; заявл. 29.10.2013; опубл. 10.04.2015.
- 28. Патент РФ 2626647 С1. МПК⁷ С07D 405/04, А61К 31/506, А61Р 31/04. 5-Арилзамещенный 4-(5-нитрофуран-2-ил)пиримидин, обладающий широким спектром антибактериальной активности, способ его получения и промежуточное соединение, обладающее широким спектром антибактериальной активности / Е. В. Вербицкий, С. А. Баскакова, Н. А. Герасимова, Н. П. Евстигнеева, П. Г. Аминева, Н. В. Зильберберг, Н. В. Кунгуров, Г. Л. Русинов, О. Н. Чупахин, В. Н. Чарушин – 2016134142; заявл. 19.08.2016; опубл. 31.07.2017.
- Патент РФ 2642428 С1. МПК⁷ С07D 405/04, А61К 31/345, А61К 31/506, А61Р 31/04. *N*-Арил-4-(5-нитрофуран-2-ил)пиримидин-5-амины, проявляющие антибактериальную активность, и способ их получения / Е. В. Вербицкий, С. А. Баскакова, Н. А. Герасимова, Н. П. Евстигнеева, Н. В. Зильберберг, Н. В. Кунгуров, Г. Л. Русинов, О. Н. Чупахин, В. Н. Чарушин – 2017124815; заявл. 11.07.2017; опубл. 25.01.2018.
- Патент РФ 2616296 С1. МПК⁷ С07D 409/04, С09К 9/02. Применение 4-(5-R-тиофен-2-ил)пиримидина в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений / Е. В. Вербицкий, Е. М. Чепракова, А. А. Баранова, К. О. Хохлов, Г. Л. Русинов, В. Н. Чарушин 2016100331; заявл. 11.01.2016; опубл. 14.04.2017.
- 31. Патент РФ 2616617 С1. МПК⁷ С07D 405/14. 5-(9-Этил-9*Н*-карбазол-3-ил)-4-[5-(9-этил-9*Н*-карбазол-3-ил)-тиофен-2-ил]пиримидин / **Е. В. Вербицкий**, Е. М. Чепракова, А. А. Баранова, К. О. Хохлов, Г. Л. Русинов, В. Н. Чарушин – 2016114243; заявл. 12.04.2016; опубл. 18.04.2017.