«УТВЕРЖДАЮ»

Проректор федерального государственного бюджетного образовательного учреждения высшего образования «Московский Государственный

университет имени М.В. Ломоносова»

профессор Федянин А.А.

2015 г.

ОТЗЫВ

ведущей организации ФГБОУ ВО «Московский Государственный университет имени М.В.Ломоносова» на диссертационную работу Обыденнова Константина Львовича «Синтез, строение и свойства сопряженных дитиолан-, тиазол- и тиенилиденов на основе малонтиоамидов», представляемой на соискание ученой степени кандидата химических наук по специальности 02.00.03 - Органическая химия.

Представленная диссертация посвящена разработке методов сопряженных систем с двойной экзоциклической связью на основе малонтиоамидов, а также исследованию дальнейшей функционализации и практическому применению новых синтезированных соединений. Малонтиоамиды, благодаря наличию двух тиоамидных групп и активной метиленовой компоненты в одной молекуле, дают возможность для построения нескольких сопряженных гетероциклов. В результате проведенной работы синтезированы исходные малодоступные малондитиоамиды, обнаружены их новые химические реакции с бифункциональными реагентами как с участием только одной тиоамидной группы, так и двух групп одновременно. Эти результаты привели к интересным библиотекам новых веществ, перспективным в

качестве новых материалов молекулярной электроники и потенциально обладающим биологической активностью. Указанные аргументы определили цель работы и, таким образом, сделали весьма современной и <u>актуальной</u> поставленную задачу.

Диссертационная работа (171 стр.) построена традиционно и состоит из введения, литературного обзора, обсуждения результатов, эксперимента, выводов и списка литературы, насчитывающего 183 наименования.

<u>Литературный обзор</u> (39 стр., ~150 ссылок) написан неплохим языком. содержит незначительное число опечаток, разумно структурирован и представлен в достаточно логичной форме для целей, поставленных в работе. В обзоре проанализированы новые подходы к синтезу, методам модификации и исследованиям их физико-химических и биологических свойств. Обощены методы синтеза тиоамидов и их применения в гетероциклическом синтезе для получения пяти-, шести- и семичленных гетероциклов, а также пути синтеза малондитиоамидов. Кроме того, рассмотрены тиоамиды и 1,3-тиазолы в синтезе опряженных серосодержащих гетероциклов как основы материалов молекулярной электроники и биологически активных веществ. Из обзора следует четкая программа действий, реализованная в диссертации.

<u>Новизна</u> результатов очевидна. Во-первых, обнаружены химические реакции синтеза на основе малонтиоамидов новых ансамблей дитиолан-, тиазол- и тиенилиденов, соединенных двойной связью. Во-вторых, установлено, что кислотный катализ меняет направление реакции малонтиоамидов с ацетилендикарбоксилатами и приводит к труднодоступным аминозамещенным тиенилиденам. Последние, в свою очередь, образуют комплексы с солями меди.

Экспериментальная часть выполнена на высоком уровне. <u>Достоверность</u> результатов не вызывает сомнений. Большинство соединений выделялись препаративно (когда это было возможно), их структура и чистота убедительно

доказаны при помощи ИК-спектров, 1 Н и 13 С, ЯМР спектров, элементного анализа, масс-спектров, данных рентгено-структурного анализа.

Практическая значимость диссертации очевидна. В работе осуществлен препаративно удобный синтез новых тиазолидинонов и тиенонов с экзоциклическими двойными связими, представляющих интерес для молекулярной электроники. С использованием метода циклической вольтамперометрии (редокс потенциалы), Уфспектроскопии и квантово-химических методов доказана перспективность использования для материалов фотоэлектроники производных тиазолиденов. Ряд соединений протестирован на биологическую активность.

Результаты работы могут быть внедрены <u>в практику</u> академических учреждений и в учебные программы химических и биологичеких факультетов университетов и вузов Москвы, Санкт-Петербурга, Новосибирска, Казани, Екатеринбурга и др., а также на предприятиях страны.

Материал работы полно отражен в автореферате и опубликованных статьях.

Замечаний принципиального характера практически нет. В качестве замечания отметим следующие:

- 1) В Экспериментальной части нет указаний на то, какие из веществ новые, а какие уже описаны в литературе;
- 2) Вызывает вопросы выбранная нумерация соединений использованием русского алфавита (соединения 1ë, 11й).
- 3) В автореферате нет разделы «Выводы», хотя присутствует раздел «ЗАКЛЮЧЕНИЕ».

Указанные замечания не влияют на общую высокую оценку работы. Работа имеет принципиальную значимость и является научно-квалификационной. Диссертация Обыденнова Константина Львовича соответствует критериям, предъявляемым к кандидатским диссертациям, установленным ВАК в п.9

«Положения о порядке присуждения ученых степеней» утвержденного постановлением Правительства РФ от 24 сентября 2013 г., № 842, а ее автор — Обыденнов Константин Львович — безусловно, заслуживает присуждения ученой степени кандидата химических наук по специальности 02.00.03 — органическая химия.

Отзыв на диссертацию Обыденнова Константина Львовича заслушан, обсужден и утвержден на заседании научного коллоквиума лаборатории ФХМАС кафедры органической химии химического факультета МГУ имени М.В.Ломоносова (протокол № 9/15 от «8» сентября 2015 года).

Декан Химического факультета МГУ,

академик

В.В. Лунин

Заведующий кафедрой органической химии

Химического факультета МГУ имени М.В. Ломоносова,

доктор химических наук (02.00.03 – органическая химия),

профессор Валентин Георгиевич Ненайденко

В.Г. Ненайденко

Ведущий научный сотрудник Химического факультета

МГУ имени М.В. Ломоносова, доктор химических наук

(02.00.03 – органическая химия), профессор,

Евгений Вениаминович Бабаев

Е.В. Бабаев

119991, Москва, Ленинские горы, дом 1, строение 3, ГСП-1,

МГУ, химический факультет. Тел. +7(495)939-3020.

E-mail: babaev@org.chem.msu.ru