ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БІОДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ СИСТЕМ ЭНЕРГЕТИКИ им. Л.А. МЕЛЕНТЬЕВА

СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИСЭМ СО РАН)

664033, Пркутск-33, ул. Лермонтова, 130 Тел. (395-2) 42-47-00 Факс (395-2) 42-67-96 E-mail: <u>info@isem.sei.irk.ru</u>

на № от

УТВЕРЖДАЮ директор ИСЭМ СО РАН чл.-корр. РАН Н.И. Воропай

ОТЗЫВ

ведущей организации на диссертационную работу

Худяковой Галины Ивановны «Экспериментальное исследование термохимической конверсии коксового остатка угля методом термогравиметрического анализа».

представленную на соискание ученой степени кандидата технических наук по специальности 01.04.14 — Теплофизика и теоретическая теплотехника

1. Актуальность для науки и практики

Развитие новой топочной техники в России и в мире обусловлено как необратимым износом и старением существующего эпергетического оборудования, так и неизбежным переходом к новым технологиям переработки топлив. В сегодняшних условиях твердое топливо, и в первую очередь уголь, становится все более востребованным благодаря его большим запасам и относительной стабильности его цены. По мере развития новых эффективных способов сжигания и переработки твердого топлива возрастают требования к исходной информации о нем. При проектировании энергетического оборудования большое значение имеет динамика воспламенения и горения топливной частицы. поведение минеральной части. Поскольку проведение исследований с топливными частицами на реальных устройствах часто бывает невозможным, важно выбрать подходящий инструмент для моделирования таких процессов в лабораторных условиях. Предложенные ранее методы анализа свойств твердого топлива и кинетики его выгорания (методики, вошедшие в ГОСТы, методы подвешенной или падающей частицы и др.) не позволяют получить достаточно полную информацию о процессе горения частицы. Поэтому для исследования процессов термохимической конверсии твердых топлив в мире все шире используются методы термического анализа. Этому способствует развитие и совершенствование приборной базы для чувствительных и точных измерений.

Рецензируемая работа посвящена разработке и совершенствованию методов, позволяющих с помощью термического анализа давать более точную количественную оценку реакционной способности твердых топлив. Исследуется ряд вопросов, связанных с возможными источниками систематических ошибок, возникающих при решении обратной кинетической задачи на основе выполненных экспериментов, и даются обоснованные рекомендации для их устранения. Также приведены результаты исследований для конкретных энергетических топлив. Таким образом, актуальность работы не вызывает сомнений.

2. Структура и содержание работы

Диссертация Г.И. Худяковой включает введение, 5 глав, заключение, список литературы в 130 наименований и 9 приложений. Объем работы, включая приложения, составляет 212 страниц. Первая глава посвящена обзору существующих представлений о кинетике гетерогенного реагирования твердых топлив и методов исследования горения и

газификации коксов углей. Во второй главе описапа установка для проведения термогравиметрического анализа (ТГА), дается представление о математических моделях конверсии коксозольных остатков в условиях ТГА. В третьей главе приводятся результаты систематических исследований влияния условий эксперимента на кинетику конверсии коксов для неизотермических режимов ТГА. Четвертая глава посвящена изотермическим режимам ТГА. В пятой главе дается оценка влияния процессов переноса на наблюдаемые режимы конверсии твердых топлив. В заключении приводятся основные результаты исследования и полученные на их основе выводы.

3. Основные научные результаты и их значимость для науки и производства Основные результаты, обладающие научной новизной

- 1) На основе анализа экспериментальных результатов и их обработки с помощью математических моделей, основанных на уравнениях макрокинетики гетерогенных реакций, для процессов, протекающих в установке (приборе ТГА), определены оптимальные условия эксперимента, при которых удается обеспечить высокую точность определения кинетических констант за счет нивелирования влияния процессов тепломассопереноса.
- 2) С использованием разработанного методического подхода к проведению ТГА выполнено исследование динамики конверсии коксового остатка ряда энергетических углей, как высокореакционных, так и пизкореакционных. Также выполнены интересные исследования угольных смесей, показывающие возможность их эффективного использования.

Эти исследования дали новые полезные знания в части оценки реакционной способности твердых топлив.

Обоснованность и достоверность

Экспериментальные результаты получены с помощью современного аналитического оборудования. Теоретический анализ проведен на основании классических термодинамики и теории тепломассопереноса с учетом условий эксперимента. Полученные автором результаты сопоставлены с большим числом работ других исследователей, использующих иные экспериментальные методы, и показали достаточно хорошее совпадение.

Практическое значение работы

Результаты диссертационной работы представляют большую практическую ценность для исследователей в области кинетики горения углеродистых топлив (в плане задач выбора оптимальных условий для проведения тонких термокинетических исследований). Уточнение значений кинетических параметров твердого топлива позволит более обоснованно подходить к выбору конструктивных параметров при проектировании устройств для сжигания и газификации твердых топлив.

4. Рекомендации по использованию результатов и выводов диссертации

Разработанные автором методики и программу для обработки экспериментальных данных рекомендуется использовать в практике термоаналитических исследований. Полученные данные по реакционной способности топлив могут быть использованы в математических моделях угольных топок и газогенераторов разных уровней сложности.

5. Вопросы и замечания

- Стр. 22: «Важным фактором для проникновения окислителя в слое частиц к нижним рядам является порозность слоя (ε = 0-1), которая уменьшается с увеличением диаметра частиц.» Вообще говоря, порозность слоя шаров не зависит от размера шара. Однако порозность может существенно зависеть от фракционного состава. Что конкретно имеется в виду в данном случае?
- 2) Стр. 34, табл. 1.2. Каким образом учитывается перегрев частиц в перечисленных методах?
- 3) Стр. 62, разд. «Физико-математические модели процесса конверсии топлива». Какова итоговая размерность константы скорости?

- 4) Стр. 75, рис. 3.8; стр. 91, рис. 4.4; стр. 94, рис. 4.8. Реакционная способность коксозольного остатка при степенях конверсии, близких к единице, резко возрастает. Насколько воспроизводим (количественно) этот эффект? Насколько значимо влияние малых разностей при численном дифференцировании?
- 5) В разд. 4.4 увеличение реакционной способности объясняется появлением фактора, связанного с удельной поверхностью частиц. Этот фактор при стремлении степени выгорания к единице имеет неопределенность типа деления на ноль. Каким образом объясняется такая неопределенность? Нет ли в данном случае необходимости перейти к другой физической модели? Почему принятая модель дает неверное описание начального участка кривых?
- 6) Чем можно объяснить близость итоговых кинетических параметров коксов волчанского бурого угля и антрацита, которые отличаются меньше чем на порядок (k_0 = 3.5×10^6 и $6-6.3 \times 10^6$ м/с: E=158 и 152-155 кДж/моль соответственно), хотя известно, что коксы бурых углей обладают намного большей реакционной способностью, чем кокс антрацита?

6. Публикации

диссертационной работы полностью Основные положения раскрыты в опубликованных печатных работах (5 работ в изданиях, рекомендованных ВАК; 2 главы в коллективных монографиях; 9 докладов на всероссийских и международных конференциях). Также получено 1 свидетельство о государственной регистрации программы для ЭВМ. Автореферат достаточно полно освещает содержание диссертационной работы.

7. Заключение

Диссертация Галины Ивановны Худяковой «Экспериментальное исследование термохимической конверсии коксового остатка угля методом термогравиметрического анализа» представляет собой завершенную научно-квалификационную работу, в которой решена актуальная задача развития методов оценки свойств твердого органического топлива, направленная на решение важной проблемы повышения эффективности использования углей в эпергетических установках. Тематика исследования соответствует приоритетным развития технологий направлениям науки, техники (Энергоэффективность, энергосбережение, ядерная энергетика) и перечню критических технологий РФ (Технологии энергоэффективного производства и преобразования энергии на органическом топливе).

Несмотря на сделанные выше замечания можно сделать вывод, что рецензируемая работа «Экспериментальное исследование термохимической конверсии коксового остатка угля методом термогравиметрического анализа» соответствует требованиям, изложенным в п. 9 «Положения о порядке присуждения ученых степеней» в части, касающейся кандидатских диссертаций, а ее автор, Худякова Галина Ивановна, заслуживает присуждения ученой степени кандидата технических наук по специальности 01.04.14 -Теплофизика и теоретическая теплотехника.

Отзыв на диссертацию обсужден и одобрен на заседании отдела теплосиловых систем ИСЭМ СО РАН 03 ноября 2015 г., протокол № 1.

Зав. отделом теплосиловых систем ИСЭМ СО РА

д.т.н., проф. Александр Матвеевич Клер

Н.с. отдела теплосиловых систем ИСЭМ СОРАЦ к.т.н. Игорь Геннадьевич Донской

664033, РФ, г. Иркутск, ул. Лермонтова, 130

e-mail: kler@isem.irk.ru