официального оппонента на диссертационную работу Телегина Сергея Владимировича «ПОЛУЧЕНИЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПОЛИКРИСТАЛЛОВ И МОНОКРИСТАЛЛОВ ПЕРОВСКИТОПОДОБНЫХ СОЕДИНЕНИЙ $EuBaCo_{2-x}O_{6-\delta}$ », представленную на соискание ученой степени кандидата химических наук по специальности 02.00.04 – физическая химия

В настоящее время наиболее распространенными и востребованными являются сложные оксиды со структурой перовскита и двойного перовскита благодаря уникальному сочетанию электрических, магниторезистивных, магнитокалорических и каталитических свойств, которые можно варьировать в широком диапазоне с помощью целенаправленного допирования. Хорошо известно, что указанные свойства оксидных материалов определяются не только их составом и кристаллической структурой, но также и их дефектной структурой. Однако следует отметить, что, несмотря на большое количество публикаций, посвященных различным свойствам и аспектам применения исследуемых оксидов, лишь небольшая их доля затрагивает важные вопросы их дефектной структуры и ее влияния на физико-химические свойства.

Рецензируемая работа посвящена комплексному исследованию влияния катионных и анионных дефектов на кристаллическую структуру и физико-химические свойства поли-и монокристаллов кобальтитов $EuBaCo_{2-x}O_{6-\delta}$ со структурой двойного перовскита. Следует отметить, что целенаправленное комплексное изучение возможности возникновения вакансий кобальта в катионной подрешетке таких соединений и их взаимосвязи с вакансиями в анионной подрешетке практически отсутствует в научной литературе. Поэтому избранная тема диссертации, безусловно, **является актуальной** как с научной, так и с практической точек зрения.

В первой главе диссертационной работы приводится подробный анализ литературных данных, необходимый для раскрытия выбранной темы. На основании этого анализа дано обоснование выбора исследуемых объектов со структурой двойного перовскита, методов определения кислородной нестехиометрой и дефектной структуры, физикохимических свойств исследуемых объектов.

Во второй главе сформулированы задачи исследования.

Третья глава диссертации посвящена описанию экспериментальных методик исследования кристаллической структуры, дефектности и физико-химических свойств соединения $EuBaCo_{2-x}O_{6-\delta}$. Представительный комплекс использованных в работе методов исследования, квалифицированное применение современных моделей для описания фи-

зико-химических свойств оксидных материалов и его взаимосвязи с их дефектной структурой достаточны для решения поставленных в работе задач.

Четвертая глава посвящена оригинальным исследованиям взаимосвязи дефектной структуре и структурных фазовых превращений, электротранспортных и магнитных свойств соединения $EuBaCo_{2-x}O_{6-\delta}$. Среди основных результатов, составляющих **научную новизну** работы, можно выделить следующие:

- 1. Впервые обнаружена сильная анизотропия электропроводности монокристалла $EuBaCo_{1.90}O_{6-\delta}$ с максимумом при 368 K.
- 2. Впервые измерены функциональные зависимости кислородной нестехиометрии δ от температуры и парциального давления кислорода и построена равновесная $p_{O2}-T-\delta$ диаграмма для двойных перовскитов EuBaCo2-xO6- δ (x = 0, 0.10). диаграмма для двойных перовскитов EuBaCo_{2-x}O_{6- δ} (x = 0, 0.10).
- 3.Впервые предложена модель дефектной структуры двойных перовскитов EuBaCo_{2-x}O_{6- δ} (x = 0, 0.10)., хорошо согласующаяся с экспериментальными данными δ =f(p_{O2}, T).
- 4. Впервые выполнен совместный анализ данных по дефектной структуре, электропроводности и термо-ЭДС двойных перовскитов $EuBaCo_{2-x}O_{6-\delta}$ (x=0, 0.10) и определены подвижности и парциальные проводимости электронов и дырок в зависимости от температуры и парциального давления кислорода.
- 5. Впервые измерена температурная зависимость обратной магнитной восприимчивости поликристаллов сложных оксидов $EuBaCo_{2-x}O_{6-\delta}$ (x=0, 0.10).

Несомненно, что полученные в работе эти и другие новые оригинальные результаты в области физической химии сложных оксидов будут способствовать более глубокому пониманию и моделированию физико-химических свойств оксидных материалов с различной кристаллической структурой во взаимосвязи с их дефектной структурой.

В ходе рассмотрения диссертации С. В. Телегина возникли следующие вопросы и замечания.

- 1. Остается неясным, почему вакансии в кобальтовой подрешетке оказывают незначительное влияние на характер разупорядочения двойного перовскита.
- 2. В работе делается спорный вывод о том, что на основании совпадения температуры перехода И-М в температурных зависимостях общей электропроводности для обоих образцов, можно предположить, как утверждает автор, что валентное и спиновое состояния ионов кобальта в двойных перовскитах EuBaCo2-хO6-δ (х=0, 0.10) практически одинаковы. При этом температурные зависимости электропроводности, представленные на Рис. 4.23, различаются.
- 3. Вопросы и замечания по данным магнитных измерений:

- :а. на графике 4.31 неправильно представлена размерность обратной магнитной восприимчивости – вместо размерности Э*г/эме обозначена размерность г/эме.
- б. нет никакой необходимости пользоваться выражением для константы С в законе Кюри
- Вейсса, которая дается формулой (4.30) из монографии Я.Смита и Х.Вейна, поскольку константа С может определяться непосредственно из обработки температурных зависимостей для обратной магнитной восприимчивости.
- в. используемые выражения для эффективного магнитного момента являются упрощенными, поскольку не учитывают сложной электронной структуры иона кобальта в кристаллической структуре. Так, в частности, для иона Co^{3+} в промежуточном состоянии имеется два орбитальных триплета со спином S=1, для которых при расчете энергетического спектра важную роль играют низкосимметричные кристаллические поля и релятивистское спин-орбитальное взаимодействие.
- г. Обработка данных для обратной магнитной восприимчивости позволяет не только определить эффективные магнитные моменты, но и парамагнитную температуру Кюри-Вейсса. Естественно возникает вопрос, почему не приведены данные для температур Кюри-Вейсса и не сделан, соответственно, вывод о доминирующем характере обменного вза-имодействия в исследуемом соединении антиферромагнитном или ферромагнитном.

Отмеченные недостатки не являются принципиальными. В целом диссертация. С.В. Телегина выполнена на высоком научном уровне, представляет собой законченное исследование в области физической химии сложных оксидов. В результате выполненных исследований были получены новые и интересные с фундаментальной и практической точек зрения результаты.

Научная новизна и практическая значимость работы: результаты работы являются фундаментальной основой для развития физической химии дефектов оксидных материалов. Полученные сведения о взаимосвязи дефектной структуры и различных свойств являются значительным вкладом в развитие представлений о природе этой взаимосвязи.

Высокую достоверность полученных в работе результатов обеспечивает систематический и обоснованный подход к постановке эксперимента, уровень осмысления и обобщения результатов, соответствующий всем необходимым требованиям. По результатам исследований опубликовано 4 стати в отечественных и международных журналах.

Диссертация хорошо оформлена, написана ясным языком, логично структурирована. Формулировка и содержание выводов соответствуют главным достижениям диссертации. Содержание выполненной диссертационной работы и выводы из нее достаточно полно и точно отражены в автореферате. Таким образом, представленная к защите диссертация С.В. Телегина является законченной научно-исследовательской работой. Полученные автором результаты актуальны, оригинальны, достоверны, имеют научную и практическую значимость, Защищаемые положения и выводы обоснованы, а поставленные в диссертации цели достигнуты. Работа соответствует требованиям пункта 9 Положения о порядке присуждения ученых степеней (в редакции постановления Правительства Российской Федерации от 24.09.13 № 842), предъявляемым к кандидатским диссертациям, а сам Сергея Владимирович Телегин, несомненно, заслуживает присуждения ученой степени кандидата химических наук по специальности 02.00.04 — «физическая химия».

Официальный оппонент,

ведущий научный сотрудник лаборатории статики и кинетики процессов

ФГБУН Институт металлургии УрО РАН,

доктор физ.-мат. наук

620016 г. Екатеринбург, ул. Амундсена, д. 101

vyam@mail.ru

+7 (343) 232-91-56

Валентин Яковлевич Митрофанов

Подпись доктора физ.-мат.наук В.Я.Митрофанова заверяю.

Ученый секретарь Института металлургии УрО РАН,

кандидат химических наук

Владислав Игоревич Пономарев

31 мая 2018 г.

