Федеральное государственное автономное образовательное учреждение

высшего образования

«Уральский федеральный университет

имени первого Президента России Б.Н. Ельцина»

АО «Уралэлектромедь»

На правах рукописи

КОРОЛЕВ Алексей Анатольевич

КОМПЛЕКСНАЯ ПЕРЕРАБОТКА СВИНЕЦСОДЕРЖАЩИХ ПРОМПРОДУКТОВ ВАКУУМНОЙ ДИСТИЛЛЯЦИЕЙ

05.16.02 – Металлургия черных, цветных и редких металлов

Диссертация на соискание ученой степени кандидата технических наук

> Научный руководитель, кандидат технических наук, доцент В.Г. Лобанов

Научный консультант, доктор технических наук старший научный сотрудник, Г.И. Мальцев

Екатеринбург – 2019 Верхняя Пышма-2019

Оглавление

Введение4
Глава 1. Современное состояние процессов комплексной
переработки свинецсодержащих промпродуктов11
1.1. Переработка Ag–Zn–Pb-содержащих соединений с получением
первичных концентратов серебра, цинка и свинца19
1.2. Переработка Sn-Sb-As промпродуктов от рафинирования свинца35
1.3. Особенности и преимущества применения вакуумной дистилляции
для раздельного выделения металлов из полиметаллических композиций44
Глава 2. Методология исследований и техника экспериментов49
Глава 3. Исследование основных закономерностей
переработки серебристой пены
3.1 Влияние параметров вакуумной дистилляции на селективное
выделение цинка, свинца и серебра из бинарных композиций
3.1.1. Система «свинец–цинк»
3.1.2. Система «свинец-серебро»72
3.1.3. Система «цинк–серебро»
3.2. Влияние параметров вакуумной дистилляции на селективное
выделение компонентов тройного Zn-Pb-Ag сплава
3.3. Кинетика испарения металлов из Zn-Pb-Ag сплава
3.4. Выводы
Глава 4. Исследование основных закономерностей переработки
Sb-Pb-Sn съемов (шлаков) от рафинирования свинца100
4.1. Влияние параметров вакуумной дистилляции на селективное
выделение сурьмы, свинца и олова из бинарных композиций100
4.1.1. Система «сурьма-олово»
4.1.2. Система «свинец-олово»
4.1.3. Система «свинец-сурьма»116
4.2. Влияние параметров вакуумной дистилляции на селективное
выделение компонентов тройного Sb-Pb-Sn сплава124

4.3. Кинетика испарения металлов из Sb-Pb-Sn сплава	128
4.4. Выводы	134
Глава 5. Опыт укрупненно-лабораторной переработки	
вакуумной дистилляцией свинецсодержащих промпродуктов	136
5.1. Zn-Pb-Ag серебристая пена (СП)	136
5.1.1. Математическое моделирование вакуумной дистилляции	144
5.2. Извлечение Sn из Pb-содержащее сырья в филиале ПСЦМ	
АО «Уралэлектромедь»	157
5.2.1. Получение Pb-Sn сплава	157
5.2.2. Испытания по вакуумной дистилляции Pb-Sn сплава	
5.3. Выводы	168
Заключение	170
Список литературы	173
Приложение 1. Сравнительный экономический расчет	183
Приложение 2. Акт опытно-промышленных испытаний	184

Введение

<u>Актуальность темы исследования</u> обусловлена тем, что для переработки свинецсодержащих промпродуктов и полиметаллических сплавов широко используют однотипные процессы с идентичным физико-химическим обеспечением – выщелачивание, электролиз, обжиг, плавка, которые обладают существенными недостатками: высокий удельный расход реагентов и энергоносителей; обезвреживание образующихся стоков и сложная схема переработки электролитного шлама, токсичность электролита; наличие квалифицированного персонала, большие капиталовложения и удельные финансовые затраты; необходимость развитой схемы приборного контроля и дистанционного управления; невысокая удельная производительность технологического оборудования; большие потери металлов (свинец, золото, серебро) и низкое качество очистки при пирометаллургическом рафинировании.

Рост производства продукции цветной металлургии вызывает увеличение количества и ассортимента сопутствующих промпродуктов, для рекуперации которых на современном этапе промышленного производства определены следующие приоритетные направления: необходимость теоретического обоснования; выполнение лабораторного цикла исследований; разработка, промышленное опробование и внедрение новых высокопроизводительных, экологически безопасных и экономичных технологий с получением товарных моноэлементных продуктов. Одновременно решается задача сокращения промышленных полигонов и отвалов предприятий отрасли.

Анализ современных технологических переделов в производстве свинца, сурьмы и олова показал, что по сравнению с распространенными способами разделения и рафинирования основных металлов от элементов-примесей технологически приемлемым и экономически целесообразным является вакуумная дистилляция полиметаллических сплавов и сопутствующих промпродуктов свинцового производства, позволяющая получить товарные моноэлементные продукты

требуемого качества.

<u>Степень разработанности темы</u>. К основным промпродуктам свинцового производства, требующим переработки, относятся серебряная пена, %: 78–82 Pb; 14–16 Zn; 3–5 Ag; черновой свинец (веркблей), %: 94–97 Pb; 0,8–1,7 Sb; 0,5–0,6 As; 0,15–0,45 Ag; 0,09–0,11 Sn и щелочно-сульфидные съемы, полученные при очистке свинца, одно-/двухоборотные, %: 10–13/3,5–3,8 Pb; 12–13/15–17 Cu; 2,0–2,5/3,7–4,0 Sn; 11–12/ 15–16 Sb; 9,0–10,5/12,5–14 As; 12–13/16–17 S; 32–35/26–27 Na. Комплексный состав промпродуктов затрудняет извлечение основного металла, схемы рафинирования свинца сложны и многостадийны, так как для свинца нет специфических химических реакций и фазовых переходов «твердое–жидкое–пар», позволяющих отделить его от нежелательных примесей, а применяемые методы избирательного рафинирования также не вполне селективные.

Большое внимание в трудах отечественных ученых (Цефт А. Л., Смирнов Н. П., Воронин Н. С., Красиков А. И., Пазухин В. А. и др.) и зарубежных исследователей (Kong Ling-xin, Li Yi-fu, Yang Bin, Jia Guo-bin, Li Dong-sheng и др.) отводится вопросу увеличению количества и качества получаемых методом вакуумной дистилляции цветных металлов при одновременном снижении их себестоимости. Однако оптимизация существующих и разработка новых технологических приемов и подходов при переработке свинецсодержащих промпродуктов требует дополнительного изучения условий селективного выделения элементов-примесей и их отделения от основного металла.

<u>Цель работы</u> состоит в научном обосновании, исследовании и разработке технологии селективного выделения и концентрирования металлов и элементовпримесей из состава свинецсодержащих промпродуктов с получением товарного свинца и товарных продуктов сопутствующих элементов с использованием вакуумной дистилляции.

Для достижения поставленной цели необходимо решение следующих <u>задач</u> <u>исследования</u>:

- обоснование научных положений комплексной переработки

полиметаллических сплавов и Pb-Zn-Ag-Sb-Sn-содержащих композиций с получением индивидуальных металлов и товарных моно- и полиэлементных продуктов методом вакуумной дистилляции исходных материалов;

– выявление основных физико–химических свойств и характеристик систем и продуктов пирометаллургической переработки Pb-Sb-Sn сырья и полупродуктов; установление закономерностей возгонки исследуемых элементов в зависимости от состава исходных материалов, температуры и продолжительности процесса, степени разряжения и используемого оборудования;

– изучение кинетики испарения элементов; определение констант скорости и энергий активации процесса, коэффициентов разделения и активации компонентов сплавов; выполнение термодинамических расчетов энергии смешения; энтальпии и энтропии смешения на основании полученных экспериментальных результатов возгонки исследуемых компонентов; построение равновесных фазовых диаграмм «жидкость–пар» для систем Pb – *i*, где *i* – примесь.

– совершенствование рафинирования чернового свинца, сурьмы и олова вакуумной дистилляцией посредством разработки технологических мероприятий по оптимизации процессов разделения основных металлов и селективного либо коллективного выделения элементов-примесей из исходного сырья на основе индивидуальных свойств и характеристик исследованных компонентов;

 – создание технологических основ, обеспечивающих повышение прямого извлечения тугоплавких цветных и драгоценных металлов в металлическую фазу кубового остатка, сурьмы и цинка – в возгоны;

 математическое описание операции вакуумной дистилляции свинцового сырья и полиметаллических сплавов, её применение в процессе обучения технического персонала, а также при управлении и оптимизации усовершенствованной пирометаллургической технологии;

 технико-экономическая оценка разработанной технологии вакуумной дистилляции и вовлечения в действующее производство промпродуктов цветной металлургии, имеющих важное народно-хозяйственное значение.

<u>Научная новизна и теоретическая значимость</u> результатов выполненных исследований:

1. Для бинарных сплавов с трудно и легко возгоняемыми металлами (Me₁ и Me₂, соответственно) Pb-Zn, Ag-Pb, Ag-Zn, Pb-Sb, Sn-Pb, Sn-Sb в интервале температур 823–1773 К рассчитаны давления насыщенного пара (p^* , Па) Me₁/Me₂: (3,32·10⁻⁹–102,6)/(0,15–1,76·10⁶). Высокие значения соотношений $p^*(Me_2)/p^*(Me_1) = (1,09·10^{11}-74,0)$ и коэффициентов разделения log $\beta(Me_2/Me_1) = 1,80-12,25$ создают теоретические предпосылки для селективного выделения легко возгоняемых компонентов сплавов вакуумной дистилляцией, обогащающихся в газовой фазе (β Me₂ > 1), а трудно возгоняемых – в жидкой (β Me₂ < 1).

2. На основе объемной модели молекулярного взаимодействия *MIVM* (*molecular interaction volume model*) в интервалах температур 823–1773 *К* при содержании компонентов $x_{Me} = 0,01-0,99$ в бинарных сплавах Pb-Zn, Ag-Pb, Ag-Zn, Pb-Sb, Ag-Sb, Sn-Sb рассчитаны коэффициенты активности (γ_{Me}) со значениями как меньше (3,77·10⁻⁴–0,999), так и больше единицы (1,002–1,47), что соответствует отрицательным и положительным отклонениям от идеальности.

3. Анализ построенных «*T*–*x*» диаграмм исследованных бинарных сплавов показал, что содержание менее летучего компонента в газовой фазе (*y*Me₁, мол. доля) при фиксированном давлении ($P_g = 1,33-133$ Па) возрастает при увеличении его содержания в сплаве ($x_{Me1} = 0,99-0,9999$ мол. доля) и росте температуры расплава ($T_{liq} = 852-2134$ *K*.): *y*(Me₁) = 1,5·10⁻⁸–0,997.

4. Рассчитаны термодинамические параметры испарения компонентов тройных сплавов переменного состава при T = 873-1673 K, например: Pb-Sb-Sn: $-_{\Delta}G_{Pb}$, кДж/моль = 13,8–29,0; $-_{\Delta}G_{Sb} = 2,6-29,0$; $-_{\Delta}G_{Sn} = 2,1-26,4$.

5. Установлено, что процесс испарения металлов из тройного сплава, например Sb-Pb-Sn, при 823–1073 *К* соответствует реакции первого порядка, в частности, для $x_{Sb/Pb/Sn} = 0,125/0,125/0,75$ при T = 973 *К* и P = 13,3 Па $\ln w_{Sb} = -7,2.10^{-7}(S/V)t - 2,09$; $\ln w_{Pb} = -2,56.10^{-7}(S/V)t - 2,08$; $\ln w_{Sn} = -1,44.10^{-9}(S/V)t - 0,29$. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава (k_{Me} , м сек⁻¹) возрастают для Sb, Pb, Sn в интервале 5,32.10⁻¹⁰ – $1,38 \cdot 10^{-6}.$

6. Из анализа рассчитанных диаграмм тройных сплавов переменного состава, например Zn-Pb-Ag, следует, что содержание свинца и серебра в составе конденсата цинка ($y_{Zn} > 0,9999$ мол. доля) снижается с уменьшением исходного содержания этих металлов (x_{Me} , мол. доля) в сплаве ($x_{Pb} = 0,75-0,2$; $x_{Ag} = 0,09-0,03$) и равновесной температуры ($T_{liq} = 847-618 \ K$) при падении давления (133–1,33 Па): $y_{Pb} = 3,19\cdot10^{-6}-3,5\cdot10^{-9}$, $y_{Ag} = 1,03\cdot10^{-11}-0,3\cdot10^{-16}$.

<u>Практическая значимость</u> результатов исследований состоит:

1. Разработаны и апробированы в укрупненно-лабораторном масштабе новые операции по комплексной экологически безопасной переработке полиметаллических сплавов и Pb-Zn-Ag-Sb-Sn-содержащих композиций, позволяющие:

 производить селективную возгонку исследованных компонентов с получением высокочистого свинца и индивидуальных моноэлементных товарных продуктов, пригодных для рекуперации в производстве металлов;

 в управляемом, экономически целесообразном режиме вакуумной дистилляции снизить антропогенную нагрузку на экосистемы Уральского промышленного региона.

2. Установлены регрессионные зависимости определяющих показателей (Y_i) от величины параметров (X_j) вакуумной возгонки свинца и элементов-примесей из сложных по составу полиметаллических композиций для их использования при создании систем управления и автоматизации разработанной технологии по переработке свинецсодержащих промпродуктов.

3. Результаты опытно-промышленных испытаний по переработке поликомпонентного сырья использованы в качестве исходных данных при проектировании промышленной установки вакуумной дистилляции на АО «Уралэлектромедь», с ожидаемым экономическим эффектом ~87 млн. руб/год при решении важной народно–хозяйственной задачи – переработка отходов производства и рост количества и ассортимента выпускаемой товарной продукции.

<u>Методология и методы исследования.</u> Работы выполнены в лабораторном, укрупненно-лабораторном и полупромышленном масштабах. Задействованы методы математического планирования эксперимента и физического моделирования, компьютерные программы обработки экспериментальных данных, в т.ч. системное моделирование исследований – от лабораторного до полупромышленного масштаба. Разработаны и освоены оригинальные лабораторные и укрупненные установки для изучения процессов возгонки и конденсации исследованных металлов и элементов.

Использованы аттестованые современные физико-химические методы: просвечивающая электронная микроскопия (микроскоп "JEM 2100" с приставкой для микроанализа "Oxford Inca"), рентгенофазовый "XRD 7000C" (Shimadzu), атомноабсорбционный анализ ("novAA 300"), ИК-спектрометрия ("ALPHA-T"), спектрофотометрия ("Lambda"), атомно-эмиссионный спектральный анализ с индуктивно-связанной плазмой ("UV-25L") и др.

Положения, выносимые на защиту:

 – анализ технических, экономических и экологических аспектов внедрения новых технологических процессов для комплексной переработки промпродуктов и отходов с последующей рекуперацией тяжелых цветных металлов на горно–металлургических предприятиях Уральского региона;

 – закономерности возгонки исследуемых элементов из металлических сплавов в зависимости от состава исходных материалов, температуры и продолжительности процесса, глубины вакуума и аппаратурного оформления;

- изучение кинетики испарения элементов; определение констант

скорости и энергий активации процесса, коэффициентов разделения и активации компонентов сплавов; выполнение термодинамических расчетов энергии смешения; энтальпии и энтропии смешения на основании полученных экспериментальных результатов возгонки исследуемых компонентов; построение равновесных фазовых диаграмм «жидкость–пар» для систем Pb – *i*, где *i* – примесь;

 математическая интерпретация процесса вакуумной возгонки исследованных металлов и элементов;

 – результаты укрупненно-лабораторных и опытно-промышленных испытаний процесса комплексной переработки металлических сплавов и промпродуктов свинцового передела методом вакуумной дистилляции.

Степень достоверности результатов. В работе использованы сертифицированное оборудование, современные средства и достоверные методики исследований и измерений Полученные экспериментальные данные научных исследований, выводы и рекомендации являются достоверными, что подтверждается сходимостью результатов прикладных и теоретических исследований, воспроизводимостью результатов анализов, проведенных различными физическими и физико–химическими методами. Данные, полученные при исследовании модельных систем, подтверждены в ходе опытно–промышленных испытаний на вакуумно-дистилляционной печи «IEKO Keeps on improving» (Италия) на АО «Екатеринбургский завод ОЦМ».

<u>Апробация работы</u>. Положения и результаты работы доложены и обсуждены на Международной научно-технической конференции «Пром-Инжиниринг» ICIE– 2017 (Челябинск, 2017); «Инновационные технологии обогащения минерального и техногенного сырья» в рамках VII Уральского горнопромышленного форума (Екатеринбург, 2017); Конгресс Техноген–2017 «Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований» V Форум «Уральский рынок лома, промышленных и коммунальных отходов» (Екатеринбург, 2017); XXIII Международной научно-технической конференции «Научные основы и практика переработки руд и техногенного сырья» (Екатеринбург, 2018); IV Международной научно-технической конференции, посвященной 100-летию со дня рождения С.И. Кузнецова (Екатеринбург, 2018).

<u>Основные результаты исследований изложены</u> в 21 печатных работах, в том числе в 15 статьях в журналах, определенных ВАК РФ для материалов диссертационных работ, в монографии и в 5 тезисах докладов.

Глава 1. Современное состояние процессов комплексной переработки свинецсодержащих промпродуктов

При производстве большинства цветных металлов, включая свинецсодержащие промпродукты, используются однотипные процессы с идентичным физикохимическим обеспечением – обжиг, плавка, выщелачивание, электролиз [1–7]. Соответственно при очистке чернового металла от примесей (рафинировании) и его концентрировании используют гидрометаллургический, электрохимический и пирометаллургический методы [8–10].

Гидрометаллургический метод предусматривает перевод элементов из состава сырья в жидкую фазу с последующей очисткой от примесей физико-химическими методами (селективное осаждение, цементация, сорбционно-экстракционное разделение). Концентрированный очищенный раствор металла получают при упаривании, десорбции и реэкстракции. Из раствора ценный элемент выделяют электролизом, автоклавным осаждением газа, кристаллизацией, химическим осаждением, дистилляцией. Достоинства метода: селективность при извлечении из забалансового сырья; комплексная переработка сырья, позволяющая создавать безотходные, экологически чистые технологии; высокий уровень механизации и автоматизации производства; экономическая эффективность при переработке неметаллического сырья. Недостатки метода: высокий удельный расход реагентов, энергоносителей; необходимость обезвреживания стоков; наличие квалифицированного персонала, большие финансовые удельные затраты; необходимость развитой схемы приборного контроля и дистанционного управления; невысокая удельная производительность технологического оборудования.

Электролитическое рафинирование свинца осуществляют в настоящее время на заводах в Италии, Китае и Корее. Поведение примесей, содержащихся в свинце, при электролизе определяется величиной их нормального потенциала. Металлы

(элементы) более положительные, чем свинец (As, Cu, Bi, Sb, Ag, Au), остаются в анодном шламе; только олово осаждается вместе со свинцом при электролизе.

Для электролиза традиционно применяли электролит из водного раствора кремнефтористоводородной кислоты (H_2SiF_6) и кремнефтористого свинца ($PbSiF_6$), который готовили из плавикового шпата CaF₂ и концентрированной серной кислоты: $CaF_2 + H_2SO_4 = 2HF + CaSO_4$. Полученной плавиковой кислотой обрабатывали кремнезем: $6HF + SiO_2 = H_2SiF_6 + 2H_2O$. Кремнефтористый свинец получают в результате растворения глета или углекислого свинца в кремнефтористоводородной кислоте. Получение электролита в данном случае связано с применением ядовитой и агрессивной плавиковой кислоты. В последнее время все большее распространение получает сульфаминовый электролит. Известны два способа получения сульфаминовой кислоты: из мочевины и аммиачный. По первому способу мочевину растворяют в избытке серной кислоты и затем добавляют 65-70 % олеум, получая кристаллы сульфаминовой кислоты: NH₂CONH₂ + H₂SO₄ + SO₄ = 2NH₂SO₃H↓+ CO₂. По второму способу из аммиака и серного ангидрида вначале получают промежуточную соль – NH_x(SO₂ONH₄)₂ имидбисульфат аммония, а затем при гидролизе соли в присутствии серной кислоты образуется кристаллическая сульфаминовая кислота NH₂SO₃H – кристаллическое, негигроскопичное удобно транспортируемое вещество, она не ядовита, хорошо растворима в воде, имеет высокую электропроводность. Примеси Bi, As, Sb в ней нерастворимы, а олово образует неустойчивую соль с высокой степенью анодной и катодной поляризации Поэтому в сульфаминовом электролите олово не осаждается на катоде даже при содержании в анодах до 1 % Sn.

Подлежащий рафинированию свинец после обезмеживания отливают в аноды в виде пластин с размерами 767х667х29 мм и весом ~ 190 кг. Чем больше примесей содержит свинец, тем тоньше отливают аноды. В качестве катодов употребляют свинцовые листы 777х677х10 мм. Ванны из железобетона изнутри покрыты кислотоупорной футеровкой из асфальта или из винипласта. В ванне помещается 20 анодов и 21 катод. Электроды включены параллельно, а ванны после-

довательно. На заводе Сан-Гавино (Италия) получают около 15 г в сутки электролитного свинца. Состав чернового/рафинированного свинца, получаемого на этом заводе, %: 98/99,99 Pb; 0,05/0,002 Ag; 1/0,005 Cu; 0,4/0,001 Sb; 0,05/0,0001 As; 0,02/0,0002 Zn; 0,002/0,000 Fe. Электролит содержит, г/дм³: 120–140 Pb; 0,4–0,6 Fe; 0,3–0,4 Zn; 0,1–0,15 Sb; 0,001–0,005 As; 0,001–0,0015 Cu; 0,4–0,6 Cl; 2–3 Ca; 4–6 NH₂SO₃H; 4–6 фенол; 2–4 желатин. Анодная плотность тока составляет 120–150 a/m^2 , напряжение 0,5–0,55 B, выход по току 96–97 % и расход энергии 190 квтч/т катодного свинца. Шлам содержит, %: 12–20 Pb; 4–5 Ag; 6–15 Cu; 25–30 Sb; 9–15 As. После промывки водой его плавят в отражательной печи. При этом получают пыль/шлак/металл состава, %: 9–10/35–40/8–9 Pb; –/0,1–0,2/5–6 Cu; 30–35/30–35/4– 5 Sb; 0,05–0,07/0,01–0,02/80 Ag; 35–40/7–8/– As; 0,4–0,5/–/– S.

Металл подвергают окислительной плавке для отделения свинца, сурьмы и меди. Получаемое черновое серебро рафинируют электролизом. Пыль и шлак перерабатывают с получением сурьмянистого свинца. Такой же способ электролиза применяется на заводе Падерно-Дуньяно (Милан). Производительность завода 10 тыс. т свинца в год; чистота свинца 99,995 %. Электролитическому рафинированию подвергают свинец и на Шеньянском заводе (КНР). Аноды отливают из обезмеженного свинца, содержащего, %: 98,7 Pb; 0,32 Sb; 0,009 Cu; 0,269 As; 0,007 Sn. Электролиз ведут в 252 ваннах размером 3,2x0,76x1,05 м. В каждой ванне 33 анода и 34 катода; плотность тока 160–220 а/м², напряжение 0,42 В, расход электроэнергии 108 квт ч/т свинца и кремнефтористоводородной кислоты 2 кг/г. Выход по току 97 %, получающийся металл содержит 99,997 % Рb. Выход шламов составляет 1,2 % от свинца. Их перерабатывают с целью извлечения содержащихся в них металлов. Возможность одной операцией очистить свинец от всех содержащихся в нем примесей и извлечь их из небольшого количества шламов определяет значительное преимущество электролитического рафинирования. Однако малая интенсивность процесса, сложная схема переработки электролитного шлама, токсичность элекбольшие капиталовложения сдерживают широкое распространение тролита и этого способа рафинирования на свинцовых заводах.

Пирометаллургическое рафинирование используют на всех отечественных и

большинстве зарубежных заводах. Огневой (пирометаллургический) способ очистки чернового металла основан на различии физических и химических свойств свинца и элементов-примесей: растворимость, температура плавления или кипения, окислительную способность или сродство к сере, а также возможность образования соединений, нерастворимых в свинце.

При пирометаллургическом рафинировании из чернового свинца последовательно удаляют следующие металлы:

- медь ликвацией и с помощью обработки расплава элементарной серой;

- теллур с помощью металлического натрия в присутствии едкого натра;

- мышьяк, сурьму и олово в результате окислительных операций;

- серебро и золото с помощью металлического цинка;

– цинк окислением в свинцовой ванне или в щелочном расплаве, ва куумированием и другими способами;

 висмут удаляют металлическим кальцием, магнием, сурьмой, при этом происходит загрязнение свинца этими металлами;

- кальций, магний и сурьму качественным рафинированием.

На каждой стадии рафинирования образуются съемы (промежуточные продукты), в которые переходят примеси и часть свинца. Их подвергают самостоятельной переработке.

Операцию очистки чернового свинца от благородных металлов, главным образом серебра (до 3 кг/т), называют обессеребрение и осуществляют следующими способами: окислительным плавлением (купелированием), дробной кристаллизацией, очисткой цинком.

При окислительном плавлении свинец продувают воздухом при 900–960 °С.

Весь свинец при этом окисляется, а золото и серебро получают в остатке в виде сплава. Оксид свинца затем восстанавливают до металла. Остаточное содержание благородных металлов в восстановленном свинце составляет 15–20 г/т. Процесс сопровождается большими потерями металлов (свинца, золота, серебра), низким качеством очистки и большими эксплуатационными расходами [11–16].

В дробной кристаллизации используют ликвацию, когда при медленном

охлаждении свинца в интервале температур 324–304 °C кристаллизуется чистый свинца на поверхности расплава, а благородные металлы накапливаются в маточном расплаве. При концентрации благородных металлов в маточном расплаве ~2 % производят купелирование [17–19].

Наиболее эффективный способ обессеребрения свинца основан на способности золота и серебра образовывать с металлическим цинком прочные интерметаллические соединения с высокой температурой плавления [20–24]. Цинк при этом в свинце почти не растворяется. Плотность образующихся твердых сплавов меньше, чем у свинца, и они всплывают на поверхность свинцовой ванны в виде твердой пены, которую удаляют. Остаточное содержание в свинце благородных металлов не превышает 5 г/т. Основная реакция процесса обессеребрения:

$[Ag]Pb + m[Zn] = AgZn_m.$

Золото при очистки свинца удаляется в первую очередь, что связано с большим сродством этого металла к цинку, чем у серебра и при небольшой добавке цинка можно выделить золото в отдельный съем:

$$AgZn_m + [Au]Pb = [Ag]Pb + AuZn_m$$

На большинстве заводов мира процесс обессеребрения проводят в периодическом режиме в стандартных рафинировочных котлах в два этапа по технологической схеме, представленной на рис. 1.1. Процесс обессеребрения начинается с растворения в свинце богатой по свинцу оборотной пены, масса которой составляет 10–12 % от массы свинца.

Растворение проводят при температуре 530 °C и интенсивном перемешивании расплава. После снижения температуры до 510–480 °C снимают всплывшую богатую товарную серебристую пену, которую направляют на специальную переработку. Выход ее составляет 1–2 % от массы свинца, и она содержит, %: 60– 100 кг/т Ag; 100–200 г/т Au; 25–30 Zn; 60–70 Pb; ~1,0 Cu; 0,2–0,3 Sb; 0,05 Bi и др. В свинце после съема богатой пены содержится не более 150–300 г/т серебра. Затем в котел загружают металлический цинк в виде чушек или оборотных материалов. Удельный расход цинка составляет 10–12 кг на тонну свинца. Процесс проводят при температуре 480–330 °C. Съем пены производят с помощью либо

шумовки, либо специального пресса.

Рис. 1.1. Технологическая схема удаления благородных металлов из свинца

В зависимости от температуры съема оборотной пены ее подразделяют на две группы: первая – богатая оборотная пена, снятая в интервале температур 380–450 °С и вторая – бедная пена, снятая в интервале температур 340–330 °С. В полученном после рафинирования свинце остается 1–3 г/т серебра и следы золота.

К недостаткам обессеребрения свинца цинком в периодическом варианте следует отнести трудоемкость операции, ее большую продолжительность и применение ручного труда. Режим работы рафинировочного оборудования чрезвычайно тяжелый: температура свинца в котлах за кратковременный период изменяется от 330 до 550 °C. Частые теплосъемы, термические удары, воздействия на внутренние стенки котла агрессивных компонентов приводят к тому, что срок службы этого агрегата редко превышает два года. Эти недостатки в значительной мере устраняются в непрерывном процессе обессеребрения свинца цинком. Процесс непрерывного рафинирования осуществляют в высоком (5–7 м) котле цилиндрической формы с переходом в коническую в верхней части (рис. 1.2.). Котел наполняют обессеребренным свинцом. В верхней части котла создают слой (до 1 м) расплавленного цинка. Черновой свинец подают в верхнюю часть котла, где он при

600–650 °С насыщается цинком и медленно опускается вниз, так как вблизи дна расположен сифон, через который отводят обессеребренный свинец.

Рис. 1.2. Схема для непрерывного обессеребрения свинца цинком: *1* – котел; 2 –чугунная сменная гильза; 3 – карман для заливки свинца; 4 – желоб для выгрузки цинк-серебряного сплава; 5 – сифон для выпуска свинца

При движении расплава вниз температура его понижается и, соответ-ственно, снижается предел насыщения его цинком и серебром. Из свинцового слоя непрерывно выделяются и ликвируют в цинковый слой кристаллы интерметаллических соединений серебра и золота с цинком. При достижении в слое цинка концентрации серебра 15–20 % поднимают в котле уровень свинца и вытесняют частично или полностью цинк-серебряный сплав в желоб для выгрузки сплава.

Охлаждение котла проводят так, чтобы температура свинца на дне была близка к точке затвердевания (около 330 °C). Это обеспечивает высокую степень очистки свинца от благородных металлов. Непрерывное обессеребрение обладает преимуществом по сравнению с периодическим: высокая производительность, обусловленная устранением затрат времени на вспомогательное операции (разогрев и охлаждение свинцовой ванны, введение цинка, съем пены и т.д.); более глу-

бокая очистка свинца от благородных металлов (содержание серебра в обессеребренном свинце 0,7–1,5 г/т); улучшается качество Ад-пены – выход пены сокращается в 2–3 раза, содержание серебра в ней возрастает в 2–3 раза, потери свинца

в пене уменьшаются в 7-10 раз.

В процессе исследований используют лабораторные образцы вакуумных печей (рис.1.3). Степень вакуума в лабораторной печи составляет 5,0–7,0 Па или (3,8–5,3)·10⁻² мм рт. ст.

Рис. 1.3. Схема лабораторной вакуумной печи: 1 – крышка печи; 2 – корпус печи; 3 – низ печи; 4 – электрод, охлаждаемый водой; 5 – конденсатор паров; 6 – смотровое окно; 7 – теплоизолирующий слой; 8 – графитовый нагревательный элемент; 9 – тигель из графита

На рис. 1.4 показана схема про-

мышленной вакуумной печи, в которой расплавленный сплав Pb-Sn выдавливается в вакуумный котел атмосферным давлением и нагревается в нем до высокой температуры. Свинец из сплава будет приоритетно испаряться и конденсироваться в жидкость в конденсаторе; жидкий свинец вытекает из печи через выпускной трубопровод и накапливается. Благодаря низкому давлению паров, олово, находящееся в жидком состоянии, вытекает из котла и накапливается. Таким образом, Pb-Sn сплав разделяется на свинец и олово. Оборудование может непрерывно работать более 30 дней; хрупкие узлы и детали сохраняются или заменяются в течение ~20 час. Ежедневный объем переработки превышает 10 т, а средний расход электроэнергии составляет 600 кВт⁻ч/т. Степень вакуума в печи составляет около 0,5 Па (3,8·10⁻³ мм рт. ст.).

Значимость «перемешивания» сплава во время дистилляции значительно возрастает к концу процесса, когда основная доля летучего элемента уже удалена и скорость возгонки экспоненциально уменьшается, поскольку дистилляция это диффузионный процесс. Есть печи как с механическим, так и с индукционным перемешиванием, когда чем ниже частота питания индуктора, тем выше перемешивающая способность. Кроме того, степень перемешивая в многофазных индукторах значительно выше чем в однофазном (под фазами питания понимается количество индукционных катушек).

1.1. Переработка Ag–Zn–Pb-содержащх соединений с получением первичных концентратов серебра, цинка и свинца

Исследовано влияние размера частиц цинкового порошка (3,55; 44,4 и 734,8 мкм), вводимого в Pb–Ag сплав с погруженной сверху фурмой и использованием азота в качестве несущего газа, на удаление серебра. Лучшие результаты получены для Zn-порошка размером 44,4 мкм; низкая эффективность процесса выявлена для минимального размера частиц. Методом рентгеновской дифракции соединение Ag-Zn обнаружено в шлаковой фазе при использовании цинковых частиц размером 44,4 и 734,8 мкм. Установленные различия объяснены параметрами плавления и продолжительностью ввода Zn-частиц [25].

Для удаления загрязнений из *веркблея* (92,88 % Pb)_использован метод вакуумной перегонки [26]. Изучена термодинамика процесса вакуумного рафинирования дистилляцией чернового свинца посредством давления насыщенных паров основных компонентов веркблея, установлены коэффициенты разделения и равновесные составы Pb-*i* (*i* – примеси) системы «пар-жидкость» при различных температурах [27]. Показано, что вакуумная дистилляция может быть применена для получения свинца из веркблея, в котором примеси (Zn, As и частично Sb) испаряются при более низкой температуре 923–1023 К. Свинец отгоняют из остатка, содержащего Cu, Sn, Ag, Bi при более высокой температуре 1323–1423 К, но висмут тоже испаряется вместе со свинцом и не может быть отделен от свинца.

Рафинирование свинца (> 99% Pb) из *веркблея* было достигнуто вакуумной (5–15 Па) перегонкой [28]. Свинец на первой стадии возгоняется при 1373 К, отделяясь от нелетучих примесей Cu, Sn, Ag, частично Sb, концентрирующихся в остатке. Возгоны свинца, содержащие легколетучие примеси (Zn, As), очищают на второй стадии при температуре 973 К. Висмут обладает аналогичным свойством и не может быть выделен из чернового свинца. Рассчитаны коэффициенты разделения (β_i) и активности (γ_i) элементов-примесей.

Исследованы свойства трехкомпонентного сплава Ag–Zn–Pb переменного состава, %: 5–25 Ag; 30–65 Zn [29]. Вследствие отсутствия информации по поведению трехкомпонентной системы, проанализированы две двойные системы Zn– Ag и Pb–Ag. Идеальный коэффициент разделения двухкомпонентного вещества выражается через отношение давления пара компонентов смеси:

$$\beta = p_2/p_1 = \gamma_2 P_2^{\circ} N_2/\gamma_1 P_1^{\circ} N_1,$$

где P_1° и P_2° – давление пара чистых компонентов; γ_1 и γ_2 – коэффициенты активности, отражающие взаимодействие компонентов в жидкой фазе [30–32]; N_1 и N_2 – молярные доли компонентов.

Для режима молекулярной дистилляции металлов, когда все испаряющиеся частицы переходят в конденсат коэффициент разделения [33–35]:

$$\beta_m = \beta M_1^{0,5} / M_2^{0,5} = (\gamma_2 P_2^{\circ} N_2 M_1^{0,5}) / (\gamma_1 P_1^{\circ} N_1 M_2^{0,5}),$$

где *M*₁ и *M*₂ молекулярные массы компонентов.

Разделяющий эффект молекулярной дистилляции также можно выразить через отношение скоростей испарения компонентов смеси (q_i) :

 $\beta_m = q_{2/}q_1 = P_2^{\circ}N_2(M_1T)^{0.5} / P_1^{\circ}N_1(M_2T)^{0.5} = q_2N_{1/}q_1N_2 = (P_2^{\circ}/P_1^{\circ})(M_1/M_2)^{0.5}.$

Из последнего выражения следует, что степень разделения при молекулярной дистилляции больше, чем при равновесной в $(M_1/M_2)^{0.5}$ раз.

 $^{\rm o}-T$ »

– T»

Зависимость давления насыщенного пара индивидуальных металлов от температуры представлена на рис. 1.5. Показано, что при температуре 800 °C и $N_{Ag} = 0.9$ коэффициент разделения $\beta = p_{Zn}/p_{Ag} = 2.95 \cdot 10^4$, что позволяет отделить цинк от серебра: в жид-кой фазе содержится (расчет/эксперимент)

93,69/63,0 % Ag, а в газовой – 0,0034/0,09 % Ag. При температуре 1000 °C и N_{Ag} = 0,9 коэффициент разделения $\beta = p_{Pb}/p_{Ag} = 12$, что свидетельствует о возможности разделения свинца и серебра: в жидкой фазе содержится 82,4/90,0 % Ag, а в газовой – 0,98/1,0 % Ag. При температурах 700 и 1000 °C

отгоняются основная масса цинка и свинца. соответственно: $\alpha_{Zn,Pb} > 90 \%$ (рис.1.6).

Градиент давления $h = P_s - P_f$ паров металла над поверхностями испарения (P_s) и конденсации (P_f) является движущей силой возгонки. Когда $P_s > P_f$ рассмотрим температуру конденсата в жидком или твердом состоянии. В Zn-сплаве с остаточным содержанием Zn ≈ 1 % при 800 °C, $P_s = P_{Zn}$ < 49,329 Па. В точке плавления цинка (420 °C) над поверхностью конденсата имеем P_f = $P^{o}_{Zn} = 20,665$ Па, что соответствует усло-

вию $P_s > P_f$ (для жидкого конденсата). Для Pb-сплава с остаточным содержанием Pb ≈ 1 % при 1000 °C, $P_s = P_{Pb} = 34,664$ Па. Над поверхностью конденсата при температуре плавления свинца (327 °C) $P_s = P^o_{Pb} = 2,533 \cdot 10^{-9}$ Па.

При условии $P_s > P_f$ образуется жидкий Pb-конденсат даже если температура конденсации повышается до 700 °C. В то же время, разница ($P_s - P_f$) определяет скорость конденсации. Для цинка и свинца $P_{Pb}-P_f >> P_{Zn}-P_f$, поэтому скорость конденсации свинца значительно превышает скорость конденсации цинка.

Для осуществления перегонки цинка и свинца остаточное давление в системе (*P_r*) должно быть равно или меньше давления пара легколетучего компонента сплава – Zn-Pb-сплав должен удовлетворять следующим условиям перегонки:

 $P_r \le P_{Zn} = 19\ 198,368\ -49,329\ \Pi a\ (800\ ^\circ C,\ Zn = 60\ -1\ \%);$

 $P_r \le P_{Pb} = 65,528 - 13,332 \Pi a (1000 \text{ °C}, Pb = 20 - 1 \%).$

– Р»

При отгонке цинка остаточное давление в системе варьируется в широком диапазоне и может быть использовано относительно высокое значение P_r . Для свинца остаточное давление низкое и заключено в узком диапазоне. Для предотвращения повторного испарения конденсированного цинка остаточное давление в системе должно быть $P_r \ge 20,665$ Па (рис. 1.7). Для цинка при большом P_r степень отгонки до-

статочно высокая, в то время как степень перегонки свинца сильно зависит от P_r : для поддержания $\alpha_{Pb} = 90$ % остаточное давление не должно быть выше 66,661 Па. При перегонке из объема расплава в режиме кипения давление внутри пузыря (P_b) равно или превышает давление на поверхности расплава (P^o) и статическое давление столба жидкости над пузырем (P_i): $P_b = P_{Me} \ge P^o + P_i$.

В вакууме P° очень мало и вероятность кипения зависит только от значения P_i . Для цинка в Zn-Pb-сплаве (60/40) при 800 "С $P_i = P_{Zn} = 15198,708$ Па. При удельном весе сплава $\gamma = 9,7$ через каждые 1,4 мм по глубине расплава статическое давление увеличивается на 133,322 Па (1 мм Hg). При глубине расплава 114 мм $P_i = 81$ мм Hg (10799,1 Па). Когда $P_{Zn} \ge P_i$ наступает перегонка в режиме кипения. После

выпаривания расплава цинка до 1 %, *P*_{Zn} = 49,329 Па. Перегонка кипением возможна при небольшой глубине расплава.

Рассмотрим сплав свинца (20 %) при 1000 °С, $P_b = P_{Pb} = 68,528$ Па.

图 6

ого

熔体深度与金属蒸馏率的关系、

Для реализации условия $P_{\rm Pb} \geq P_i$ глубина расплава должна быть очень маленькой (рис. 1.8). Таким образом, дистилляция свинца под вакуумом осуществляется не из объема, а с поверхности расплава, диффузия расплава определяет степень перегонки. В исследованном диапазоне глубины расплава (h) степень возгонки цинка остается неизменно высокой; для свинца 90 % извле-

чение из состава сплава возможно при h \leq 4 мм. Реальная /теоретическая скорость испарения расплава в стационарном состоянии перегонки до 1000 °C, г/см² сек: 1,91·10⁻³ / 1,48·10⁻². Свинец, чтобы расплавить нервную поверхность диффузионного слоя ограничивает и снижает фактическую скорость перегонки. Итак, при перегонке Pb, следует использовать тонкий слой материала или применить агитацию для улучшения условий диффузии. Цинк, как полагают, блокирует кипение свинца.

Исследована возгонка свинца и цинка из сплава состава, %: 23,19 Pb; 62,41 Zn; 13,23 Ag [36]. Скорость испарения свинца и цинка возрастает с повышением температуры: при t = 700 °C $W_{Zn} = 2,2.10^{-3}$ г/см² сек; при t = 1050 °C $W_{Pb} = 2,0.10^{-3}$ г/см² сек (рис. 1.9, 1.10).

При остаточном содержании в сплаве цинка и свинца ~1 % равновесное давление в системах устанавливается на уровне 40 и 13,3 Па, соответственно. Константу скорости дистилляции металлов определяли по формуле:

 $-K = (\ln m_1 - \ln m_2)/(\tau_2 - \tau_1).$

温度(℃)	650	650 700		800	
Kzn	2.02×10^{-3}	2.68×10^{-3}	2.68×10^{-3} 3.26×10^{-3}		
温度(℃)	950	1000	1050	1100	
КРЬ	7.33×10-4	1.59×10-3	2.08×10-3	3.02×10-3	

不同温度时蒸馏锌、铅的速度常数

Расчет энергии активации:

 $\ln K = -E / (RT) + B$ $E_{\rm Zn} = 16,39$ ккал; $E_{\rm Pb} = 34,1$ ккал.

Зависимость скорости испарения цинка и свинца от остаточного давления представлена на рис. 1.11 и 1.12. Скорость дистилляции цинка при 800 °C возрастает в диапазоне $P_r = 50-0,5$ мм рт. ст., а в интервале $P_r = 0,5-0,05$ остается практически неизменной (рис.1.9); для свинца при 1000 °C скорость возгонки в

интервале $P_r = 100-0.05$ мм рт. ст. монотонно возрастает.

Рис. 1.11. Зависимость «*W*_{Zn} – *P_r*»

Давление паров цинка возрастает с увеличением температуры в системе, достигая при ~800 °С критической величины ~0,05 мм рт. ст. При меньшем остаточном давлении паров цинка отгонка металла не происходит (рис. 1.13). При температуре 1000 °С скорость испарения свинца достигает 2,0^{-10⁻³} г/см² сек, а остаточное давление должно быть не менее 0,1 мм рт. ст.; при $P_r = 5$ мм рт. ст. $W_{\rm Pb} = 0.52 \cdot 10^{-3}$ г/см² сек (рис. 1.12). Для конденсации свинцовых испарений необходимо обеспечить остаточное давление на уровне 0,1 мм рт. ст при 1000 °C или увеличить P_r до 0,5 мм рт. ст., но при T = 1100 °C. При этом выход газовой фазы резко снижается, что позволяет использовать вакуумную дистилляцию в промышленности, подтвердив это на практике.

Из состава исходного сплава при T = 700 °C и $P_r = 0,1$ мм рт. ст. в течение 20 мин отогнано свыше 90 % цинка: с 62 до 4 % (рис. 1.14). На данном этапе кинетика реакции соответствует нулевому порядку: скорость испарения цинка определяется теплопроводностью. Затем в течение следующих 10 мин остаточное содержание цинка снижается до 0,37 %.

Скорость отгонки свинца при T = 1000 °С и $P_r = 0,1$ мм рт. ст. возрастает по мере уменьшения глубины расплава: при глубине расплава h = 3 мм $W_{Pb} = 2,2\cdot10^{-3}$ г/см² сек; при h = 12 мм $W_{Pb} = 1,3\cdot10^{-3}$ г/см² сек (рис. 1.15). Скорость испарения свинца также увеличивается с ростом площади расплава. Существенное влияние на процесс возгонки примесей оказывает химическая природа

 $b - h \gg$

сплава (табл. 1.1) [37].

Таблица 1.1

Сплар	$T^{0}C$	<i>К</i> [.] 10 ³ , см/сек				
	<i>I</i> , C	Cu	Sn	Pb	Bi	Cr
Fe	1600	9,0	2,63	—	—	—
Fe–Cr		3,1	3,75	4,16	4,24	0,172
FeCrNi	1650	6,1	—	8,0	—	0,34

Константы скоростей испарения металлов из расплава (0,133 Па/10⁻³ мм рт. ст.)

Энергия активации отгонки *E*_{Me}, ккал/кДж: 16,39/68,62 Zn; 34,10/142,77 Pb.

Рафинирование свинца (чистота более 99 % Pb) было достигнуто с помощью вакуумной перегонки с использованием чернового свинца (92,88 % Pb) с высоким содержанием примесей в качестве исходного материала при динамическом вакууме 5–15 Па (0,04–0,12 мм рт. ст.). Результаты показывают, что технологию вакуумной перегонки следует применять для получения свинца из чернового металла, содержащего нелетучие примеси, а именно: Cu, Sn, Ag и, частично, Sb концентрируются в остатке на первой стадии фракционирования и не улетучиваются при 1373 К (1100 °C). Возгоняемый свинец содержит высоко летучие примеси, такие как Zn и As, для удаления которых проводят второй этап фракционирования при 973 К (700 °C). Однако примесь Bi обладает аналогичным свойством и не может быть выделена из чернового свинца. Коэффициенты разделения (β_i) и активности (γi) примесных элементов рассчитываются по экспериментальным данным, чтобы восполнить неизвестные термодинамические параметры [38].

Исследованы термодинамические свойства жидких бинарных сплавов на примере системы «Pb-Na» при температуре 700 К [39]. Использована модель упорядоченного твердого раствора [40], пригодная для изучения термодинамических и структурных свойств слабо, умеренно и сильно взаимодействующих жидких сплавов [41], предполагая, что образуется комплекс. Такие предположения были использованы в различных моделях [42], когда атомам *A* и *B* бинарного сплава энергетически выгодно образовывать *A-B* комплекс в расплавленном состоянии.

Пусть один моль бинарного раствора Na-Pb сплава содержит x_1 атомов A (Na) и x_2 атомов B (Pb). Присутствие комплекса типа AB (Na-Pb) в растворе приводит к снижению концентрации свободных атомов компонентов A и B. Жидкий раствор, таким образом, состоит из свободных атомов A, B и комплекса AB. В результате объединения, термодинамическое поведение компонентов A и B определяется истинными мольными долями x_A и x_B , а не бругто мольными долями x_1 и x_2 . При этом удобно работать с двумя системами отсчета с соответствующими типами индексов: один индекс бругто мольных долей x_1 и x_2 ; другой индекс фактических мольных долей каждого вида (x_A , x_B и x_{AB}). Кроме того, предполагается, что существует n_1 молей вида A, n_2 молей вида B и n_3 молей вида AB на моль бинарного раствора. Из закона сохранения массы, две системы отсчета могут быть связаны между собой следующим образом:

$$n_{1} = x_{1} - n_{3}, \quad n_{2} = x_{2} - n_{3}$$

$$n = n_{1} + n_{2} + n_{3} = 1 - n_{3}$$
(1.1)

$$x_{\rm A} = \frac{n_1}{n_1 + n_2 + n_3} = \frac{n_1}{1 - n_3},$$
$$x_{\rm AB} = \frac{n_3}{n_1 + n_2 + n_3} = \frac{n_3}{1 - n_3}, x_{\rm B} = \frac{n_2}{n_1 + n_2 + n_3} = \frac{n_2}{1 - n_3}$$
(1.2)

$$\frac{1}{n} = \frac{1}{1 - n_3} = 1 + \frac{n_3}{1 - n_3} = 1 + x_{AB}$$
(1.3)

Используя уравнение (1.3) в уравнении (1.2), преобразуем:

$$n_1 = \frac{x_A}{1 + x_{AB}}, \quad n_2 = \frac{x_B}{1 + x_{AB}}, \quad n_3 = \frac{x_{AB}}{1 + x_{AB}}$$
 (1.4)

Ради удобства одна или несколько из этих систем координат могут быть использованы. Теперь x_A , x_B и x_{AB} могут быть взаимосвязаны друг с другом следующим образом:

$$x_1 x_2 = x_2 x_1$$

Учитывая

 $n_1 = x_1 - n_3$ $n_2 = x_2 - n_3$

получим:

$$(n_1 + n_3)x_2 = (n_2 + n_3)x_1$$

После выполнения алгебраических операций получаем: n(x + x) + x = x(n + n + n)

$$n_{1}(x_{1} + x_{2}) + x_{2}n_{3} = x_{1}(n_{1} + n_{2} + n_{3})$$

$$x_{A} = x_{1} - x_{2}x_{AB}$$
(1.5a)

Аналогичным образом:

$$x_{\rm B} = x_2 - (1 - x_2) x_{\rm AB} \tag{1.56}$$

В упорядоченном твердом растворе, химические потенциалы компонентов 1 и 2, в первом приближении, равны химическим потенциалам мономеров *A* и *B* [41]. Коэффициенты активности мономеров γ_A , γ_B и комплекса γ_{AB} могут быть выражены в терминах энергий парного взаимодействия через:

$$RT \ln \gamma_{A} = x_{B}^{2} \omega_{12} + x_{AB}^{2} \omega_{13} + x_{B} x_{AB} \left(\omega_{12} - \omega_{23} + \omega_{13} \right)$$

$$RT \ln \gamma_{B} = x_{AB}^{2} \omega_{23} + x_{A}^{2} \omega_{12} + x_{A} x_{AB} \left(\omega_{23} - \omega_{13} + \omega_{12} \right)$$

$$RT \ln \gamma_{AB} = x_{A}^{2} \omega_{13} + x_{B}^{2} \omega_{23} + x_{B} x_{A} \left(\omega_{13} - \omega_{12} + \omega_{23} \right)$$

(1.6)

где ω_{12} , ω_{13} , ω_{23} – энергии взаимодействия для вида *A*-*B*; *A*-*AB*; *B*-*AB*; *T* –температура; *R* –универсальная газовая постоянная. Константу равновесия в упорядоченном твердом растворе можно получить, как:

$$\ln k = \ln \left(\frac{x_{A} x_{B}}{x_{AB}} \right) + \frac{\omega_{12}}{RT} \left[x_{B} \left(1 - x_{A} \right) + x_{A} \right] + \frac{\omega_{13}}{RT} \left[x_{AB} \left(1 - x_{A} \right) - x_{A} \right] + \frac{\omega_{23}}{RT} \left[x_{AB} \left(1 - x_{B} \right) - x_{B} \right]$$
(1.7)

С помощью уравнений, перечисленных выше, свободная энергия G:

$$G = \frac{1}{\left(1 + x_{ApB}\right)} \left(x_A x_B \omega_{12} + x_A x_{AB} \omega_{13} + x_B x_{AB} \omega_{23} \right) + \frac{RT}{\left(1 + x_{AB}\right)} \times \left(x_A \ln x_A + x_B \ln x_B + x_{AB} \ln x_{AB} \right) + \frac{x_{AB}}{\left(1 + x_{AB}\right)} RT \ln k$$
(1.8)

После выражения для G получаются другие термодинамические функции. Энтальпия (H) и энтропия смешения (S_M) связаны с G с помощью стандартных термодинамических соотношений:

$$H = G - T \left(\frac{\partial G}{\partial T}\right)_{P} \quad (1.9)$$
$$S_{M} = \frac{H - G}{T} \quad (1.10)$$

В упорядоченном твердом растворе:

$$x_1 \gamma_1 = x_A \gamma_A \qquad \qquad x_2 \gamma_2 = x_B \gamma_B$$

где γ_1 , γ_2 – общие коэффициенты активности компонентов 1 и 2. Таким образом,

Энергии парного взаимодействия, константы равновесия и коэффициенты активности при бесконечном разбавлении можно записать в виде:

$$\ln \gamma_{1}^{0} = \frac{\omega_{12}}{RT} + \left[1 - \left(1 + k \exp \frac{\omega_{23} - \omega_{12}}{RT} \right)^{-1} \right]$$
(1.12a)
$$\ln \gamma_{2}^{0} = \frac{\omega_{12}}{RT} + \left[1 - \left(1 + k \exp \frac{\omega_{13} - \omega_{12}}{RT} \right)^{-1} \right]$$
(1.12b)

где γ^{o_1} , γ^{o_2} –коэффициенты активности компонента *A* и *B* при нулевых концентрациях.

Решая уравнения (1.6), получим

$$\frac{\omega_{13}}{RT} = \frac{x_B \ln\left(\frac{a_2}{x_B}\right) + (1 - x_B) \ln\left(\frac{a_1}{x_A}\right) - x_B (1 - x_B) \frac{\omega_{12}}{RT}}{x_{AB}^2}$$
(1.13)
$$\frac{\omega_{23}}{RT} = \frac{x_A \ln\left(\frac{a_1}{x_A}\right) + (1 - x_A) \ln\left(\frac{a_2}{x_B}\right) - x_A (1 - x_A) \frac{\omega_{12}}{RT}}{x_{AB}^2}$$

где *a*₁ и *a*₂ активности компонентов Na и Pb. Используя уравнения (1.7), (1.12) и (1.13) мы можем получить:

$$\ln k + \frac{\omega_{13}}{RT} = \left(\frac{1+x_A}{x_{AB}}\right) \ln \left(\frac{a_1}{x_A}\right) + \frac{x_B}{x_{AB}} \left[\ln \left(\frac{a_2}{x_B}\right) - \frac{\omega_{12}}{RT}\right] + \ln \left(\frac{a_1a_2}{x_{AB}}\right)$$
(1.14a)
$$= \ln \gamma_1^0 - \ln \left[1 - \gamma_2^0 \exp\left(-\omega_{12} / RT\right)\right]$$
(1.14b)

В эквивалентной атомной композиции, где $x_1 = x_2; x_A = x_B$ имеем: $x_{AB} = \frac{\ln(\gamma_2/\gamma_1)_{x_1 = x_2 = 0.5}}{\left[\frac{1}{x_1 - x_2} + \frac{1}{x_2} + \frac{$

$$\ln \left[\frac{\gamma_{1}^{0}}{\gamma_{2}^{0}} \cdot \frac{1 - \gamma_{2}^{0} \exp(-\omega_{12}/RT)}{1 - \gamma_{1}^{0} \exp(-\omega_{12}/RT)} \right]$$
(1.15)

Рассчитаны концентрация комплекса, константы равновесия и парные энергии взаимодействия по уравнениям (1.11)–(1.15) (рис.1.16).

Для сплава Na-Pb в жидком состоянии при 700 *К* константа равновесия K = 0,0118; энергии взаимодействия, кДж·моль⁻¹: $\omega_{12} = -27,747$; $\omega_{13} = -21,930$; $\omega_{23} = -7,562$.

Рис. 1.16. Зависимость энергии (G^{XS}) (a), теплоты (H) (δ) и энтропии (S_M) (s) смешения от концентрации Na в жидком NaPb расплаве (700 K); (–) теория, (о) эксперимент

Рассчитанная интегральный избыточная свободная энергия смешения минимальная ($G^{XS} = -12.22 \text{ кДж} \cdot \text{моль}^{-1}$) при $x_{\text{Na}} = 0,6$ и почти совпадает с опытными данными (рис. 1.16*a*). Наблюдаемая асимметрия в интегральной избыточной свободной энергии смешения хорошо объясняется теоретической моделью.

Установлено, что если энергии взаимодействия независимы от температуры, т.е. $\partial \omega_{12} / \partial T = 0$, то полученные *H* и *S_M* плохо согласуются с экспериментальными данными, что свидетельствует о важности данной зависимости. С помощью уравнения (1.10) и наблюдаемых значений *H* [43–46] выбраны следующие значения для заданных параметров в качестве наилучших значений, подходящих для теплоты образования NaPb комплекса, Дж·моль⁻¹·K⁻¹: $\partial \omega_{12} / \partial T = +2,5$; $\partial \omega_{13} / \partial T = +1,5$; $\partial \omega_{23} / \partial T = -15,5$ и *G*^{XS} = -43530 ± 1200 Дж·моль⁻¹.

Зависимость энергетических параметров от температуры выявлена при изучении H и S_M –энергии парного взаимодействия, значительно зависят от температуры. Установлено из анализа, что теплота смешения отрицательна при всех концентрациях. Теоретический расчет показывает, что при $x_{\text{Na}} = 0,6$ значение теплоты смешения минимальное –18,02 кДж·моль⁻¹, минимальное опытное значение также при $x_{\text{Na}} = 0,6$ [40]. Рассчитанные значения находятся в удовлетворительном согласии с наблюдаемыми значениями (рис. 1.16*б*).

По уравнению (1.10) определена энтропию смешения Na-Pb сплава в жидком состоянии. Рассчитанные значения всегда совпадают по знаку с опытными данными. Расчетные и экспериментальные значения удовлетворительно согласуются во всем диапазоне концентраций (рисунок 1.16*в*).

Итак, асимметрия в термодинамических свойствах смешения (G^{XS} , H, S_M), Na-Pb жидких сплавов при 700 K объясняется теоретической моделью. Комплексы NaPb существуют в Na-Pb сплаве в расплавленном состоянии и энергии парного взаимодействия (ω_{12} , ω_{13} , ω_{23}) зависят от температуры.

Исследованы термодинамические характеристики компонентов чернового свинца в процессе вакуумной дистилляции для того, чтобы обеспечить простой, экологически чистый, эффективный способ удаления Sb, Cu, Sn, Ag, Zn, As и Bi из чернового свинца [47]. Существует зависимость между давлением насыщенных паров основных компонентов и температурой (1.16):

$$\lg p^* = AT^{-1} + B \lg T + CT + D \tag{1.16}$$

где *p** – давление насыщенных паров; *T* – температура; константы A, B, C и D для различных компонентов приведены в табл. 1.2.

По (1.16) и данным табл. 1.2 рассчитано давление насыщенных паров (рис.1.17). Показано, что давление насыщенного водяного пара As или Zn значительно выше, чем у Pb при 873–1073 *K*. При 823 *K* начинает сублимировать, что указывает на то, как As и Zn легко испаряются в паровую фазу и могут быть полностью удалены из чернового свинца. Давление насыщенных паров Sb тоже высокое в сравнении с Pb при соответствующей температуре. Давления насыщенных паров Cu, Sn, Ag значительно ниже, чем у Pb при 1273–1523 *K*, поэтому они являются трудными для испарения в паровую фазу и концентрируются в огарке.

Таблица 1.2

Элемент	A	В	С	D	Т, К
Pb	-10130	-0,985	_	13,285	600–2013
Cu	-17520	-1,210	_	15,330	1356–2840
Sn	-15500	—	—	10,385	505-2473
Ag	-14400	-0,850	_	13,825	1233–2468
Zn	-6620	-1,255	_	14,465	692–1773

Константы испарения А, В, С и D для различных компонентов

As	-6160	_	_	11,945	873–1773
Sb	-6500	_	_	8,495	904–1860
Bi	-10400	-1,260	—	14,470	544–1837

 $p^* - T$ **Fig. 1** lg p-T diagram of main components in crude lead with each element in pure state

Также видно, что давление насыщенного пара Ві близко к Рb, что указывает на то, что Ві не может быть отделен от свинца путем вакуумной дистилляции.

<u>Возможность удаления примесей</u>. Причина рафинирования чернового металла или разделения сплавов вакуумной перегонкой – разница между дистиллированным составом паровой и жидкой фа-

зами. Что касается чернового свинца, учитывая влияние примесного состава и активности его компонентов на эффективность разделения, в концепции β, т. е. коэффициента разделения, последний был привлечен из теоретического вывода для «Pb – *i*» системы:

$$\boldsymbol{\beta}_{i} = \frac{p_{i}^{*} \boldsymbol{\gamma}_{i}}{p_{Pb}^{*} \boldsymbol{\gamma}_{Pb}}, \qquad (1.17)$$

где и γ_i и γ_{Pb} коэффициенты активности компонентов *i* и Pb в черновом свинце, соответственно.

Черновой свинец содержит более 92 % Рb и менее 2 % других примесей *i*, включая Cu, Sn, Ag, Zn, As, Sb и Bi. В разбавленном растворе примесный компонент *i* является растворенным веществом, а коэффициент активности Pb предполагается равным 1.

При $\beta_i > 1$ или $\beta_i < 1$ может быть достигнуто отделение примесного компонента *i* из чернового свинца. И чем больше или меньше значение β_i , тем лучше будет эффективность удаления. Но когда $\beta_i \approx 1$ этого не происходит. Таким образом, коэффициент разделения примесных компонентов *i*, т. е. β_i , может использоваться, чтобы оценить возможность отделения компонента примеси путем вакуумной дистилляции для чернового свинца. Когда $\beta_i > 1$ примесный компонент *i* сосредоточен в паровой фазе, а компонент Pb – в жидкой фазе; при $\beta_i < 1$ примесный компонент *i* концентрируется в жидкой фазе, а компонент Pb сосредоточен в паровой фазе.

Примеси Zn и Sb легко удаляются из свинца при 873–1073 *К*, в то время как Ві остается в черновом свинце. Для достижения лучшего удаления Zn и Sb из свинца и минимизации потерь Pb, вакуумная дистилляция должна осуществляться в температурном диапазоне 923–1023 *К*.

Легко полностью удалить из свинца Cu, Sn и Ag вакуумной дистилляцией однократно в интервале 1273–1473 K, при которой Cu, Sn и Ag накапливаются в дистиллированной остаточной жидкости, в то время как Pb концентрируется в паровой фазе, но Bi не может быть удален при более высокой температуре. Для того, чтобы достичь высокой скорости перегонки свинца и полностью удалить Cu, Sn и Ag, вакуумная дистилляция должна быть выполнена в температурном диапазоне 1323–1423 K [48].

Изучено удаление микропримесей, в частности, сурьмы и олова из чернового никеля (табл. 1.3) с помощью вакуумной перегонки при температуре 1773–1973 *К* и давлении менее 10 Па (0,08 мм рт. ст.)

Коэффициент разделения (β_i) является функцией соотношения концентраций элементов в двух фазах, который связан с коэффициентом активности (γ_i) и давлением пара веществ (P^o_i). Коэффициенты разделения и активности являются также основными критериями для определения отделения примесных элементов из основного металла при вакуумной перегонке. Трудно рассчитать β_i и γ_i из-за ограниченных термодинамических данных и чтобы восполнить эти данные, β_i и γ_i были рассчитаны по экспериментальным результатам – из [49] взяты данные по вакуумной перегонке черновых металлов. Зависимость между скоростью испарения некоторых примесей (Y_i) и основным элементом (Ni) может быть представлена как

$$Y_i = 100 - 100(1 - X_{\rm Ni}/100)^{\alpha i} \tag{1.18}$$

Коэффициент испарения примесных элементов α_i может быть вычислен из экспериментальных результатов по вакуумной дистилляции никеля, а затем были определены коэффициенты разделения (β_i) при определенной температуре:

$$\beta_i = \alpha_i \sqrt{\frac{M_i}{M_{Ni}}} , \qquad (1.19)$$

где M_i и M_{Ni} – атомные веса примеси и основного металла (Ni), соответственно.

При $\beta_i = 1$, состав *i* и Ni в парах и жидкой фазе одинаковый, *i* не может быть отделена от Ni. При $\beta_i > 1$, компонента *A* в паровой фазе больше, чем в жидкой фазе; при $\beta_i < 1$, компонента *A* в жидкой фазе больше, чем в паровой фазе, в обоих случаях *i* может быть отделена от Ni [50–53].

Затем по формуле:

$$\gamma_i = \beta_i \gamma_{\rm Ni} P^{\rm o}{}_{\rm Ni} / P^{\rm o}{}_i \tag{1.20}$$

1.2. Переработка Sn-Sb-As промпродуктов от рафинирования свинца

Температуры кипения (°С) олова, сурьмы и мышьяка значительно отличаются и зависят от величины остаточного давления, 98/0,133 кПа: 1625/731 Sb; 2119/1423 As; 2722/1617 Sn, что позволяет разделять данные металлы вакуумной дистилляцией.

Для переработки отходов Sn-сплавов рассчитаны диаграммы фазового равновесия «пар–жидкость» для бинарных систем Sn–Pb, Sn–Sb и Sn–Zn [54], из которых следует, что Pb, Sb и Zn могут быть отделены от Sn. На основании полученных расчетов проведены промышленные эксперименты по вакуумной перегонке (1173 *K*, 20–30 Pa, 8–10 час) сплавов Sn–Pb, Sn–Pb–Sb, Sn–Pb–Sb–As, черновой Sn, Sn–Zn с разным соотношением металлов. Показано, что из сплава Sn–Pb получены индивидуальные свинец (> 99 % Pb) и олово ($\leq 0,003$ % Pb); из сплава Sn–Pb–Sb – черновые олово (>90 % Sn, ≤ 2 % Pb, ≤ 6 % Sb) и свинец (≤ 2 % Sn); из чернового Sn – слиток (99,99 % Sn), в котором содержание свинца и висмута в достигает класса A GB/T 728–2010 стандарта, As и Sb удалены (>50 %); из Sn–Zn сплава – цинк (<0.002% Sn) и олово (~3 % Zn).

Коэффициент активности (γ) является одним из ключевых параметров в термодинамических расчетах, с которыми можно прогнозировать целесообразность и степень разделения сплавов методом вакуумной дистилляции. Термодинамические модели для расчета γ, предложенные до сих пор, не позволяют сделать точный прогноз для жидких сплавов в широком диапазоне концентраций [55]. Молекулярная модель объемного взаимодействия (*molecular interaction volume model* – *MIVM*) является двух-параметровой моделью, способной прогнозировать γ компонента в твердом растворе, двоичном, троичном или даже многокомпонентном сплавах [56]. *MIVM* имеет определенный физический смысл с точки зрения статистической термодинамики и требует только двух коэффициентов активности бесконечно разбавленных систем для прогнозирования значений γ компонентов сплава [57]:

$$\ln\gamma_{i} = \ln\left(\frac{V_{m,i}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}}\right) + x_{j}\left(\frac{V_{m,j}B_{ji}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}} - \frac{V_{m,i}B_{ij}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}}\right) - \frac{x_{j}^{2}}{2}\left[\frac{Z_{i}B_{ji}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}} + \frac{Z_{j}B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}}\right]$$
(1.21)

$$\ln\gamma_{j} = \ln\left(\frac{V_{m,j}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}}\right) - x_{i}\left(\frac{V_{m,i}B_{ij}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}} - \frac{V_{m,j}B_{ji}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}}\right) - \frac{x_{i}^{2}}{2}\left[\frac{z_{j}B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}} + \frac{z_{i}B_{ji}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}}\right],$$
(1.22)

где x_i и x_j – молярные доли; Z_i и Z_j – координационные числа чистых веществ; $V_{m,i}$ и $V_{m,j}$ – мольные объемы; B_{ij} и B_{ji} – потенциал энергии парного взаимодействия.

Коэффициенты активности *i-j* двоичной системы можно получить, только используя потенциал энергии парного взаимодействия энергетических параметров B_{ij} и B_{ji} , которые определяются как:

$$B_{ij} = \exp\left[-\frac{\varepsilon_{ij} - \varepsilon_{jj}}{kT}\right] \tag{1.23}$$

$$B_{ji} = \exp\left[-\frac{\varepsilon_{ji} - \varepsilon_{ii}}{kT}\right], \qquad (1.24)$$

где ε_{ij} , ε_{ii} и ε_{jj} – энергии парного взаимодействия *i*–*j*, *i*–*i*, *j*–*j* систем,
соответственно; К – постоянная Больцмана; Т – термодинамическая температура.

Средняя относительная погрешность:

$$S_i^* = \frac{1}{n} \sum_{i=1}^n \left| \frac{a_i^{pre} - a_i^{exp}}{a_i^{exp}} \right| \cdot 100 \% , \qquad (1.25)$$

где a_i^{exp} и a_i^{pre} – экспериментальные и расчетные значения активности компонента *i* в расплаве сплава, *n* – количество экспериментальных данных.

Разница в давлении паров различных металлов при одинаковой температуре – это основной принцип вакуумной перегонки и элемент, который имеет более высокую упругость паров, испаряется первым из сплава. Зависимость между давлением насыщенных паров и температурой может быть вычислена по (1.16).

Коэффициенты *А*, *В*, *С* и *D* для различных веществ можно найти из литературы [58] и значения для свинца и олова представлены в табл. 1.2.

В соответствие с уравнением (1.16), давление насыщенных паров различных жидких веществ может быть определено по данной температуре. Рассчитанные давления насыщенного пара для Pb и Sn приведены в табл. 1.3.

Таблица 1.3

	_	-	
$t,^{o}C$	<i>р*</i> _{Рb} , Па	<i>р*</i> _{Sn} , Па	$p*_{ m Pb}$ / $p*_{ m Sn}$
800	7,2	8,11x10 ⁻⁵	8,93x10 ⁴
900	42,3	1,38x10 ⁻³	3,07x10 ⁴
1000	186,2	1,51x10 ⁻²	$1,24x10^4$
1100	656,8	0,12	5,65x10 ³
1200	1942,5	0,68	$2,86 \times 10^3$
1300	4983,47	3,172	$1,57 \times 10^3$

Давление паров и соотношение давления паров Pb и Sn

Свинец имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, олова имеет низкое давление насыщенных паров и остается в жидкой фазе. В результате свинец и олово можно теоретически разделить вакуумной перегонкой.

В результате смешивания в «A-B» бинарном сплаве, фактические давления паров A и B не равны их насыщенным давлениям пара. Необходимо знать активность *a* и молярную концентрацию *x* в бинарном сплаве, чтобы определить фактическое давление пара [59]:

$$p_i = p^*_i a_i = p^*_i x_i \gamma_i \tag{1.26}$$

$$p_j = p^*_{\ j} a_j = p^*_{\ j} x_j \gamma_j ,$$
 (1.27)

где a_i и a_j – активности; p^*_i и p^*_j – давления насыщенного пара; x_i и x_j – молярные доли; γ_i и γ_j – коэффициенты активности i и j, соответственно, значения которых были рассчитаны по MIVM.

По данным уравнений (1.7) и (1.8), можно вывести следующее уравнение:

$$\frac{p_i}{p_j} = \frac{p_i^* x_i \gamma_i}{p_j^* x_j \gamma_j} = \beta_i \frac{x_i}{x_j}$$
(1.28)

где $\beta_i = \frac{p_i^* \gamma_i}{p_j^* \gamma_j}$ – коэффициент разделения *i*, который может быть использован для

определения возможности отделения элемента *i* от элемента *j* бинарного сплава путем вакуумной дистилляции [60].

Согласно рис. 1.18 для Pb-Sn бинарного сплава $\beta_{Pb} > 1$, когда содержание Pb в паровой фазе больше, а Sn остается в жидкой фазе, таким образом, бинарный сплав разделяется на свинец и олово.

Важно оценить эффект разделения и количественный состав продукта. Эти данные могут быть получены путем построения диаграмм фазового равновесия «жидкость-пар» [61]. Для *i-j* бинарного сплава, i_g и j_g , i_1 и j_1 – содержание компонентов в газовой и жидкой фазах, соответственно:

$$i_g + j_g = 1$$
 (1.29)

$$i_1 + j_1 = 1 \tag{1.30}$$

Содержание i_g и j_g в паровой фазе представлены как:

$$i_g = \left[1 + \frac{w_j \gamma_j p_j^*}{w_i \gamma_i p_i^*}\right]^{-1} \tag{1.31}$$

$$j_g = \left[1 + \frac{w_i \gamma_i p_i^*}{w_j \gamma_j p_j^*}\right]^{-1}, \qquad (1.32)$$

где w_i , w_j , γ_i , γ_i , p^*_i и p^*_j – массовая доля, коэффициент активности и давление насыщенных паров чистых веществ *i* и *j*, соответственно; коэффициенты

- w_{Pb}»

активности рассчитаны по MIVM.

Рассчитав значения *i*_g, можно построить диаграмму фазового равновесия «пар-жидкость» и использовать её для расчета степени очистки сплава (рис.1.19). При содержании олова 0,2 в жидком сплаве (1000 °C), его содержание в газовой фазе 1,7.10-4 (рис. 1.19 а), что делает возможным разделение сплава. С ростом температуры и количества олова увеличивается содержание олова в парах, потому что увеличивается давление пара олова и оно начинает улетучиваться. Необходимо удалить свинец из олова до Pb < 0.01 %, так что вначале должны быть рассчитаны теоретические возможности.

Рис. 1.19. Равновесная диаграмма «пар-жидкость» Pb-Sn сплава

На рис. 1.19 b представлены равновесные диаграммы «пар-жидкость» сплава с содержанием свинца 10^{-2} – 10^{-6} ; конкретные значения указаны в табл. 1.4.

Таблица 1.4

Содержан	Содержание Pbg в газовой фазе от количества Pb ₁ в жидкой фазе и температуры										
	w(Pb _g)/%										
t, °C	$w(Pb_l)/10^{-2}$	$w(Pb_l)/10^{-3}$	w(Pb _l)/10 ⁻⁴	w(Pb _l)/10 ⁻⁵	w(Pb _l)/10 ⁻⁶						
800	0.999495	0.99493	0.951475176	0.662229	0.163922016						
900	0.998532	0.985379	0.870694068	0.402373	0.063082037						
1000	0.996381	0.964643	0.731606832	0.214181	0.026532891						
1100	0.992077	0.925424	0.553531332	0.110294	0.012244963						
1200	0.984465	0.86264	0.38554168	0.059034	0.00623476						
1300	0.972093	0.775381	0.256443019	0.033335	0.003436676						

Солержание Рb, в газс	вой фазе от колич	чества Pb1 в жилкой фаз	ве и температуры
			e ni iemiepai , pbi

Чтобы снизить молярное содержание свинца x_{Pb} с 10^{-3} до 10^{-4} ($w_{Pb} = 0.02072$), при температуре 1200 °С в 100 кг сплава, давление паров свинца при

температуре 1200 °С равняется:

 $p_{\text{Pb}} = p_{\text{Pb}}^* a_{\text{Pb}} = p_{\text{Pb}}^* x_{\text{Pb}} \cdot \gamma_{\text{Pb}} = 1942, 5 \cdot 10^{-4} \cdot 2, 195 = 0, 43 \text{ Ha.}$

Чтобы обеспечить остаточное давление в печи меньше 0,43 Па или температуру свыше 1200 °С, следует выпарить свинец из сплава в количестве: до остаточной мольной доли 10⁻⁴ (или даже меньше). Масса испарившегося свинца: 100·(10⁻³–10⁻⁴) = 0,09 кг. При 1200 °С и $w_{(}Pb_{1}) = 10^{-4}$ отношение $w_{(}Sn_{g})/w_{(}Pb_{g}) \approx (1-0,39)/0,39$ (табл. 1.8), а испарение олова составит 0,09·(1–0,39)/0,39 = 0,14 кг. Общее испарение сплава составит 0,09 + 0,14 = 0,23 кг, а состав возгонов, %: 39,1 Pb; 60,9 Sn. При дальнейшем уменьшении содержания свинца от 10⁻⁴ до 10⁻⁵ мольной доли испарение свинца 100·(10⁻⁴–10⁻⁵) = 0,009 кг; $w_{(}Sn_{g})/w_{(}Pb_{g}) \approx (1-0,06)/0,06$; испарение олова 0,009·(1–0,06)/0,06 = 0,141 кг; суммарное испарение сплава 0,009 + 0,141 = 0,15 кг; состав возгонов, %: 6 Pb и 94 Sn.

При возгонке сплавов (табл. 1.5) были получены следующие результаты: после дистилляции Pb-сплава при 900 °C, степень чистоты свинца в возгонах > 99 %, а при 950 °C > 98 %. Чистота свинца уменьшается с увеличением температуры. При увеличении температура и продолжительности процесса содержание свинца в огарке уменьшается, а олова возрастает: количество свинца в остатке уменьшается до 6,37–1,29 % при 900–950 °C после дистилляции в течение 60 мин.

Таблица 1.5

Сплав	Sn	Pb	Sb	Cu	Bi	As	Fe	Ag
Pb	21,84	77,99	0,0386	0,0066	0,1141	0,1141	0,0124	0,0124
Sn	85,68	12,21	0,3384	0,8461	0,0732	0,0169	0,0078	0,8078

Состав сплавов, *w*, %

Из-за снижения содержания Pb в Sn-сплаве, температура дистилляции более высокая (1000–1100 °C), чтобы увеличить давление паров Pb, над остатком. После дистилляции при 1100 °C за 40 мин, содержание Pb в Sn-сплаве снизилось до необ-ходимых < 0,01 % (рис. 1.25 *d*). Свинец чистоты ниже 99 % получен при повышении температуры перегонки (рис. 1.25 *a, c*). Для промышленных опытов в непрерывном режиме с Pb-сплавом были выбраны: температура 950 °C, скорость подачи ~410 кг/ч, производительность 10 т/сут. Свинца в возгонах содержится

более 99,5 %, а олова – на уровне 0,05 %. Содержание свинца в остатке уменьшается с 77,99 до 8%, и чистота олова составляет ~91 %.

Из Sn-сплава свинец не может быть удален с 12,21 до 0,01 % после однократной дистилляции, и она должна быть повторена. В первой перегонке Sn-сплав был дистиллирован при 1100 °C, скорость подачи ~350 кг/ч, а ежедневный объем переработки составил 8 тонн. Содержание свинца в Sn-сплаве может быть снижено с 12 до 0,2 %. Из-за высокой температуры степень испарения олова растет, что приводит к снижению чистоты свинца в возгонах до 88 %. Поскольку температура перегонки очень высокая, часть олова из сплава будет испаряться и чистота возгонов (Pbсплава) будет уменьшаться. Но масса возгонов не велика (~14 %).

Остаток (черновой Sn), полученный после первой перегонки, собирают и подвергают второй перегонке; свинец из олова удален < 0,01 %. Он был дистиллирован при температуре 1200 °C, скорость подачи составляла ~350 кг/ч, а ежедневный объем переработки составил 8 тонн. Состав возгонов (черновой Pb), %: 70 свинец; 30 олово. Они также могут быть собраны и смешаны с веркблеем для последующей очистки.

Разработан способ переработки Pb–Sn сплавов вакуумной перегонкой с содержанием макрокомпонента (10–90 % Pb) (рис. 1.20) [62]. Черновой свинец (30–90 % Pb) может быть дистиллирован при температуре 900 °C, содержание свинца в чистых возгонах составляет более 99,5 %, а остаток можно смешивать с черновым оловом (10–30 % Pb). Содержание свинца в остатке и черновом олове снижается (< 0,01 % Pb) после двух операций дистилляции, при 1050 и 1150 °C, соответственно. Возгоны последних двух перегонок можно смешать с черновым свинцом (30–90 % Pb) и повторно очистить. Таким образом, свинец и олово будут выделены в Pb-продукт (> 99,5 % Pb) и рафинированное олово (< 0,01 % Pb). Эксперименты по вакуумной дистилляции были проведены для Sn-Sb-сплава под давлением системы 5 Па (0,04 мм рт. ст.) [63]. Содержание Sb (мольной доли) в черновом Sn, а именно, $x_{(Sb)}$ была снижена с 0,5 до 0,0619 в одностадийном способе перегонки при условии остаточного давления 5–10 Па, температура перегонки 1373 *K* (1100 °C) и время перегонки 60 мин.

Рис. 1.20. Схема переработки свинцово-оловянных сплавов

Коэффициенты активности компонентов Sn-Sb сплава были вычислены с помощью модели (*MIVM*), и вычисленное среднее относительное отклонение и среднее стандартное отклонение \pm 0,00039 и \pm 0,173 %, соответственно для Sn и Sb. Равновесные фазовые диаграммы «пар–жидкость» (vapor liquid equilibrium *VLE*), включая зависимости состава от температуры (*T-x*) и давления (*p-x*) были вычислены для Sn-Sb-сплава при вакуумной перегонке на основе моделей *VLE* и *MIVM*. Приемлемое соответствие между результатами расчетов и экспериментальными данными указывает на то, что фазовые диаграммы, полученные методом *VLE*, являются надежными. Фазовые диаграммы *VLE* сплавов обеспечивают эффективный и удобный способ для проектирования технологических параметров промышленного производства вакуумной металлургии, а также для прогнозирования необходимого компонента сплава в зависимости от температуры и давления в процессе вакуумной перегонки [64]. Исследован характер межатомного или межмолекулярного взаимодействия компонентов металлической системы Pb-Sn посредством анализа энергии взаимодействия одинаковых ε_{11} , ε_{22} или разнородных частиц ε_{12} , зависящая по тому или иному закону от расстояния между частицами [65–68]. Калориметрические измерения практически для всего диапазона концентраций компонентов сплава выявили положительные тепловые эффекты в узком температурном интервале 610–620 °C, имеющие больший температурный разброс, тепловые эффекты при 430–530 °C, величина которых зависит от состава сплава. Максимальная величина эффекта зафиксирована для состава Sn + 80 мас. % Pb. Наличие этой зависимости указывает на объективность ее существования, не связанную с систематической погрешностью прибора. Характер тепловых эффектов соответствует прохождению линии бинодали [69–73].

Положительные отклонения теплоемкости от аддитивности, характерные почти для всего интервала концентраций, и положительные отклонения от закона Вегарда указывают на существование в расплавах плотных локальных образований – кластеров, обладающих различной степенью термической устойчивости. Интересно отметить, что для расплава, содержащего 73,9 ат. % Sn, найдена квазиэвтектическая структура, в то время как для смесей, содержащих 42,8; 29,1; 16,2 ат. % Sn, этого не обнаружено [74–76]. Линия ликвидуса со стороны олова вогнута аналогично линии ликвидуса систем олово - алюминий и олово - цинк. Рассматриваемая система проявляет отрицательные отклонения теплоемкости от аддитивности и по свойствам напоминает вышеупомянутые системы.

Энергия взаимодействия атомов смеси достаточно четко проявляется при измерении полной теплоты перехода сплава из твердого в жидкое состояние. Очевидно, что при большей энергии взаимодействия атомов смеси следует ожидать и большей теплоты плавления. Резкие изменения теплоты плавления при изменении состава могут указать на изменение типа межатомной связи.

Интегральный тепловой эффект, включающий тепловые эффекты разрушения промежуточных фаз и состояний при переходе из твердого в полностью одно-

43

фазное жидкое состояние выше линии ликвидуса, обладает неаддитивным характером кривой теплоты плавления сплавов. Зона положительных отклонений от аддитивности для теплоемкости жидких сплавов коррелирует с областью отрицательных отклонений для теплоты плавления, выпуклой частью линии ликвидуса и зоной кристаллов переменного состава со стороны свинца. Это указывает на отсутствие механизма влияния атомов олова, находящихся в смеси со свинцом, на процесс плавления, что труднообъяснимо с точки зрения современных теорий конденсированного состояния. Включение этого механизма происходит внезапно, при достижении концентрации олова более 30 ат. % Наиболее вероятная причина этого явления – смена типа электронной связи между атомами смеси. В то же время эти результаты указывают на учёт изменения характера связи между атомами при изменении состава смеси, а также ставят вопрос о механизме плавления твердого тела и о сути жидкого состояния как такового [77–79].

Фазовые диаграммы «Ме-*х*» [80] использованы для идентификации твердой фазы бинарных сплавов, где металлы-примеси рассматриваются как легирующие элементы в соответствии с их порядком в таблице Менделеева и их реакционной способностью по отношению к другим элементам. Эта фаза может быть стабильной в полном или ограниченном температурном диапазоне.

1.3. Особенности и преимущества применения вакуумной дистилляции для раздельного выделения металлов из полиметаллических композиций

Черновой свинец, получаемый традиционными пирометаллургическими процессами, требует доочистки, например, процессом огневого рафинирования и электролитическим методом [81]. Огневое рафинирование используют на свинцовоплавильных заводах, производящих ~70 % рафинированного свинца в мире; электролитический процесс используют в Канаде, Перу, Японии и Китае [82]. Рафинирование чернового свинца предназначено для удаления примесей и получения очищенного свинца (чистота более 99 %), а также для получения меди, серебра и висмута и других драгоценных металлов в черновом свинце. Си, Sn, Ag, Zn, As, Sb и Ві являются общими примесями в черновом свинце. Процесс огневого рафинирования имеет ряд недостатков: многостадийность, низкая скорость очистки свинца, вредные условия труда и очевидное загрязнение окружающей среды [83, 84], как и электролитический процесс – длительный период производства, большие инвестиции, высокое потребление энергии и низкая экономическая прибыль [85]. Вакуумная металлургия имеет много преимуществ (короткий технологический цикл, низкий уровень загрязнения и низкое потребление энергии) и может устранить недостатки традиционных процессов перегонки. Вакуумная перегонка изучена и успешно используется в разделении различных элементов из бинарных сплавов, чернового свинца и олова.

Дистилляция может быть применена для получения высокочистого свинца из *веркблея*, в котором примесные элементы – Zn, As, частично Sb, испаряются при относительно низкой температуре 650–750 °C. Свинец отгоняют из остатка, содержащего Cu, Sn, Ag, Bi при более высокой температуре 1050–1150 °C, но висмут, испаряясь вместе со свинцом, не может быть отделен от основного металла. При наличии вакуума (5–15 Па или 0,04–0,11 мм рт. ст.) рафинирование свинца (свыше 99 % Pb) из *веркблея* перегонкой также осуществляют в две стадии: на первой – возгоняют свинец при 1100 °C, отделяясь от нелетучих примесей Cu, Sn, Ag, частично Sb, концентрирующихся в остатке; на второй – полученные возгоны свинца очищают испарением легколетучих примесей Zn, As при температуре 700 °C.

При переработке трехкомпонентного сплава Ag–Zn–Pb переменного состава, %: 5–25 Ag; 30–65 Zn, установлено, что при температуре 800 °C и молярной доле серебра $x_{Ag} = 0,9$ коэффициент разделения $\beta = p_{Zn}/p_{Ag} = 2,95 \cdot 10^4$, что позволяет отделить цинк от серебра, а именно: в жидкой фазе содержится (расчет/ эксперимент, %) 93,69/63,0 Ag, а в газовой – 0,0034/0,09 Ag. При температуре 1000 °C и $x_{Ag} = 0,9$ значение $\beta = p_{Pb}/p_{Ag} = 12$, что свидетельствует о возможности разделения свинца и серебра: в жидкой фазе содержится (%) 82,4/90,0 Ag, а в газовой – 0,98/1,0 Ag. При температурах 700 и 1000 °С отгоняются (α_i , %) основная масса цинка и свинца: $\alpha_{Zn,Pb}$ > 90.

При выделении компонентов Pb-Sb сплавов о полноте протекания процесса можно судить по величине коэффициента разделения: при $\beta_i >1$ или $\beta_i <1$ может быть достигнуто отделение примесного компонента *i* из чернового свинца. И чем больше или меньше значение β_i , тем лучше будет эффективность удаления. Но когда $\beta_i \approx 1$ разделения металлов не происходит. Когда $\beta_i >1$ примесный компонент *i* сосредоточен в паровой фазе, а компонент Pb – в жидкой фазе; при $\beta_i <1$ примесный компонент *i* концентрируется в жидкой фазе, а компонент Pb сосредоточен в паровой фазе. В диапазоне температур 600–800 °C значения β_{Zn} и β_{Sb} гораздо больше 1,0, что указывает на преимущественное испарение Zn и Sb в паровую фазу, a Pb остается в огарке. Значения β_{Cu} , β_{Sn} и β_{Ag} гораздо меньше 1,0 при 1000–1250 °C, особенно для $\beta_{Cu} \approx 10^{-4}$, и поэтому Cu, Sn и Ag сосредоточены в огарке, a Pb возгоняется в паровую фазу. В результате Cu, Sn, Ag, Zn и Sb количественно удалены из чернового свинца.

Температуры кипения (°С) олова, сурьмы и мышьяка значительно отличаются и зависят от величины остаточного давления, 98/0,133 кПа: 1625/731 Sb; 2119/1423 As; 2722/1617 Sn, что позволяет разделять данные металлы вакуумной дистилляцией.

Для переработки отходов Sn-сплавов рассчитаны диаграммы фазового равновесия «пар–жидкость» для бинарных систем Sn–Pb, Sn–Sb и Sn–Zn, из которых следует, что Pb, Sb и Zn могут быть отделены от Sn: при содержании олова $x_{Sn} = 0,2$ в жидком сплаве Sn-Pb (1000 °C), его содержание в газовой фазе $1,7\cdot10^{-4}$, что делает возможным разделение сплава. На основании полученных расчетов проведены промышленные эксперименты по вакуумной перегонке (900 °C, 20–30 Pa, 8–10 час) сплавов Sn–Pb, Sn–Pb–Sb, Sn–Pb–Sb–As, черновой Sn, Sn–Zn с разным соотношением металлов. Показано, что из сплава Sn–Pb получены индивидуальные свинец (> 99 % Pb) и олово ($\leq 0,003$ % Pb); из сплава Sn–Pb–Sb – черновые олово (>90 % Sn, ≤ 2 % Pb, ≤ 6 % Sb) и свинец (≤ 2 % Sn); из чернового Sn – слиток (99,99 % Sn),

46

в котором содержание свинца и висмута в достигает класса *A GB/T* 728–2010 стандарта, As и Sb удалены (>50 %); из Sn–Zn сплава – цинк (<0,002% Sn) и олово (~3 % Zn).

После дистилляции Sn-Pb сплава при 900 °C, степень чистоты свинца в возгонах больше 99 %, а при 950 °C – меньше 99 %: чистота свинца уменьшается с увеличением температуры. При увеличении температура и продолжительности процесса содержание свинца в огарке уменьшается, а олова возрастает: количество свинца в остатке уменьшается до 6,37–1,29 % при 900–950 °C после дистилляции в течение 60 мин.

Из-за снижения содержания свинца в Sn-сплаве температура дистилляции более высокая (1000–1100 °C), чтобы увеличить давление паров свинца над остатком. После дистилляции при 1100 °C за 40 мин, содержание Pb в Sn-сплаве снизилось до менее 0,01 %. Для промышленных опытов в непрерывном режиме с Sn-Pb сплавом были выбраны: температура 950 °C, скорость подачи ~410 кг/ч, про-изводительность 10 т/сут. Свинца в возгонах содержится более 99,5 %, а олова – на уровне 0,05 %. Содержание свинца в остатке уменьшается с 77,99 до 8%, и чистота олова составляет ~91 %.

Таким образом, основными положениями диссертации, подлежащими разработке и защите, являются:

– обоснование научных положений комплексной переработки полиметаллических сплавов и Pb-Zn-Ag-Sb-Sn-содержащих композиций с получением индивидуальных металлов и товарных моноэлементных продуктов методом вакуумной дистилляции исходных материалов;

 выявление основных физико-химических свойств и характеристик систем и продуктов пирометаллургической переработки техногенного Pb-Sb-Sn сырья и полупродуктов;

 – совершенствование рафинирования чернового свинца, сурьмы и олова вакуумной дистилляцией посредством разработки технологических мероприятий по оптимизации процессов разделения основных металлов и селективного выделения

47

элементов-примесей из исходного сырья на основе индивидуальных свойств и характеристик исследованных компонентов;

 – создание технологических основ, обеспечивающих повышение прямого извлечения цветных и драгоценных металлов в металлическую фазу, сурьмы и цинка в товарные продукты;

 – математическое описание операции вакуумной дистилляции техногенного свинцового сырья и полиметаллических сплавов, её применение в процессе обучения технического персонала, при управлении и оптимизации усовершенствованной пирометаллургической технологии.

 технико-экономическая оценка разработанной технологии вакуумной дистилляции и вовлечения в действующее производство промпродуктов цветной металлургии, имеющих важное народнохозяйственное значение.

Глава 2. Методология исследований и техника экспериментов

Объектами исследований являлись металлические сплавы и полиметаллические ские композиции состава, %:

– бинарные модельные сплавы (MC) Pb-Zn, Pb-Ag, Zn-Ag, Pb-Sb, Pb-Sn, Sb-Sn: 10–90 Pb, Zn, Ag, Sb, Sn;

- серебряная пена (СП): 78-82 Pb; 14-16 Zn; 3-5 Ag;

– черновой свинец (веркблей), %: 94–97 Pb; 0,8–1,7 Sb; 0,5–0,6 As; 0,15–0,45 Ag; 0,09–0,11 Sn;

целочно-сульфидные съемы (ЩСС-1/2), полученные при очистке свинца, одно-/двухоборотные: 10–13/3,5–3,8 Pb; 12–13/15–17 Cu; 2,0–2,5/3,7–4,0 Sn; 11–12/15–16 Sb; 9,0–10,5/12,5–14 As; 12–13/16–17 S; 32–35/26–27 Na.

Для получения бинарных MC исходные компоненты соответствующей чистоты – Pb (C2), Zn (чда), Ag (Cp 99,9), Sb (Cy1), Sn (O2), сплавляли в алундовом тигле в инертной атмосфере при температуре 700–900 °C.

Для проведения опытов было изготовлено несколько лабораторных установок для вакуумной дистилляции (ВД), одна из которых для исследования МС (рис.2.1); остальные – для экспериментов с реальными сплавами и композициями. В первой установке внутри металлической пробирки помещали алундовый тигель с приготовленным МС. Пробирку помещали в печь, вакуумировали ($P \le 1$ мм рт. ст.) и грели до 750–1200 °С, процесс вели в течении 1–12 час. Затем систему охлаждали, извлекали тигель с полученным сплавом. Отбирали пробу (~0,4 г), растворяли в 45 см³ раствора азотной кислоты и анализировали методом атомно-эмиссионного спектрального анализа с индуктивно-связанной плазмой на содержание компонентов. В установке (рис. 2.2) аналогичные – вакуумирующая система, нагревательная печь, система регистрации температуры; изменены – материал (нержавеющая сталь X18H10T); конструкция пробирки (автоклава) для

Рис. 2.1. Установка для МС: *I* – кварцевая труба с Ni-Cr –нагревателем; 2 – корпус

Рис. 2.2. Схема экспериментальной установки для вакуумной дистилляции: 1 – печь; 2 – герметичный контейнер; 3 – тигель с образцом; 4 – подставка для тигля; 5 – трубка для термопары; 6 – трубка для откачки воздуха

размещения образцов СП; методика сборки и разборки системы. Конструкция пробирки позволяет регистрировать (сканировать) температуру по высоте и избежать потери массы образцов при дистилляции. Материал тигля – кварц, графит.

Методика сборки автоклава:

 приваривали верхнюю крышку; из системы откачивали воздух до необходимого остаточного давления;

– трубку для откачки воздуха заваривали; сборку помещали в печь.

 в тигель насыпали навеску исследуемого материала; тигель располагался на подставке, приваренной к нижнему донышку контейнера, имеющему трубку для откачки воздуха.

Далее проводили дистилляцию, варьируя температуру, разряжение и продолжительность процесса. После проведения опыта систему охлаждали, пробирку разрезали, собирали возгоны и кубовый остаток, взвешивали полученные продукты, готовили пробы высверливанием огарка с разных сторон, которые анализировали методами химического анализа, рентгенофазовым и эмиссионным спектральным с индуктивно-связанной плазмой. По массам исходных образцов, возгонов и кубового остатка рассчитывали материальный баланс процесса дистилляции исходных компонентов из состава исследуемого материала.

Рис. 2.3. Распределение температуры в печи с тремя конденсаторами

Для лучшего разделения продуктов возгонки использовали установку с тремя конденсаторами (рис. 2.3, 2,4), из которых второй и третий – с перегородкой для пара, в отличие от первого. Тигель для отгонки изготовлен из графита для гарантии того, что компоненты в остатке не имеют оксидной основы. Свинец из СП выделяли ликвацией следующим образом: сначала пену прогрели до 700 °C в атмосфере аргона и охладили вместе с печью для разделения жидкой части и пены.

Рис. 2.4. Конструкция пробирки (автоклава) с тремя конденсаторами: *1* – первый, 2 – второй, 3 – третий, 4 – стакан для тигля, 5 – тигель

На конец прибора надвигали приемный стакан, продутый аргоном и прибор с верхней частью приемного стакана снова помещали в печь и медленно нагревали. При температуре печи 380 °C низ прибора для ликвации нагрелся, из него в приемный стакан начал вытекать жидкий свинец. Отфильтрованный свинец (42–45 % от исходного) имеет чистоту ~99 %. В нем также содержится незначительное количество серебра (0,05–0,06 %), что вполне удовлетворяет необходимым параметрам. Пена, очищенная от части свинца, подверглась дальнейшей перегонке.

Установка со вспомогательной печью представлена на рис. 2.5. Контейнер (кварцевый стакан L = 1000 мм, D = 58 мм) помещается в двухзонную печь, имеющую слабый наклон в сторону отгоняемых продуктов. У дна стакана располагается кювета в форме лодочки (L = 150 мм; S ≈ 50 см²) из кварца или графита, в которую помещают ~250 г исходного материала. Стакан закрывают резиновой пробкой, содержащей трубку для откачки воздуха и ряд защитных экранов. Для лучшего отделения легколетучих примесей, например цинка от свинца, присутствует вспомогательная печь для создания температурной зоны, препятствующей конденсации цинка, что позволяет разделить зоны конденсации цинка и свинца. Недостатком кварцевой кюветы для испытуемой пробы явилось прилипание кубового остатка, не позволяющее полностью отделить и взвесить его, а также разрушение кюветы при охлаждении. Визуальное наблюдение позволило фиксировать появление возгонов цинка, формирование слоя свинца, коричневое окрашивание части остатка

Температура в центре вспомогательной печи в начале процесса возгонки создавала зону с температурой 800–830 °С, где не мог концентрировать цинк при установленных рабочих давлениях. После выхода на режим основной печи (1050 °С) вспомогательную печь выключали и ее температура снижалась до 470–500 °С. На краю печи температура была ниже температуры плавления отогнанного свинца. Поскольку наклон контейнера был в сторону, противоположную от лодочки, свинец накапливался в виде компактной лужицы длиной

53

245

Печь 1

Трубка для ТП

Печь 2

Пробнрка

Лодочка

325

200

650

~120 мм, задерживаемой затвердевшим металлом. Горячий конец свинцовой лужицы находился ~80 мм от начала вспомогательной печи, а застывший – у второго ее края.

Рис. 2.6. Распределение продуктов возгонки серебряной пены

Замена кварцевых кювет н графитовые позволило проводить дистилляцию в восстановительной атмосфере углерода, кроме того полученный огарок без остатка отделялся от поверхности графита. По окончании опытов при вакууме 0,1/1,0 мм рт. ст. масса кювет уменьшалась на 0,15–0,17/0,19–0,35 г. Уменьшение массы углерода на 0,15 г эквивалентно восстановлению ~1 г оксида цинка, что возможно при температуре свыше 950 °C.

При выполнении работы использованы аттестованые современные физикохимические методы исследования и анализа исходных материалов и продуктов вакуумной дистилляции: просвечивающая электронная микроскопия (микроскоп "JEM 2100" с приставкой для микроанализа "Oxford Inca"), рентгенофазовый "XRD 7000С" (Shimadzu), атомно-абсорбционный анализ ("novAA 300"), ИК-спектрометрия ("ALPHA-T"), спектрофотометрия ("Lambda"), атомно-эмиссионный спектральный анализ с индуктивно-связанной плазмой ("UV-25L") термогравиметрический анализ, совмещённый с дифференциальным термическим анализом. ИК-спектроскопию осуществляли прибором с фурье-преобразованием ("Nicolet 6700"), позволяющем проводить сканирование в широком диапазоне ИК-спектра (400–4000 см⁻¹) с малым шагом сканирования. В программном обеспечении прибора реализована возможность поиска и идентификации вещества по ИК-спектрам с помощью библиотек ИК-спектров, основанная на количественном обсчете и сравнении ИК-спектров.

При статистической обработке градуировочных графиков и данных аналитического определения элементов рассчитывали параметры уравнения y = a + bx методом линейной регрессии и дисперсию (s²) – меру разброса результатов измерения относительно среднего значения, по уравнению:

$$s^{2} = \sum_{i=1}^{i=n} (x_{1} - \bar{x})^{2}$$
, где $\bar{x} = \frac{\sum_{i=1}^{i=n} x_{1}}{n}$ (2.1)

Среднее квадратичное отклонение (S_i^*):

$$S_i^* = \frac{\sqrt{\sum_{i=1}^{i=n} (x_1 - \bar{\mathbf{x}})^2}}{n-1}$$
(2.2)

Относительное стандартное отклонение (S_i):

$$S_i = \frac{s}{\bar{x}} \tag{2.3}$$

Коэффициенты корреляции (r):

$$r = \frac{\sum_{i=1}^{i=n} (x_1 - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{i=n} (x_1 - \bar{x})^2 (y_i - \bar{y})^2}}$$
(2.4)

Молекулярная модель объемного взаимодействия (*molecular interaction volume model – MIVM*).

В равновесной системе «жидкость–газ» фугитивность (летучесть) каждого компонента в обеих фазах равны согласно уравнения (2.5) [86]:

$$\Phi_i p y_i = \Phi_i^* p_i^* \gamma_i x_i \exp(\frac{V_i^l (p - p_i^*)}{RT}), \qquad (2.5)$$

где Φ_i – фугитивность компонента *i* в газовой фазе; $\Phi^*_i = \Phi_i/p$ – коэффициент фугитивности насыщенной жидкости чистого компонента *i*; *T* и *p* – температура и давление в системе; p^*_i – давление насыщенных паров чистого компонента *i* при температуре *T*; γ_i – коэффициент активности компонента *i* в жидкой фазе при данных температуре, давлении и мольной доли компонента *i*; x_i и y_i – мольная доля компонента *i* в жидкой и газовой фазах, соответственно; V_i^l – мольный объем чистой жидкости *i*; *R* – универсальная газовая постоянная.

Остаточное давление в исследуемой системе достаточно низкое ($p \le 133$ Па) и паровая фаза ведет себя как идеальный газ, откуда $\lim(\Phi_i/p) = 1,0$ (при $p \to 0$); $\Phi_i^* = 1,0$; $\Phi_i = 1,0$ (при p = 1,0) а экспоненциальный член $\exp(\frac{V_i^l(p-p_i^*)}{RT}) \approx 1$, вследствие ($p - p_i^* \approx 0$). Таким образом, уравнение (2.5) можно упростить, подобно модифицированному закону Рауля [86]:

$$py_i = p_i^* \gamma_i x_i . (2.6)$$

Если жидкая смесь является идеальным раствором, то $\gamma_i = 1$ в (2.6). Для бинарного сплава *i-j* справедливо:

$$x_i + x_j = 1, \ y_i + y_j = 1;$$
 (2.7)

$$p = p_i^* \gamma_i x_i + p_j^* \gamma_j x_j = p_i^* \gamma_i x_i + p_j^* \gamma_j (1 - x_i).$$
(2.8)

Объединяя уравнения (2.6) и (2.8) получим выражения для x_i и y_i:

$$x_i = \frac{p - p_j^* \gamma_j}{p_i^* \gamma_i - p_j^* \gamma_j}, \qquad (2.9)$$

$$y_i = \frac{p_i^* \gamma_i x_i}{p} \,. \tag{2.10}$$

Коэффициенты активности компонентов в жидкой фазе имеют решающее значение для расчета фазовой диаграммы VLE. Модель *MIVM* [87] считается одной из наиболее удобных и надежных моделей [88–90]. Термодинамические свойства неидеального раствора характеризуют *избыточными термодинамическими функциями*, которые являются разностью между функциями смешения данного раствора (ΔA^m) и идеального ($\Delta A^m_{\mu d}$) и обозначают символом A^E_m :

$$A_m^E \equiv \Delta A^m - \Delta A_{\text{ид}}^m$$
 (A = U, H, G, F, S, V, μ_i , и т.д.)

Согласно *MIVM*, молярная избыточная энергия Гиббса G_m^E для границы раздела фаз «жидкость–газ» смеси *i-j* может быть выражена как:

$$\frac{G_m^E}{RT} = x_i \ln\left(\frac{V_{mi}}{x_i V_{mi} + x_j V_{mj} B_{ji}}\right) + x_j \ln\left(\frac{V_{mj}}{x_j V_{mj} + x_i V_{mi} B_{ij}}\right) - \frac{x_i x_j}{2} \left(\frac{Z_i B_{ji} \ln B_{ji}}{x_i + x_j B_{ji}} + \frac{Z_j B_{ij} \ln B_{ij}}{x_j + x_i B_{ij}}\right),$$
(2.11)

где x_i и x_j – молярные доли; Z_i и Z_j – координационные числа; V_{mi} и V_{mj} молярных объемов компонентов *i* и *j*, соответственно; R – универсальная газовая постоянная, а потенциальные энергии парного взаимодействия B_{ij} и B_{ji} определяются следующим образом:

$$B_{ij} = \exp\left[-\left(\frac{\varepsilon_{ij} - \varepsilon_{jj}}{kT}\right)\right], \quad B_{ji} = \exp\left[-\left(\frac{\varepsilon_{ji} - \varepsilon_{ii}}{kT}\right)\right], \quad (2.12)$$

где k – константа Больцмана; ε_{ij} , ε_{ii} и ε_{jj} – потенциальные энергии парного взаимодействия i–j, i–i, j–j систем, где $\varepsilon_{ij} = \varepsilon_{ji}$.

Для бинарной смеси i-j, с помощью термодинамического соотношения $(\partial G^{E}_{m}/\partial x_{i})T,p,x_{j}$, коэффициенты активности компонентов *i* и *j* могут быть получены из уравнения (7), соответственно, как:

$$\ln\gamma_{i} = \ln\left(\frac{V_{m,i}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}}\right) + x_{j}\left(\frac{V_{m,j}B_{ji}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}} - \frac{V_{m,i}B_{ij}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}}\right) - \frac{x_{j}^{2}}{2}\left[\frac{Z_{i}B_{ji}^{2}lnB_{ji}}{(x_{i} + x_{j}B_{ji})^{2}} + \frac{Z_{j}B_{ij}^{2}lnB_{ij}}{(x_{j} + x_{i}B_{ij})^{2}}\right],$$
(2.13)

$$\ln\gamma_{j} = \ln\left(\frac{V_{m,j}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}}\right) + x_{i}\left(\frac{V_{m,i}B_{ij}}{x_{j}V_{m,j} + x_{i}V_{m,i}B_{ij}} - \frac{V_{m,j}B_{ji}}{x_{i}V_{m,i} + x_{j}V_{m,j}B_{ji}}\right) - \frac{x_{i}^{2}}{2}\left[\frac{Z_{j}B_{ij}^{2}\ln B_{ij}}{(x_{j} + x_{i}B_{ij})^{2}} + \frac{Z_{i}B_{ji}^{2}\ln B_{ji}}{(x_{i} + x_{j}B_{ji})^{2}}\right].$$
(2.14)

Когда x_i или x_j в приближаются к нулю, коэффициенты активности бесконечно разбавленных растворов γ_i^{∞} и γ_j^{∞} являются производными из уравнений (9) и (10) следующим образом:

$$\ln \gamma_i^{\infty} = 1 - \ln \left(\frac{V_{m,j} B_{ji}}{V_{m,i}} \right) - \frac{V_{m,i} B_{ij}}{V_{m,j}} - \frac{1}{2} (Z_i ln B_{ji} + Z_j B_{ij} ln B_{ij}), \qquad (2.15)$$

$$\ln\gamma_{j}^{\infty} = 1 - \ln\left(\frac{V_{m,i}B_{ij}}{V_{m,j}}\right) - \frac{V_{m,j}B_{ji}}{V_{m,i}} - \frac{1}{2}(Z_{j}lnB_{ij} + Z_{i}B_{ji}lnB_{ji}).$$
(2.16)

Необходимые двоичные параметры B_{ij} и B_{ji} можно рассчитать из уравнений (2.15) и (216) по формуле Newton [87] если известны коэффициенты активности для бесконечно разбавленных растворов, т. е. $\gamma_i^{\infty} u \gamma_j^{\infty}$ бинарных жидких сплавов и соответствующие параметры их компонентов [91, 92].

Координационное число Z_i жидких металлов рассчитывают как [87]:

$$Z_{i} = \frac{4\sqrt{2\pi}}{3} \left(\frac{r_{mi}^{3} - r_{oi}^{3}}{r_{mi} - r_{oi}} \right) \rho_{i} r_{mi} \exp\left(\frac{\Delta H_{mi}(T_{mi} - T)}{Z_{c} R T T_{mi}} \right),$$
(2.17)

где $\rho_i = N_i/V_i$ – молекулярная плотность; V_i – мольный объем и N_i – число молекул, ΔH_{mi} –энтальпия плавления; T_{mi} – температура плавления; $Z_c = 12$ – координационное число плотной упаковки, T – температура жидкого металла, K; R - газовая постоянная; $r_{0i} = 0.918d_{covi}$ – доля атомного ковалентного диаметра (d_{covi}); r_{mi} равняется, примерно, атомному диаметру σ_i , ($r_{mi} = \sigma_i$).

Уравнение Вильсона

Особенностью уравнения Вильсона [93] является то, что для многокомпонентной системы достаточно параметров двоичной системы, вследствие чего избыточная энергия Гиббса G^E в многокомпонентном растворе определяется, как:

$$\frac{G^E}{RT} = -\sum_i x_i \ln(1 - \sum_j x_j A_{ji}), \qquad (2.18)$$

где A_{ji} – положительный подгоночный параметр ($A_{ii} = A_{jj} = 1$).

Для бинарной смеси *i–j* коэффициенты активности рассчитывают. как:

$$ln\gamma_i = -ln(x_i + x_jA_{ij}) + x_j[(A_{ij} / (x_i + x_jA_{ij}) - A_{ji} / (x_j + x_iA_{ji})], \qquad (2.19)$$

$$ln\gamma_{j} = -ln(x_{j} + x_{i}A_{ji}) - x_{i}[(A_{ij} / (x_{i} + x_{j}A_{ij}) - A_{ji} / (x_{j} + x_{i}A_{ji})].$$
(2.20)

Параметры Вильсона А_{ii} и А_{ii} выражаются, как:

$$A_{ij} = V_{mi} / V_{mj} \exp[-(\varepsilon_{ij} - \varepsilon_{jj})/RT], \qquad (2.21)$$

$$A_{ji} = V_{mj} / V_{mi} \exp[-(\varepsilon_{ji} - \varepsilon_{ii})/RT], \qquad (2.22)$$

где V_{mi} и V_{mj} молярные объемы компонентов *i* и *j*, являющиеся функцией от температуры; ε_{ij} , ε_{ii} и ε_{jj} – потенциальные энергии парного взаимодействия *i*–*j*, *i*–*i*, *j*–*j* систем, где $\varepsilon_{ij} = \varepsilon_{ji}$. Параметр взаимодействия ε_{ij} пропорционален энергии взаимодействия ствия между молекулами *i* и *j*.

Параметры A_{ij} и A_{ji} бинарных систем могут быть получены из уравнения (2.18) и (2.19) с помощью методики Ньютона–Рафсона, если известны экспериментальные значения коэффициентов активности. Начальные значения A_{ij} и A_{ji} могут быть получены путем подбора экспериментальных данных, взятых из литературы. По целевой функции (*O.F.*) рассчитывают оптимальные значения A_{ij} и A_{ji} :

$$O.F. = \pm \left[\frac{1}{m} \sum_{n=1}^{m} (\gamma_{exp} - \gamma_{cal})^2\right]^{0.5} \le \lambda_a , \qquad (2.23)$$

где γ_{*exp*} и γ_{*cal*} – коэффициенты активности экспериментальные и рассчитанные; *m* – число экспериментальных данных; λ_{*a*} – максимальное значение целевой функции.

Была рассмотрена температурная зависимость бинарных параметров взаимодействия. Если мы предположим, что ($\varepsilon_{ij} - \varepsilon_{ii}$) и ($\varepsilon_{ji} - \varepsilon_{jj}$) в уравнениях (2.20) и (2.21) не зависят от температуры *T*, значения A_{ij}^* и A_{ji}^* при другой температуре *T** должны быть рассчитаны следующим образом:

$$A_{ij}^{*} = \frac{V_{j}^{*}}{V_{i}^{*}} \left(\frac{A_{ij}V_{i}}{V_{j}}\right)^{\frac{T}{T^{*}}}, \quad A_{ji}^{*} = \frac{V_{i}^{*}}{V_{j}^{*}} \left(\frac{A_{ji}V_{j}}{V_{i}}\right)^{\frac{T}{T^{*}}}.$$
(2.24)

Подставляя параметры A_{ij}^* и A_{ji}^* при различных температурах в уравнения (2.18) и (2.19), можно рассчитать коэффициенты активности γ_i и γ_j .

Для трехкомпонентной смеси *i-j-k*, то коэффициенты активности компонента *i* могут быть выражены, как:

$$ln\gamma_{i} = 1 - ln(x_{i} + x_{j}A_{ji} + x_{k}A_{ki}) - [x_{i}/(x_{i} + x_{j}A_{ji} + x_{k}A_{ki})] - [A_{ij}x_{j}/(x_{i}A_{ij} + x_{j} + x_{k}A_{kj})] - [A_{ik}x_{k}/(x_{i}A_{ik} + x_{j}A_{jk} + x_{k})].$$
(2.25)

Тогда парциальная молярная свободная энергия Гиббса для компонента *i* в троичной системе выражается, как:

$$\Delta G_{i} = \overline{G}_{i} - G_{i}^{o} = \operatorname{RTln}(\gamma_{i}x_{i}).$$
(2.26)

Кинетика испарения металлов

Испарение металла из жидкой в газовую фазу при низком давлении включает в себя следующие стадии: массоперенос в жидкой фазе (а); испарение в поверхностный слой на границе раздела фаз жидкость-газ (б); массоперенос в газовой фазе (в) [94]. Уравнение скорости испарения в процессе перегонки [95]:

$$\frac{dc(t)}{dt} = -\frac{s}{v} k_{\text{Me}} c(t)^n, \qquad (2.27)$$

$$V = m/\rho , \qquad (2.28)$$

$$\rho = \left(\frac{w_{Zn}}{\rho_{Zn}} + \frac{w_{Pb}}{\rho_{Pb}} + \frac{w_{Ag}}{\rho_{Ag}}\right)^{-1},$$
(2.29)

где *с* - концентрация испаряющегося элемента в расплаве в момент времени *t*; k_{Me} – константа скорости испарения; *S* и *V* - площадь поверхности и объем расплава, соответственно. Значение *V* можно вычислить через плотность (p) и массу (*m*) сплава по уравнению (2); w_{Zn} , w_{Pb} и w_{Ag} – массные доли Zn, Pb и Ag в жидкой фазе; *n* – порядок реакции. Разные порядки реакции для металлов соответствуют различным формам расчетных уравнений. Для проверки порядка реакции обычно используется графический метод.

Если мы используем массовую долю для определения концентрации испаряющегося элемента в кинетическом уравнении (2.27), скорость испарения металла можно записать следующим образом:

$$-\frac{dw(t)}{dt} = \frac{S}{V} k_{\rm Me} \left(\frac{\rho}{100M_{\rm Me}}\right)^{n-1} w(t)^n.$$
(2.30)

Для реакций первого порядка (n = 1) справедливо равенство:

$$\ln W_{(t)} = \ln W_{(0)} - k_{\rm Me}(\frac{s}{v}t).$$
(2.31)

В данном исследовании из трех стадий испарения процессом (в) можно пренебречь при рабочем давлении в системе ($p \le 13,3$ Па), которое ниже критического давления для легко возгоняемых цинка ($3,1\cdot10^4$ Па) и свинца (27,5 Па) [96], поэтому общая скорость реакции не лимитируется массопереносом в газовой фазе. В результате лимитирующая стадия связана с двумя другими стадиями, обладающими сопротивлением: массопереносом в жидком металле и через поверхностный слой на границе раздела фаз. В соответствии с принципами массного переноса, который мы обсуждали выше, константа скорости испарения металла может быть выражена как:

$$k_{\rm Me} = \left(\frac{1}{k_{\rm Me}^L} + \frac{1}{k_{\rm Me}^V}\right)^{-1},$$
 (2.32)

где k_{Me}^L и k_{Me}^V – коэффициенты массопереноса металла (м·с⁻¹) в жидкой и газовой фазах, соответственно.

Скорость испарения компонентов сплава представлена формулой (2.33),

производной от выражения для испарения чистого жидкого металла в идеальном вакууме (уравнение Герца-Кнудсена-Ленгмюра) [97]:

$$k_{\rm Me}^V = \frac{\alpha . \gamma_{\rm Me} . x_{\rm Me} . P_{\rm Me}^{\bullet}}{\sqrt{2\pi RT M_{\rm Me}}},\tag{2.33}$$

где α – коэффициент поверхностного испарения ($\alpha = 1$ для жидких металлов); γ_{Me} – коэффициент активности металла; M_{Me} – атомный вес металла; P^*_{Me} – давление насыщенного пара чистого металла [98].

Если определена константа скорости испарения *k*_{Me}, можно оценить кажущуюся энергию активации по уравнению Аррениуса [97] :

$$\ln k_{\rm Me} = -\frac{E_{\rm Me}}{RT} + C, \qquad (2.34)$$

где *E*_{Me} – кажущаяся энергия активации испарения металла; *R* – газовая постоянная; *C* – константа, которая не зависит от температуры *T*.

Для оценки скорости отгонки металлов из серебристой пены (СП) в укрупненно-лабораторных опытах использовали формулу:

$$v = \Delta m / (\tau S), \, \Gamma / c M^2 c \qquad (2.35)$$

где Δm – изменение массы металла, г; τ – продолжительность отгонки, с; *S* – площадь диафрагмы (1,5 см²).

Использовали данные опытов с учетом следующих допущений:

площадь диафрагмы равняется площади зазора между тиглем и стенкой прибора;

– цинк отгоняется при разогреве системы до 800 °C в течение часа;

 поскольку скорость отгонки металлов зависит от давления их паров, которое уменьшается в ходе процесса, можно получить только среднюю величину скорости за данный промежуток времени.

Полученные по формуле (2.35) данные сравнивали с расчетными значениями скорости испарения вещества в вакууме с открытой поверхности в молекулярном режиме (уравнение Ленгмюра):

$$v = 7,75p_s(M_g/T)^{0.5}$$
, (2.36)

где p_s – давление насыщенного пара металла при данной температуре, Па; M_g – молекулярная масса металла в паровой фазе; T – температура, K.

Глава 3. Исследование основных закономерностей переработки серебристой пены

3.1 Влияние параметров вакуумной дистилляции на селективное выделение цинка, свинца и серебра из бинарных композиций

3.1.1. Система «свинец-цинк»

Значения двоичных параметров B_{ij} и B_{ji} при требуемой температуре (T_2) можно получить из уравнения (2.12) для известных значений B_{ij} и B_{ji} при температуре (T_1), принимая независимой от температуры потенциальную энергию парного взаимодействия компонентов $-\frac{\varepsilon_{ij}-\varepsilon_{jj}}{k}$ и $-\frac{\varepsilon_{ji}-\varepsilon_{ii}}{k}$. Например, в бинарной системе Pb-Zn (*i*-*j*) при $T_1 = 1300 \ B_{ij}/B_{ji} = 0,8992/1,1327$;тогда для $T_2 = 1273$:

$$-\frac{\varepsilon_{ij}-\varepsilon_{jj}}{k} = \text{T}lnB_{ij} = 1300 \cdot \ln(0,8992) = -138,125 \text{ K};$$

$$B_{ij} = \exp(-138,125/1273) = 0,897; \quad -(\varepsilon_{ij} - \varepsilon_{jj}) = -0,012 \text{ 3-B};$$

$$-\frac{\varepsilon_{ji}-\varepsilon_{ii}}{k} = \text{T}lnB_{ji} = 1300 \cdot \ln(1,1327) = 161,985 \text{ K};$$

$$B_{ji} = \exp(161,985/1273) = 1,136; \quad -(\varepsilon_{ji}-\varepsilon_{ii}) = 0,014 \text{ 3-B}.$$

Давление насыщенных паров чистых компонентов рассчитывают [46, 99]:

$$lg p^* = AT^{-1} + B lgT + CT + D , \qquad (3.1)$$

где *p** – давление насыщенных паров чистого компонента, Па; *A*, *B*, *C*, *D* –константы испарения для компонентов жидких сплавов, *T* – температура, *K*.

Необходимые для расчета параметры Pb-Zn сплава даны в табл. 3.1.

Цинк имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, свинец имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает теоретические предпосылки для разделения этих металлов вакуумной дистилляцией (табл. 3.2).

Таблица 3.1

Значения
$$\gamma_i^{\infty}$$
, γ_j^{∞} , B_{ij} , B_{ji} , Z_i , Z_j , \mathbf{p}_i^* , \mathbf{p}_j^* , $V_{m(i,j)}$ сплава Pb-Zn

<i>і–ј</i> сплав	Т, К	γ_{Pb}^{∞}	γ_{Zn}^{∞}	B_{Pb-Zn}	B_{Zn-Pb}	Z_{Pb}	Z_{Zn}	
Pb-Zn	1300	1,101	1,03	0,8992	1,1327	8,91	11,04	
Компонент	A	В	С	D	$V_m = f(T)$, см ³ /моль			
Pb	-10130	-0,985	—	13,28	$19,4[1+1,24\cdot10^{-4}(T-600)]$			
Zn	-6620	-1,255	_	14,465	9,2[1+	- 2,065 [.] 10 ⁻⁴ (T	[-273)]	

Таблица 3.2

Рассчитанные давление и соотношение давления паров Z	nи	Pb
--	----	----

Т, К	<i>р*</i> _{Zn} , Па	<i>р*</i> _{Рb} , Па	$(p*_{\rm Zn} / p*_{\rm Pb}) \cdot 10^2$
873	$1,552 \cdot 10^3$	0,060	258,2
973	8,151 ⁻ 10 ³	0,843	96,66
1073	3,104 [.] 10 ⁴	7,145	43,44
1173	9,319 [.] 10 ⁴	41,78	22,3
1273	$2,334\cdot10^{5}$	183,65	12,71
1373	5,078 [.] 10 ⁵	647,14	7,85
1473	9,878 [.] 10 ⁵	1914	5,16
1573	$1,756\cdot10^{6}$	4909	3,58

Для оценки возможности разделения элементов *i* и *j* бинарного сплава *i–j* вакуумной дистилляцией используем рассчитанные коэффициенты активности (табл. 3.3) и коэффициент разделения β_i:

Таблица 3.3

	1 40			им көзфү	лцпепто	D uRTHDIR		ZII D puel	linabe	
						χ_{Pb}				
Ι, Λ	Y	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
072	γ _{Pb}	0,73	0,78	0,827	0,869	0,906	0,938	0,964	0,983	0,996
8/3	γzn	0,995	0,982	0,96	0,931	0,894	0,85	0,8	0,744	0,682
072	γ _{Pb}	0,777	0,802	0,846	0,884	0,918	0,946	0,969	0,986	0,996
975	γzn	0,996	0,984	0,964	0,938	0,906	0,868	0,824	0,775	0,722
1072	γPb	0,792	0,818	0,86	0,896	0,927	0,953	0,973	0,988	0,997
1075	γ _{Zn}	0,996	0,985	0,967	0,943	0,914	0,880	0,842	0,799	0,752
1172	γ _{Pb}	0,786	0,831	0,871	0,905	0,934	0,957	0,976	0,989	0,997
11/5	γzn	0,996	0,986	0,969	0,947	0,921	0,890	0,855	0,817	0,775
1072	γ _{Pb}	0,798	0,842	0,880	0,912	0,939	0,961	0,978	0,990	0,998
1275	γzn	0,996	0,986	0,971	0,951	0,926	0,898	0,866	0,831	0,793
1272	γ _{Pb}	0,807	0,850	0,887	0,918	0,943	0,964	0,980	0,991	0,998
13/3	γzn	0,997	0,987	0,972	0,953	0,930	0,904	0,874	0,842	0,807
1472	γ _{Pb}	0,816	0,857	0,893	0,922	0,947	0,966	0,981	0,992	0,998
14/5	γzn	0,997	0,988	0,974	0,955	0,934	0,909	0,882	0,851	0,819
1572	γ _{Pb}	0,822	0,863	0,898	0,926	0,950	0,968	0,982	0,992	0,998
13/3	γ_{Zn}	0,997	0,988	0,975	0,957	0,937	0,913	0,887	0,859	0,829

Рассчитанные значения коэффициентов активности Pb и Zn в расплаве

$$\beta_{Zn} = \frac{p_{Zn}^* \gamma_{Zn}}{p_{Pb}^* \gamma_{Pb}}.$$
(3.2)

Значения $\beta_{Zn} > 1$ (рис. 3.1, табл. 3.4), поскольку содержание цинка в газовой фазе больше, чем в жидкой ($y_{Zn} >> x_{Zn}$). Цинк обогащает газовую фазу, а свинец

накапливается в жидкой фазе ($x_{Pb} >> y_{Pb}$), таким образом, бинарный сплав разделяется на цинк и свинец.

x _{Pb}	873 K	1073 K	1273 K	1573 K
0,1	4,547	3,737	3,20	2,637
0,3	4,477	3,689	3,147	2,589
0,5	4,406	3,632	3,098	2,548
0,7	4,331	3,575	3,051	2,509
0.9	4.248	3.515	3.004	2.473

Рассчитанные значения коэффициента разделения цинка и свинца (logβ_{Zn})

Коэффициент разделения цинка и свинца возрастает ($log\beta_{Zn} = 2,473-4,547$) по мере снижения температуры процесса (1573–873 *K*) и доли свинца ($x_{Pb} = 0,9-0,1$) в составе бинарного Pb-Zn сплава. Для Pb–Zn сплава, с учетом равенства (3), содержание металлов в газовой фазе равняется:

$$y_{\rm Pb} = \left[1 + \frac{p_{\rm Zn}^* \gamma_{\rm Zn} x_{\rm Zn}}{p_{\rm Pb}^* \gamma_{\rm Pb} x_{\rm Pb}}\right]^{-1}, \qquad y_{\rm Zn} = \left[1 + \frac{p_{\rm Pb}^* \gamma_{\rm Pb} x_{\rm Pb}}{p_{\rm Zn}^* \gamma_{\rm Zn} x_{\rm Zn}}\right]^{-1}.$$
 (3.3)

Зависимость количества свинца в газовой фазе $y_{\rm Pb}$ от содержания свинца в расплаве $x_{\rm Pb} = 0,1-0,9$ и температуры процесса T = 873-1573 *К* представлена на рис. 3.2 и в табл. 3.5.

Таблица 3.5

Таблица 3.4

ΤV	ХРь									
Ι,Λ	0,1	0,3	0,5	0,7	0,9					
873	0,316	1,43	3,924	10,89	50,87					
1073	2,034	8,773	23,34	62,03	273,9					
1273	7,004	30,55	79,73	206,9	883,4					
1573	25,6	110,2	282,6	716,9	2939,9					

Рассчитанные значения у_{Рb}.10⁻⁶ сплава Pb-Zn

О чистоте отогнанного цинка можно судить по выявленным зависимостям $(y_{Pb}-x_{Pb})$ при заданном температурном режиме (рис. 3.2). Цинк может быть отделен от свинца при температуре возгонки свыше 600 °С. При известном исходном количестве свинца в сплаве можно подобрать температуру процесса, обеспечивающую заданную остаточную концентрацию примеси в рафинированном цинке.

Например, исходное значение x_{Pb} (ат. % / мас.%) = 10/26, тогда при 800 °C y_{Pb} (ат. % / мас.%) = 2,034·10⁻⁵/5,288·10⁻⁵, а при 1000 °C y_{Pb} (ат. % / мас.%) = 7,004·10⁻⁵/ 18,21·10⁻⁵, т.е. содержание свинца в отогнанном цинке возрастает более, чем в 3 раза при повышении температуры возгонки на 200 °C.

коэффициенты активности (γ) компонентов Pb-Zn сплава при 1073 *К*

Активности Pb и Zn в расплаве (рис. 3.3) [100] определены по значениям коэффициентов активности компонентов сплава Pb-Zn (табл. 3.3).

Для построения «*T*-*x*» диаграммы бинарной системы *i*–*j* используют интерактивный алгоритм различных значений x_i для определенной температуры до тех пор, пока сумма парциальных давлений становится равной внешнему давлению [101, 102]. Подставляя соответствующие величины γ_{Pb} , γ_{Zn} , *p*, p_{Pb} * и p_{Zn} * при различных температурах (табл. 3.6, 3.7) в уравнения (3.3), (2.7) и (2.8), получаем «*T*-*x*» фазовую диаграмму сплава Pb-Zn (рис. 3.4).

Таблица 3.6

Рассчитанные и опытные значения урь	$\gamma_{A\alpha}$ 7	The Ph-Zn	сплава	лпя « T -х»	лиаграмм
Tace initialitible if officially sha ferring yeb,	, IAg, I		Ullinaba	$A_{JJJJ} \propto A_{JJ}$	дна рамм

					1 0 1				
<i>Р</i> , Па	ХРb	0,1	0,3	0,5	0,7	0,9	0,99	0,999	0,9999
	T_{pac}, K	763	775	793	821	885	1035	1240	1486
122	$T_{\mathfrak{KC}}, K$	760	773	780	811	875	1030	1225	1470
155	γPb	0,694	0,802	0,893	0,964	0,996	1,0	1,0	1,0
	γzn	0,995	0,955	0,882	0,800	0,688	0,694	0,745	0,787
	T_{pac}, K	679,8	689,5	704	727	778	890	1035	1221
12.2	$T_{\mathfrak{I}\mathfrak{K}\mathcal{C}}, K$	670	680	714	735	780	895	1040	1218
15,5	γPb	0,658	0,772	0,873	0,952	0,995	1,0	1,0	1,0
	γ_{Zn}	0,994	0,949	0,863	0,748	0,629	0,630	0,689	0,745
	T_{pac}, K	613,3	621.3	633,5	653,1	694,6	783	890	1029
1 22	$T_{$ экс, K	620	625	640	660	690	775	880	1020
1,33	γ _{Pb}	0,621	0,741	0,852	0,942	0,993	1,0	1,0	1,0
	γ_{Zn}	0,994	0,942	0,843	0,709	0,573	0,567	0,626	0,686

Таблица 3.7

Рассчитанные и опытные значения *T*gas, урь Pb-Zn сплава для «*T-x*» диаграмм

<i>P</i> , Па	ХРb	0,9999	0,999	0,99	0,9
	T_{pac}, K	1486	1240	1035	885
133	$T_{\mathfrak{KC}}, K$	1500	1200	1030	890
	УРь	0,9999	0,869	0,025	5,75.10-4
	T_{pac}, K	1225	1035	890	778
13,3	$T_{ m экс}, K$	1230	1025	910	790
	УРb	0,9999	0,25	$7,32 \cdot 10^{-3}$	$1,74 \cdot 10^{-4}$
	T_{pac}, K	1029	890	783	694,6
1,33	$T_{\mathfrak{KC}}, K$	1020	875	775	700
	УРь	0,9999	0,074	$2,31 \cdot 10^{-3}$	5,3 ⁻ 10 ⁻⁵

Из рис. 3.4 следует, что диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на благоприятное влияние низкого давления на разделение Zn и Pb. Например, для получения конденсата цинка (Zn \approx 0,999) и, соответственно, остатка свинца (Pb \approx 0,999) при *P* = 13,3 Па температура не должна превышать ~1035 *K*. Содержание Pb, остающегося

в жидкой фазе, при $P \le 13,33$ Па и $T \le 1035 K$, выше, чем при $P \le 133,3$ Па и $T \le 1240 K$, что свидетельствует о том, что чем ниже давление, тем выше эффективность разделения компонентов сплава при фиксированной температуре. Кроме того, с помощью «*T-x*» фазовых диаграмм можно анализировать протекание дистилляции, например, при P = 133,3/13,3/1,33 Па для сплавов с $x_{Pb} = 0,001-0,999$ минимальная температура процесса должна быть не менее 1240/1042/890 *K*. По мере уменьшения содержания свинца в сплаве $x_{Pb} < 0,001$ температура возгонки компонентов снижается до минимальных значений 759–610 *K* при заданных величинах давления P = 133-1,33 Па, обеспечивая максимальное содержание цинка и свинца в возгонах и остатках, соответственно. По формулам (2.1)–(2.4) вычислены средние отклонения: относительное ($S_i = 1,45$ %) и квадратичное ($S_i^* = 7,7 K$), между рассчитанными и экспериментальными значениями температур (табл.3.6).

Для фазовых диаграмм *VLE* может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Предполагая, что мольная доля Pb в сырье сплава $x_0 = 0,6$, соответствующая температура перегонки 653 *K* и давление 1,33 Па, по правилу «рычага» может быть построена линии связи *AB* на «*T*-*x*» диаграмме (рис. 3.4), где кривые жидкости и пара пересекаются в точке *A* и *B*, соответственно. Когда система достигает равновесия, составы *A* и *B* равняются x_1 и y_8 , соответственно. По правилу рычага можно получить:

$$\frac{n_l}{n_q} = \frac{x_o - y_g}{x_l - x_o} = \frac{|OB|}{|OA|} = \frac{0.6 - 0.001}{0.7 - 0.6} = \frac{0.599}{0.1}$$

где $n_l = 0,599$ и $n_g = 0,1 - количество вещества в остатках и возгонах; <math>|OB|$ и |OA| длина соответствующих отрезков на линии *AB*. Общее количество молей вещества исходного сплава *n*, то $n = n_l + n_g$:

$$n_{l} = \frac{x_{o} - y_{g}}{x_{l} - y_{g}} n = \frac{|OB|}{|AB|} n = \frac{0,599}{0,699} n = 0,857n, \quad n_{g} = \frac{x_{l} - x_{o}}{x_{l} - y_{g}} n = \frac{|OA|}{|AB|} n = \frac{0,1}{0,699} n = 0,143n.$$

Расчет диаграмм «*P*-*x*» похож на построение «*T*-*x*» диаграмм (рис. 3.5). Значения γ_{Pb} , γ_{Zn} могут быть вычислены из уравнений (2.9) и (2.10) для серии величин x_{Pb} при заданной температуре системы, а давление насыщенных паров p_{Pb}^* и p_{Zn}^* может быть рассчитано из уравнений в табл. 3.1 при той же температуре. Затем, определяют давление *p* системы, соответственно, для серий x_{Pb} , x_{Zn} , γ_{Pb} , γ_{Zn} , p_{Pb}^* и p_{Zn}^* , основанных на уравнении (2.5) (табл. 3.8), после чего получают y_{Pb} из уравнения (2.6) (табл. 3.9) [104, 105].

Таблица 3.8

					$x_{\rm Pb}$				
Ι, Λ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
873	1,39	1,218	1,043	0,867	0,694	0,528	0,373	0,231	0,106
973	7,307	6,417	5,5	4,587	3,692	2,83	2,015	1,263	0,589
1073	27,83	24,46	21,01	17,56	14,19	10,93	7,842	4,961	2,335
1173	83,54	73,51	63,21	52,95	42,92	33,18	23,9	15,23	7,223
1273	209,2	184,1	158,7	133,2	108,1	83,84	60,64	38,8	18,51
1373	455,6	400,9	345,5	290,3	236,1	183,6	133,1	85,52	40,99
1473	886,4	780,8	673,5	566	461,3	359,2	261,4	168,2	80,94
1573	1576	1388	1199	1008	822,9	641,4	467,4	301,8	145,7

Рассчитанные значения $P_l \cdot 10^3$ (Па) сплава Pb-Zn для $x_l \ll P \cdot x$ » диаграмм

Таблица 3.9

Рассчитанные/опытные значения угл,	P_g (Па),	$\gamma_{Zn}, \gamma_{Pb} =$	1,0 для «Р	² - <i>х»</i> диаграмм	Zn-Ag сплава
------------------------------------	-------------	------------------------------	------------	-----------------------------------	--------------

Т, К	УРь	0,1	0,2	0,3	0,4	4	0,5	0,6		0,7	0,8		0,9
	$x_{\rm Zn} \cdot 10^{-7}$	120,0	55,0	31,0	20,	5	13,7	9,10	5	5,89	3,30)	1,50
972	γzn						0,589						
0/5	D .10-3	12.2	6 20	4,09/	3,13	3/	2,51/	2,09/	1	,80/	1 56		1 20
	$F_g 10$	12,2	0,29	3,9	3,0)	2,4	2,0	1	1,75	1,50)	1,39
	$x_{\rm Zn} \cdot 10^{-7}$	620	270	160	100)	68	46		29	17		7
1072	γ_{Zn}						0,701						
1075	D 10-2	140.95	72.60	49,75/	36,6	9/	29,73/	24,94/	2	1,24/	19.6	2	16 45
	$P_g 10$	149,83	/3,69	48,2	35,	1	29,0	24,0	2	20,5	18,0	3	10,43
	$x_{\rm Zn} \cdot 10^{-7}$	1850	850	500	500 325		215	145		92	54		24
1072	γ_{Zn}			0,752									
1273	D.10-5	$P \cdot 10^{-5}$ 36.3	3 18,8	12,6/	9,54	4/	7,61/	6,38/	5	,45/	4 70		1 26
	<i>I</i> g 10	50,5		12,0	12,0 9,0		7,2	6,11	5	5,15	4,75	,	4,20
Т, К	УРb		0,01	0,0	3		0,05	0,95		0,9	97		0,99
972	$x_{\rm Zn}$ ·10) ⁻⁷	1350	440	0	260		0,72		0,4	25	(0,138
0/5	$P_g \cdot 10^{-3}$, Па	124,7	41,	5		25,0	1,32		1,3	30		1,27
1072	$x_{\rm Zn}$ ·10) ⁻⁷	6750	215	50		1300	3,55		2,0)5		0,7
1075	$P_g \cdot 10^{-2}$, Па	1483,8	482,	81	2	297,83	15,70		15,	38		15,08
1272	$x_{\mathrm{Zn}} = 10$)-7	21500	705	50		4100	11,5		6,	7		2,2
1275	P_g, Π	[a	381,7	127	,6		75,8	4,04		3,9	96		3,88

Фазовая диаграмма «*P*–*х*» может быть использована для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки, если режим дистилляции выбирается на основе *VLE* диаграмм, исходя из требуемого содержания металлов в дистилляте и остатке. Например, при T = 873/1073/1273 *K*, для минимизации Zn в остатке $x_{Zn} \cdot 10^{-4} \le$ 1,35/6,75/21,5 давление не должно быть ниже $P \ge 0,125/14,8/382$ Па. Полученные результаты дополняют данные из «*T-x*» диаграмм Pb–Zn сплава.

Термодинамические параметры Pb–Zn сплава для диапазона исследованных температур определили по уравнению (2.26) (табл. 3.10, рис. 3.6). Молярная избыточная энергия Гиббса G_m^E для границы раздела «жидкость–газ» смеси *i-j* характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Pb–Zn сплава и температуры процесса. Энтальпия поверхностного слоя или избыточная внутренняя энергия (H^E_m) складывается из энергии Гиббса и теплоты образования поверхности (TS^E_m), где S^E_m – энтропия, характеризующая скрытую теплоту образования единицы площади поверхности (связанная энергия) в необратимом изотермическом процессе при

температуре *T*. Отрицательные значения H^{E}_{m} свидетельствуют об экзотермическом характере процесса дистилляции компонентов Pb–Zn сплава.

Таблица 3.10

	Рассчитанные значения G_m^E сплава Pb-Zn									
	– $G_m^E,$ Дж/моль									
T,K					ХРb					
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
873	166,85	292,38	379,39	429,85	445,08	425,79	372,17	283,92	160,27	
973	173,93	303,16	391,25	440,88	453,99	431,91	375,39	284,75	159,81	
1073	182,14	316,1	406,18	455,71	467,19	442,46	382,8	289,01	161,43	
1173	190,94	330,25	422,92	472,83	483,01	455,78	392,87	295,49	164,41	
1273	200,16	345,26	440,93	491,58	500,73	471,12	404,87	303,58	168,38	
1373	209,61	360,79	459,75	511,42	519,73	487,84	418,22	312,8	173,04	
1473	219,17	376,62	479,07	531,95	539,59	505,5	432,5	322,81	178,2	
1573	228,77	392,57	498,66	552,88	559,97	523,77	447,4	333,38	183,71	
$-\mathbf{H}_{m}^{E}$,	97.066	160.25	222.26	267.14	201.22	202.52	267.92	212.52	105 70	
Дж/моль	87,000	102,35	223,20	207,14	291,23	292,53	207,82	213,53	125,72	
- <i>S</i> ^E _m , Дж/моль [.] К	0,0894	0,145	0,1729	0,1789	0,1676	0,1435	0,1108	0,0733	0,0351	

Относительно невысокие значения молярной избыточной энергии Гиббса – $G_m^E \leq 0,56$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*–*j* Pb–Zn сплава в жидком состоянии, э-в: –

 $(\varepsilon_{ij} - \varepsilon_{jj}) = -0.012; -(\varepsilon_{ji} - \varepsilon_{ii}) = 0.014 [106].$

3.1.2. Система «свинец-серебро»

Необходимые для расчета параметры Pb-Ag сплава даны в табл. 3.11.

Sначения γ_i , γ_j , D_{ij} , D_{ji} , Z_i , Z_j , p_i , p_j , $v_m(i,j)$ сплава PO-Ag							
і–ј сплав	Т, К	γ_{Pb}^{∞}	γ^{∞}_{Ag}	B_{Pb-Ag}	B_{Ag-Pb}	Z_{Pb}	Z_{Ag}
Pb-Ag	1300	1,101	1,53	0,5974	1,4450	8,91	10,61
Компонент	A	В	С	D	$V_m = f(T)$, см ³ /моль		
Pb	-10130	-0,985	—	13,28	$19,4[1+1,24\cdot10^{-4}(T-600)]$		
Ag	-14400	-0,85	_	13,825	11,6[1	$+0,98 \cdot 10^{-4}$ (T	[-234)]

 $2u_{0}u_{0}u_{0}u_{0}u_{0}^{\infty}$ P P 7 7 n^{*} n^{*} V u_{0} or give Dh A a

Свинец имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, серебро имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает теоретические предпосылки для разделения этих металлов вакуумной дистилляцией (табл. 3.12).

Таблица 3.12

Таблица 3.11

Рассчитанные давление и соотношение давления паров Pb и Ag							
Т, К	<i>р*</i> _{Рb} , Па	<i>р*</i> _{Аg} , Па	$p *_{ m Pb}$ / $p *_{ m Ag}$				
1073	7,145	$6,74^{-10^{-3}}$	1060				
1173	41,76	0,087	480				
1273	183,723	0,748	245,62				
1373	647,724	4,677	138,49				
1473	$1,915\cdot10^{3}$	22,702	84,35				
1573	$4,912 \cdot 10^3$	89,805	54,70				
1673	$1,122.10^4$	300,425	37,35				
1773	2,326.104	874,521	26,60				

Для определения возможности отделения элемента *i* от элемента *j* бинарного сплава *i*-*j* путем вакуумной дистилляции можно использовать коэффициент разделения β_i (3.2). Значения $\beta_{Pb} > 1$ (рис. 3.7, табл. 3.13), поскольку содержание свинца в газовой фазе больше, чем в жидкой ($y_{Pb} >> x_{Pb}$). Свинец обогащает газовую фазу, а серебро накапливается в жидкой фазе ($x_{Ag} >> y_{Ag}$), таким образом, бинарный сплав разделяется на свинец и серебро.

Таблица 3.13

	тасечитанные значения коэффициента разделения (togppb) сплава то-гед							
x _{Pb}	1073 K	1273 K	1473 K	1773 K				
0,1	2,705	2,19	1,801	1,368				
0,3	2,844	2,281	1,86	1,397				
0,5	3,027	2,389	1,924	1,423				
0,7	3,25	2,51	1,987	1,439				
0,9	3,499	2,621	2,029	1,450				

Рассчитанные значения	коэффициента	разделения	(logBph)	сплава Рb-А	١o
i acc mitamible sha termi	коэффицисниц	разделения	$(\iota \sigma_{S} \rho_{PD})$	chinaba i 0 1	15

Информация об эффективности разделения и количественном составе продуктов дистилляции может быть получена из диаграмм фазового равновесия «жидкость–газ» (рис. 3.8, табл. 3.14, 3.15). Для Pb–Ag сплава содержание металлов в газовой фазе рассчитывается по формуле (3.3).

	Рассчитанные коэффициенты активности Pb-Ag сплава												
		Хрь											
Ι, Λ	Ŷ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9			
1072	γ _{Pb}	0,474	0,534	0,6	0,672	0,748	0,822	0,89	0,948	0,986			
1075	γ _{Ag}	0,991	0,962	0,91	0,837	0,746	0,641	0,531	0,424	0,331			
1172	γPb	0,554	0,611	0,673	0,737	0,802	0,863	0,919	0,963	0,990			
11/5	γAg	0,993	0,969	0,93	0,874	0,802	0,719	0,63	0,542	0,462			
1072	γ _{Pb}	0,627	0,68	0,735	0,791	0,845	0,896	0,94	0,972	0,993			
1275	γ _{Ag}	0,994	0,976	0,946	0,902	0,847	0,783	0,714	0,645	0,584			
1272	γ _{Pb}	0,691	0,739	0,787	0,835	0,881	0,921	0,955	0,980	0,995			
13/3	γ _{Ag}	0,996	0,982	0,959	0,927	0,885	0,839	0,788	0,740	0,700			
1472	γ _{Pb}	0,748	0,790	0,831	0,872	0,908	0,942	0,968	0,986	0,997			
14/5	γ _{Ag}	0,997	0,986	0,968	0,943	0,912	0,877	0,841	0,809	0,787			
1572	γPb	0,797	0,833	0,868	0,902	0,931	0,957	0,977	0,991	0,998			
1375	γAg	0,997	0,989	0,976	0,958	0,935	0,911	0,889	0,870	0,864			
1672	γPb	0,839	0,870	0,899	0,927	0,950	0,970	0,985	0,994	0,999			
10/5	γ _{Ag}	0,998	0,992	0,982	0,969	0,954	0,939	0,927	0,921	0,928			
1772	γPb	0,876	0,901	0,926	0,947	0,966	0,980	0,991	0,997	1,0			
1//5	γ _{Ag}	0,999	0,994	0,987	0,979	0,969	0,962	0,958	—	—			

Таблица 3.14

Таблица 3.15

	XPb											
Ι, Λ	0,1	0,3	0,5	0,7	0,9							
1073	0,9826	0,9967	0,9991	1	1							
1273	0,9451	0,9879	0,9959	0,9987	1							
1473	0,8755	0,9688	0,9882	0,9956	0,9990							
1773	0,7215	0,9145	0,9637	0,9847	0,9960							

Рассчитанные значения у_{Pb} сплава Pb-Ag

О чистоте отогнанного свинца можно судить по равновесным фазовым диаграммам «газ–жидкость» при заданном температурном режиме. Серебро может быть отделено от свинца при температуре возгонки свыше 800 °C. При известном исходном количестве серебра в сплаве можно подобрать режим (температуру) процесса, обеспечивающую заданную остаточную концентрацию примеси в рафинированном свинце. Например, исходное значение $x_{Ag(ar. \%/Mac.\%)} = 10,0/5,5$, тогда при 1200 °C $y_{Ag(ar. \%/Mac.\%)} = 0,00100/0,00055$, а при 1500 °C $y_{Ag(ar. \%/Mac.\%)} = 0,00400/0,00220$, т.е. содержание серебра в отогнанном свинце возрастает в 4 раза при повышении температуры возгонки на 300 °C.

Рассчитанные значения коэффициентов активности компонентов сплава Рb-Ag (табл. 3.14) позволили определить активности свинца и серебра в расплаве (рис. 3.9) [107].

Рис.3.9. Активности (*a*) и коэффициенты активности (γ) компонентов Pb-Ag сплава при 1273 *K*

Рb-Ад (рис. 3.10, 3.11).

Диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на благоприятное влияние низкого давления на разделение Pb и Ag: для получения конденсата свинца (Pb ~0,999) при P = 13,3 Па температура не должна превышать ~1420 *K* (рис.3.10, табл.3.16, 3.17).

Аналогично диаграммам Pb-Zn построены диаграммы «*T-x*» и «*P-x*» сплава

Содержание Ag, остающегося в жидкой фазе, при $P \le 13,33$ Па и $T \le 1420$ K, выше, чем при $P \le 133,3$ Па и $T \le 1605$ K, что свидетельствует о том, что чем ниже давление и температура, тем выше эффективность разделения компонентов для сплавов одинакового состава. Кроме того, с помощью «*T-x*» фазовых диаграмм можно анализировать протекание дистилляции.

Таблица 3.16

<i>Р</i> , Па	x _{Pb}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	T_{pac}, K	1916	1824	1766	1726	1694	1669	1648	1630	1616
122	$T_{\mathfrak{I}\mathfrak{K}\mathfrak{C}}, K$	1900	1855	1737	1700	1675	1640	1625	1610	1600
155	γ_{Pb}	0,919	0,916	0,924	0,937	0,954	0,969	0,983	0,993	0,998
	γAg	0,999	0,995	0,987	0,974	0,958	0,938	0,918	0,900	0,893
	T_{pac}, K	1617	1543	1499	1468	1443	1423	1406	1392	1381
12.2	$T_{\mathfrak{I}\mathfrak{K}\mathcal{C}}, K$	1600	1525	1475	1450	1430	1420	1410	1400	1390
15,5	γ_{Pb}	0,818	0,820	0,843	0,869	0,900	0,931	0,96	0,982	0,996
	γAg	0,998	0,988	0,970	0,942	0,904	0,856	0,805	0,750	0,701
	T_{pac}, K	1399	1340	1305	1279	1259	1242	1228	1217	1207
1 22	Тэкс, К	1385	1325	1310	1290	1250	1230	1225	1220	1200
1,55	γPb	0,706	0,72	0,753	0,794	0,839	0,886	0,931	0,968	0,992
	γ_{Ag}	0,996	0,98	0,95	0,903	0,84	0,764	0,678	0,589	0,505

Таблица 3.17

Рассчитанные и опытные значения *T*_{gas}, *y*_{Pb} Pb-Ag сплава для *«T-х»* диаграмм

<i>Р</i> , Па	x_{Pb}	0,01	0,03	0,05	0,1	0,2	0,3	0,4	0,5	0,6
	T_{pac}, K	2099	2034	1980	1916	1824	1766	1726	1694	1605
133	$T_{\mathfrak{KC}}, K$	2085	2017	1995	1920	1856	1739	1700	1675	1624
	УРь	0,227	0,486	0,602	0,831	0,934	0,965	0,983	1,0	1,0
	T_{pac}, K	1799	1705	1666	1617	1543	1499	1468	1443	1423
13,3	Тэкс, К	1784	1700	1650	1605	1545	1510	1476	1435	1420
	УРь	0,375	0,56	0,685	0,92	0,967	0,984	0,994	0,996	0,997
	T_{pac}, K	1565	1480	1445	1399	1340	1305	1279	1259	1242
1,33	$T_{\mathfrak{KC}}, K$	1550	1475	1430	1385	1350	1300	1270	1265	1240
	УРь	0,546	0,7	0,802	0,967	0,988	0,997	0,998	0,999	1,0

Например, при P = 133,3/13,3/1,33 Па для сплавов с $x_{Pb} \le 0,3/0,35/0,5$ минимальная температура процесса должна быть не менее 2100/1800/1565 *К*. По мере увеличения содержания свинца в сплаве $x_{Pb} \ge 0,3-0,5$ температура возгонки компонентов снижается до минимальных значений 1605–1200 *К* при заданных величинах давления P = 133-1,33 Па, обеспечивая максимальное содержание свинца и серебра в возгонах и остатках, соответственно.

Предполагая, что мольная доля Pb в сырье сплава $x_0 = 0,7$, соответствующая температура перегонки 1300 К и давление 1,33 Па, по правилу «рычага» построена линии связи *AB* на «*T-x*» диаграмме (рис. 3.10), где кривые жидкости и пара пересекаются в точке *A* и *B*, соответственно. При равновесии составы *A* и *B* равняются x_i и y_g , соответственно:

$$\frac{n_l}{n_q} = \frac{y_g - x_o}{x_o - x_l} = \frac{|OB|}{|OA|} = \frac{1 - 0.7}{0.7 - 0.3} = \frac{0.3}{0.4} \quad ,$$

где $n_l = 0,3$ и $n_g = 0,4$ – количество вещества в остатках и возгонах; |OB| и |OA| длина соответствующих отрезков на линии *AB*. Если общее количество молей вещества исходного сплава *n*, то $n = n_l + n_g$:

$$n_{l} = \frac{y_{g} - x_{o}}{y_{g} - x_{l}} n = \frac{|OB|}{|AB|} n = \frac{0.3}{0.7} n = 0.43n ,$$

$$n_{g} = \frac{x_{o} - x_{l}}{y_{g} - x_{l}} n = \frac{|OA|}{|AB|} n = \frac{0.4}{0.7} n = 0.57n .$$

Фазовая диаграмма «*P*–*х*» может быть использована для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки, если режим дистилляции выбирается на основе *VLE* диаграмм, исходя из требуемого содержания металлов в дистилляте и остатке (рис.3.11, табл. 3.18). Например, «*P*-*x*» кривые при 1273 К, где давление колеблется от 0,006 до 4 Па, указывают на то, что возгоны и остаток достигают высокой степени разделения: при *P* = 0,53–3,84 Па содержание Pb в конденсате и, соответственно, Ag в остатке 0,99–0,999; при *P* = (6–8)·10⁻³ Па количество Ag в остатке и, соответственно, Pb в возгоне 0,9999–0,999. Полученные результаты дополняют ранее полученные данные из «*T*-*x*» диаграмм Pb–Ag сплава.

Таблица 3.18

						. ,		-		
					x_{Pb}					
Ι, Κ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
1072	0.007	0.016	0,027/	0,04/	0,056/	0,074/	0,093/	0.112	0 122	
1075	0,007	0,010	0,03	0,042	0,055	0,07	0,09	0,115	0,152	
1173	0,048	0,106	0,176	0,257	0,35	0,452	0,561	0,672	0,777	
1272	0.246	0.526	0,850/	1,218/	1,624/	2,065/	2,527/	2.086	2 /21	
1275	0,240	0,520	0,93	1,18	1,65	2,1	2,6	2,980	3,431	
1373	0,967	2,028	3,219	4,539	5,977	7,490	9,055	10,615	12,121	
1472	2 1 4 6	6 156	10,091/	14,053/	18,243/	22,675/	27,156/	21.50	25.017	
1473	3,140	0,430	10,0	13,9	17,5	22,5	26,8	51,59	55,917	
1573	8,784	17,632	27,186	37,418	48,092	59,179	70,372	81,487	92,246	
1673	21,686	42,565	64,753	88,207	112,39	137,24	162,21	186,77	210,91	
1773	48,46	92,77	139,51	187,91	237,86	288,23	338,95	388,81	437,93	

Рассчитанные/опытные значения P (Па) сплава Pb-Ag

Термодинамические параметры Pb–Ag сплава для диапазона исследованных температур определили по уравнению (3.7) (табл. 3.19, рис. 3.12). Молярная избы-

точная энергия Гиббса G_m^E для границы раздела «жидкость–газ» характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Pb–Ag сплава и температуры процесса. Энтальпия поверхностного слоя или избыточная внутренняя энергия (H^E_m) складывается из энергии Гиббса и теплоты образования поверхности (TS^E_m), где S^E_m – энтропия, представляющая собой скрытую теплоту образования единицы площади поверхности (связанная энергия) в необратимом изотермическом процессе при температуре *T*. Отрицательные значения H^E_m свидетельствуют об экзотермическом характере процесса дистилляции компонентов Pb–Ag сплава.

Таблица 3.19

	Рассчитанные значения G_m^E сплава Pb-Ag											
		G_m^E , Дж/моль										
T,K	Хрь											
	0,1	0,2	0	0,4	0,5	0,6	0,7	0,8	0,9			
1073	-	-	10,233	64,36	135,31	211,75	275,22	296,32	228,82			
1173	60,28	134,65	219,99	310,85	398,49	469,44	503,37	470,03	324,51			
1273	133,07	267,23	398,01	518,48	618,4	682,85	690,53	611,1	401,44			
1373	195,97	381,17	550,08	694,71	803,72	861,35	845,8	727,13	464,14			
1573	298,05	564,79	793,34	974,33	1095	1139	1085	904,18	558,76			
1773	375,71	703,38	975,4	1182	1309	1341	1257	1030	624,88			
—Н ^Е Дж/моль	532,6	932,5	1371,1	1529,6	1532,4	1386	1106,8	731,41	323,15			
<i>S</i> ^{<i>E</i>} , Дж/моль <i>К</i>	0,5219	0,9405	1,3604	1,5735	1,6507	1,5859	1,3761	1,0265	0,5533			

Рис. 3.12. Зависимость « G^{E}_{m} – *T*» для сплава Pb-Ag при x_{pb} : 0,1–0,9 (1–9)

Относительно невысокие значения молярной избыточной энергии Гиббса $G_m^E \le 1,34$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*–*j* Pb–Ag сплава в жидком состоянии, э-в: – $(\varepsilon_{ij} - \varepsilon_{jj}) = -0,058; -(\varepsilon_{ii}-\varepsilon_{ij}) = 0,041$ [106].

3.1.3. Система «цинк–серебро»

Необходимые для расчета параметры Zn-Ag сплава даны в табл. 3.20.

Таблица 3.20

i—j		$\gamma_{Zn}^{\infty}/\gamma_{Ag}^{\infty}$		В	*	Z^{**}						
сплав	<i>I</i> , K			B_{Zn-Ag}	B_{Ag-Zn}	Zn	Ag					
Zn/Ag	1300	1,03/1,53		0,5236	1,3953	1,3953 11,04						
Металл	-A***	<i>—B</i>	С	D	$V_m = f(T)$, см ³ /моль							
Zn	6620	1,255	_	14,465	$9,2[1+2,065\cdot10^{-4}(T-273)]$							
Ag	14400	0,85	_	13,825	$11,6[1+0,98\cdot10^{-4}(T-234)]$							

2 10 10 10 10 10 10 10 10	u^{∞}	D D	7	7 1	n* n	* 1	V_{n} , KOMPOHOUTOD OFFICE $7n$ Ag	
Значения γ_i ,	γ_i ,	B_{ii}, B_i	i, <i>L</i> i,	L_{i}	p _i , p	i_i	$V_{m(i,i)}$ компонентов сплава Zn-Ag	

* $B_{ij} = \exp\left[-\left(\frac{\varepsilon_{ij}-\varepsilon_{jj}}{kT}\right)\right], B_{ji} = \exp\left[-\left(\frac{\varepsilon_{ji}-\varepsilon_{ii}}{kT}\right)\right];$ ** *Z* – координационное число жидких металлов; *** *lg P** = *AT*⁻¹ + *B lgT* + *CT* + *D*

Цинк имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, серебро имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает теоретические предпосылки для разделения этих металлов вакуумной дистилляцией (табл. 3.21).

Для определения возможности отделения элемента *i* от элемента *j* сплава i-j путем вакуумной дистилляции используем коэффициент разделения β_i (3.2).

Таблица 3.21

Рассчит	ганные давление и соотн	ошение давления паров	ZnиAg
Т, К	<i>p*</i> _{Zn} , Па	<i>р*</i> _{Аg} , Па	$p*_{\mathrm{Zn}}$ / $p*_{\mathrm{Ag}}$
823	578,67	7,079.10-7	8,174 ⁻ 10 ⁸
873	$1,552 \cdot 10^3$	6,765.10-6	$2,294 \cdot 10^{8}$
923	$3,727\cdot10^{3}$	$5,05^{-}10^{-5}$	7,38 ⁻ 10 ⁷
973	8,151 ⁻ 10 ³	3,059.10-4	2,665.107
1023	1,646.104	$1,55 \cdot 10^{-3}$	$1,062 \cdot 10^7$
1073	$3,10410^4$	6,74.10-3	$4,605\cdot10^{6}$

Рассчитанные по уравнениям (9) и (10) значения коэффициентов активности Zn и Ag приведены в табл.3.22. Значения β_{Zn} > 1 (рис. 3.13, табл. 3.23), поскольку содержание цинка в газовой фазе больше, чем в жидкой ($y_{Zn} >> x_{Zn}$). Цинк обогащает газовую фазу, а серебро накапливается в жидкой фазе ($x_{Ag} >> y_{Ag}$), таким образом, бинарный сплав разделяется на цинк и серебро.

Данные по разделению компонентов сплава и количественный состав продуктов, в частности содержание металлов в газовой фазе, могут быть получены из диаграмм фазового равновесия «жидкость–газ» (рис. 3.14, табл. 3.24).

Таблица 3.22

	Рассчитанные коэффициенты активности Zn-Ag сплава											
		XZn										
Ι, Λ	Ŷ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9		
022		0,149	0,201	0,271	0,362	0,475	0,609	0,751	0,882	0,972		
823		0,966	0,869	0,733	0,591	0,460	0,308	0,189	0,111	0,070		
972		0,182	0,242	0,318	0,413	0,527	0,656	0,788	0,903	0,978		
075		0,979	0,912	0,804	0,664	0,511	0,366	0,246	0,163	0,118		
023		0,218	0,283	0,364	0,463	0,576	0,699	0,819	0,920	0,982		
923	γ_{Zn}	0,981	0,922	0,824	0,698	0,558	0,422	0,307	0,223	0,180		
073	γ_{Ag}	0,256	0,326	0,411	0,510	0,621	0,737	0,847	0,934	0,986		
975	-	0,983	0,930	0,843	0,729	0,602	0,477	0,368	0,289	0,252		
1022		0,295	0,369	0,456	0,555	0,663	0,771	0,870	0,946	0,989		
1025		0,984	0,937	0,859	0,758	0,643	0,529	0,430	0,358	0,333		
1072		0,334	0,411	0,500	0,598	0,701	0,802	0,891	0,956	0,992		
10/5		0,986	0,943	0,874	0,783	0,681	0,579	0,490	0,428	0,418		

Таблица 3.23

Рассчитанные значения коэффициента	а разделения	$(log\beta_{Zn})$ Z	Zn-Ag сплава
------------------------------------	--------------	---------------------	--------------

	Twee infumine one fermine hood entrine (100 bin) and 100 entrino									
Т, К	XZn									
	0,1	0,3	0,5	0,7	0,9					
823	8,101	8,48	8,926	9,512	10,055					
923	7,215	7,513	7,882	8,294	8,605					
1023	6,841	7,114	7,439	7,788	8,018					
1073	6,193	6,421	6,676	6,923	7,039					

Рис. 3.13. Коэффициент разделения цинка при вакуумной дистилляции Zn-Ag сплава при температуре, К: 823 (1); 923 (2); 1023 (3); 1073 (4)

Рис.3.14. Равновесная диаграмма «жидкость–газ» Zn-Ag сплава при температуре, *K*: 823 (*1*); 923 (2); 1023 (*3*); 1073 (*4*)

Таблица 3.24

Т, К	XPb							
	0,1	0,3	0,5	0,7	0,9			
823	-7,146	-8,112	-8,926	-9,88	-11,009			
923	-6,261	-7,145	-7,882	-8,662	-9,559			
1023	-5,419	-6,303	-7,04	-7,82	-8,717			
1073	-5,239	-6,053	-6,676	-7,291	-7,993			

Рассчитанные значения log *y*_{Ag} сплава Zn-Ag

Серебро может быть отделено от цинка при температуре возгонки свыше 550 °C. При известном исходном количестве серебра в сплаве можно подобрать температуру процесса, обеспечивающую заданную остаточную концентрацию примеси в рафинированном цинке. Например, для $x_{Ag (ar.\%/Mac.\%)} = 10/15,5$ при 650 °C y_{Ag} (ar.% / Mac.%) = 2,76·10⁻¹⁰/4,28·10⁻¹⁰, а при 800 °C $y_{Ag (ar.\%/Mac.\%)} = 1·10^{-8}/1,55·10^{-8}$, т.е. содержание серебра в отогнанном цинке возрастает в 36 раз при повышении температуры возгонки на 150 °C.

Рассчитанные значения коэффициентов активности компонентов сплава Zn-Ag (табл. 3.22) позволили определить активности Zn и Ag в расплаве (рис. 3.15).

Рис.3.15. Активности (a) и коэффициенты активности (у) компонентов Zn-Ag

При построения «*T-x*» диаграммы бинарной системы Zn-Ag для сравнения приведена фазовая диаграмма при атмосферном давлении (рис. 3.166) [109]. Из данных рис.3.16*a*, табл. 3.25, 3.26 следует, что диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на

Рис.3.16. Фазовые диаграммы "*T*-*x*" Zn-Ag сплава при *P*, Па: 1,33 (*1a*); 13,33 (*2a*); 133,3 (*3a*); 98000 (*4б*) [109]

благоприятное влияние низкого давления на разделение Zn и Ag. Например, для получения конденсата цинка с содержанием серебра Ag $\leq 8,52 \cdot 10^{-8}$ при P = 133 Па температура не должна превышать ~1100 *K*.

Таблица 3.25

					, 8,	<u> </u>				
<i>P</i> , Па	x_{Zn}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
133	T_{pac}, K	948,2	900,6	868,3	842,8	821,6	803,2	787,2	773,8	764,4
	Тэкс, К	935	905	860	833	812	794	777	765	760
	γ_{Zn}	0,238	0,261	0,312	0,383	0,474	0,587	0,721	0,864	0,963
	γAg	0,982	0,917	0,802	0,642	0,459	0,284	0,151	0,079	0,032
13,3	T_{pac}, K	840,9	801	774,8	752,6	734,2	717,5	702,9	690,7	681,5
	$T_{\mathfrak{I} \kappa c}, K$	845	810	770	760	730	720	700	695	680
	γ_{Zn}	0,160	0,185	0,225	0,291	0,374	0,491	0,638	0,802	0,944
	γ_{Ag}	0,977	0,897	0,755	0,569	0,363	0,190	0,077	0,024	0,0063
	T_{pac}, K	755,2	722,9	699,6	681,2	664,3	649,4	635,8	624,1	615,3
1 22	Тэкс, К	745	715	705	688	660	640	630	620	610
1,55	γ_{Zn}	0,109	0,127	0,164	0,215	0,294	0,402	0,554	0,742	0,922
	γ_{Ag}	0,973	0,877	0,713	0,498	0,286	0,122	0,036	0,0067	0,0008

Рассчитанные и опытные значения γ_{Zn} , γ_{Ag} , T_{liq} Zn-Ag сплава для «*T-x*» диаграмм

Таблица 3.26

<i>P</i> , Па	χ_{Zn}	0,01	0,03	0,05	0,90	0,95	0,97	0,99	
	T_{pac}, K	1103	1027,4	993,1	764,4	761	759,9	759	
133	$T_{\mathfrak{I} \kappa c}, K$	1100	1030	990	770	760	760	760	
	γ_{Zn}	0,301	0,254	0,244	0,963	0,991	0,997	1,0	
	γ_{Ag}	1,0	0,999	0,996	0,032	0,024	0,022	0,022	
	УАg	$(85,2-3,2)10^{-8}$			$\leq 6,2.10^{-15}$				
	T_{pac}, K	961,1	902,7	876,4	681,5	678,3	677,4	676,6	
13,3	$T_{ m {\tiny ЭКС}}, K$	955	905	870	685	680	680	680	
	γ_{Zn}	0,195	0,168	0,161	0,944	0,986	0,995	0,999	
	γ_{Ag}	1,0	0,998	0,995	0,0063	0,0035	0,0029	0,0026	
	\mathcal{Y}_{Ag}	(1	1,3-0,42).10) ⁻⁸	$\leq 1.10^{-15}$				
	T_{pac}, K	852,3	805,5	785,1	615,3	612,3	611,4	610,7	
	$T_{ m {\tiny ЭКС}}, K$	850	800	780	614	610	610	610	
1,33	γ_{Zn}	0,127	0,112	0,106	0,922	0,980	0,993	0,999	
	γ_{Ag}	1,0	0,998	0,994	0,0008	0,0003	0,0002	0,0002	
	\mathcal{Y}_{Ag}	(1	5,3-0,56) 10)-9		$\leq 1^{\cdot}$	10 ⁻¹⁶		

Содержание Ag, остающегося в жидкой фазе, при $P \le 13,3$ Па и $T \le 960$ K, выше, чем при $P \le 133$ Па и $T \le 1103$ K, что свидетельствует о том, что чем ниже

давление, тем выше эффективность разделения цинка и серебра для сплавов данного состава. С помощью «*T-x*» фазовых диаграмм можно анализировать протекание дистилляции: при P = 133/13,3/1,33 Па для сплавов с $x_{Zn} \le 0,01$ минимальная температура процесса должна быть не менее 1103/961/852 *К*. По мере дальнейшего увеличения содержания цинка в сплаве ($x_{Zn} = 0,01-0,99$) температура возгонки компонентов снижается до минимальных значений 759/676/610 *К*, обеспечивая максимальное содержание цинка и серебра в возгонах и остатках, соответственно.

Предполагая, что мольная доля Zn в сырье сплава $x_0 = 0,7$, соответствующая температура перегонки 913 К и давление 133 Па, по правилу «рычага» может быть построена линии связи *AB* на «*T-x*» диаграмме (рис.3.16*a*), где кривые жидкости и пара пересекаются в точке *A* и *B*, соответственно. Когда система достигает равновесия, составы *A* и *B* равняются x_i и y_g , соответственно. По правилу рычага можно получить:

$$\frac{n_l}{n_q} = \frac{y_g - x_o}{x_o - x_l} = \frac{|OB|}{|OA|} = \frac{0,9999 - 0,7}{0,7 - 0,2} = \frac{0,2999}{0,5}$$

где $n_l = 0,2999$ и $n_g = 0,5$ – количество вещества в остатках и возгонах; |OB| и |OA| длина соответствующих отрезков на линии *AB*. Если общее количество молей вещества исходного сплава *n*, то $n = n_l + n_g$:

$$n_{l} = \frac{y_{g} - x_{o}}{y_{g} - x_{l}} n = \frac{|OB|}{|AB|} n = \frac{0,2999}{0,7999} n = 0,375n;$$

$$n_{g} = \frac{x_{o} - x_{l}}{y_{g} - x_{l}} n = \frac{|OA|}{|AB|} n = \frac{0,5}{0,7999} n = 0,625n.$$

Рис. 3.17. Фазовые диаграммы "*P*-*x*" сплава Zn-Ag

Фазовая диаграмма «*P*–*x*» востребована для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки, если режим дистилляции выбирается на основе *VLE* диаграмм, исходя из требуемого содержания металлов в дистилляте и остатке.

Таблица 3.27

		XZn									
I, K = 0,	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9		
072	0.029	0.075	0,148/	0,256/	0,409/	0,611/	0,856/	1,121/	1,366/		
075	0,028	0,075	0,15	0,25	0,4	0,6	0,83	1,10	1,35		
072	0.01	0.52	1,01/	1,66/	2,53/	3,60/	4,83/	6,09/	7,23/		
975	0,21	0,55	0,95	1,6	2,45	3.5	4,75	6,0	7,1		
1072 1.04	2.55	4,66/	7,43/	10,88/	14,94/	19,36/	23,74/	27,72/			
10/5	1,04	2,33	4,5	7,35	10,5	14,7	19,5	23,5	27,5		

Рассчитанные/опытные значения *P*₁·10³(Па) сплава Zn-Ag

Таблица 3.28

<i>T</i> , <i>K</i>	<i>Y</i> Zn	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	$x_{\rm Zn}$ 10 ⁻¹¹	3,5	7,9	13,5	21,0	31,5	47,3	73,5	127,0	284,0
873	γZn					0,104				
	$P_{g} \cdot 10^{-7}$	0,564	0,635	0,725	0,846	1,016	1,271	1,694	2,558	5,092
	$x_{\rm Zn}$ 10^{-10}	1,23	2,77	4,75	7,36	11,05	16,60	25,80	44,20	99,20
973	γZn					0,255				
	$P_{g} \cdot 10^{-6}$	2,546	2,869	3,281	3,823	4,590	5,744	7,656	11,48	22,91
	$x_{\rm Zn} \cdot 10^{-10}$	4,0	9,0	15,40	23,9	35.9	53,90	83,80	143,6	322,3
1073	γZn					0,455				
	D ·10 ⁻⁵	5,619/	6,326/	7,230/	8,430/	10,13/	12,67/	16,89/	25,34/	50,58/
	<i>F</i> g 10	5,5	6,5	7,5	8,5	10,4	12,5	17,0	25,0	48,0

Рассчитанные/опытные значения y_{Zn} , P_g (Па), γ_{Zn} , $\gamma_{Ag} = 1,0$ для «*T-х*» диаграмм Zn-Ag сплава

Например, «*P-х*» кривые при 1073 К, где давление изменяется в интервале $(0,5-5)\cdot10^{-4}$ Па, указывают на то, что возгоны и остаток достигают высокой степени разделения: при $x_{Zn} \le 3,223\cdot10^{-8}$ и $P = 5,06\cdot10^{-4}$ Па содержание Zn в остатке $\le 0,3\cdot10^{-8}$. Полученные результаты дополняют ранее полученные данные из «*T-x*» диаграмм, построенных для Zn-Ag сплава.

Термодинамические параметры Zn-Ag сплава для диапазона исследованных температур определили по уравнению (3.7) (табл. 3.29, рис. 3.18). Молярная избыточная энергия Гиббса G_m^E для границы раздела «жидкость—газ» смеси *i-j* характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Zn-Ag сплава и температуры процесса.

Энтальпия поверхностного слоя или избыточная внутренняя энергия (H^{E}_{m}) складывается из энергии Гиббса и теплоты образования поверхности (TS^{E}_{m}), где S^{E}_{m} – энтропия, представляющая собой скрытую теплоту образования единицы площади поверхности (связанная энергия) в необратимом изотермическом процессе при температуре *T*. Отрицательные значения H^{E}_{m} свидетельствуют об экзотермическом характере процесса дистилляции компонентов Zn-Ag сплава. Относительно невысокие значения молярной избыточной энергии Гиббса $G^{E}_{m} \leq 1,36$ кДж/моль в

расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*–*j* Zn-Ag сплава в жидком состоянии, э-в: –($\varepsilon_{ij} - \varepsilon_{jj}$) = –0,072; –($\varepsilon_{ji} - \varepsilon_{ii}$) = 0,037 [106].

Таблица 3.29

g G_m^E , кДж/моль T,K x_{Zn} 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0.8 0.9 823 -1,009-1,043 -0,582-1,271-1,362-1,283-0,674 -0,249 0,081 -0,504 -0,863 873 -1,068-1,117-1,015-0,776 -0,435 -0,0680,177 923 -0,427-0,717 -0,865 -0,865 -0,748-0,509-0,196 0,114 0,273 973 -0,350 -0,570 -0,662 -0,662 -0,480 -0,242 0,044 0,295 0,368 1023 -0,272-0,424 -0,459 -0,459 -0,212 0,025 0,283 0,476 0,464 1073 -0,194 -0,278-0,256 -0,139 0,055 0,292 0,522 0,658 0,560 $-(\mathbf{H}_{m}^{E}),$ 1,861 3,416 4,612 5,388 5,686 5,439 4,611 3,234 1,496 кДж/моль S_m^E , 2,924 4,059 4,892 5,350 5,342 4,784 3,627 1,916 1,553 Дж/моль К

Рассчитанные значения	G_m^E	, \mathbf{H}_m^E	, S_m^E	сплава	Zn-A
		_			

3.2. Влияние параметров вакуумной дистилляции на селективное выделение компонентов тройного Zn-Pb-Ag сплава

Для тройного сплава Pb-Zn-Ag коэффициенты активности любого компонента можно рассчитать с помощью уравнения (2.25), в котором используют только бинарные параметры трех компонентов, входящих в двоичные файлы (табл. 3.30). Таблица 3.30

Сплар		$\gamma_{Pb}^{\infty}/\gamma_{Ag}^{\infty}/\gamma_{Zn}^{\infty}$		<i>B</i> *				Z**			
Сплав	Ι, Λ			Pb-Ag	Ag-Pb	Pb-Zn	Zn-Pb	Pb	Ag	Zn	
Pb/Ag/	1200	1,1/1,53/1,03		0 5074	1 4 4 5	0.8002	1 1 2 2 7	8 01	10.61	11.04	
Zn	1300			0,3974	1,445	0,8992	1,1327	0,91	10,01	11,04	
Me	$-A^{***}$	— <i>B</i>	С	D	$V_m = f(T)$, см ³ /моль						
Pb	10130	0,985	-	13,28	$19,4[1+1,24\cdot10^{-4}(T-600)]$						
Ag	14400	0,85	—	13,825	$11,6[1+0,98\cdot10^{-4}(T-234)]$						
Zn	6620	1,255	-	14,465		9,2[1+2,065	$10^{-4}(T-2)$	73)]		

Значения $\gamma_i^{\infty}, \gamma_j^{\infty}, B_{ij}, B_{ji}, Z_i, Z_j, p_i^*, p_j^*, V_{m(i,j)}$ сплава Pb-Ag- Zn

* $B_{ij} = \exp\left[-\left(\frac{\varepsilon_{ij}-\varepsilon_{jj}}{kT}\right)\right], B_{ji} = \exp\left[-\left(\frac{\varepsilon_{ji}-\varepsilon_{ii}}{kT}\right)\right]; **Z$ – координационное число жидких металлов *** $lg P^* = AT^{-1} + B lgT + CT + D$

Для того, чтобы проверить адекватность результатов, полученных расчетным путем, подставили параметры Вильсона для компонентов двоичной системы (табл. 3.31) в уравнение (2.25), а затем по уравнению (2.26) определили долевую свободную энергию Гиббса для Pb, Zn и Ag в жидких Pb-Zn-Ag расплавах.

Таблица 3.31

Параметры Вильсона А _{<i>i</i>-<i>j</i>} для бинарных систем										
Система		T,K								
	873	1073	1273	1473	1673					
Pb-Zn	1,94	1,916	1,894	1,873	1,853					
Zn-Pb	0,516	0,522	0,528	0,534	0,54					
Pb-Ag	1,627	1,637	1,645	1,653	1,66					
Ag-Pb	0,615	0,611	0,608	0,605	0,602					
Zn-Ag	0,839	0,854	0,869	0,882	0,896					
Ag-Zn	1,192	1,171	1,151	1,133	1,116					

Показано (рис. 3.19, табл. 3.32), что наблюдается удовлетворительное соответствие между расчетными и экспериментальными данными ($S_i \leq 1.9$ %; $S_i^* \leq 0.1$ кДж/моль). По мере увеличения долей металлов в Pb-Zn-Ag сплаве

величины термодинамических параметров снижаются (табл. 3.36, рис. 3.21). Отрицательные значения энтальпии свидетельствуют об экзотермическом характере процессов в расплаве при дистилляции компонентов.

Рис. 3.19. Зависимость долевой свободной энергии Гиббса для свинца (*a*), цинка (*б*), серебра (*в*) от температуры и содержания металлов в Pb-Zn-Ag сплаве при мольных долях свинца: 0.75 (*1*); 0,57 (*2*); 0,4 (*3*); 0,2 (*4*), цинка: 0.16 (*5*); 0,36 (*6*); 0,55 (*7*); 0,77 (*8*), серебра: 0.09 (*9*); 0,07 (*10*); 0,05 (*11*); 0,03 (*12*)

По уравнению Вильсона с использованием данных для бинарных сплавов можно рассчитать равновесие «газ-жидкость» для тройной системы Pb-Zn-Ag путем подстановки соответствующих значений γ_{Pb} , γ_{Zn} , γ_{Ag} , P, P_{Pb}^* , P_{Zn}^* , P_{Ag}^* , при различных температурах в уравнениях (2.7) – (2.10).

Таблица 3.32

		0 1	
Компоненты	Pb	Zn	Ag
Мольная доля	0,75	0,16	0,09
$-\Delta G$, кДж/моль	2,139-4,099/2,0-4,0	14,20-26,99/14,0-26,0	17,91-34,43/18,0-34,0
–∆Н, Дж/моль	0,15/0,12	263,46/250,0	127,815/125,0
ΔS , Дж/ K моль	2,45/2,5	15,98/16,5	20,655/21,0
γ	0,993	0,883–0,898	0,942–0,935
Мольная доля	0,57	0,36	0,07
$-\Delta G$, кДж/моль	4,279-8,199	8,02–15,20	19,53–37,53
–∆Н, Дж/моль	1,3	198,353	118,5
ΔS , Дж/ K моль	4,9	8,971	22,5
γ	0,973–0,975	0,920–0,931	0,969–0,962
Мольная доля	0.4	0,55	0,05
$-\Delta G$, кДж/моль	7,115–13,53	4,69–8,88	21,82–41,89
–∆Н, Дж/моль	120,56	119,353	85,57
ΔS , Дж/ K моль	8,02	5,239	25,09
γ	0,938–0,945	0,953–0,960	0,989–0,984
Мольная доля	0,2	0,77	0,03
$-\Delta G$, кДж/моль	12,7–24,02	2,01–3,80	25,45–48,77
$-\Delta H$, Дж/моль	355,96	44,896	2,05
ΔS , Дж/ K моль	14,165	2,248	29,15
γ	0,869–0,889	0,985–0,988	0,999

Рассчитанные/опытные термодинамические параметры компонентов сплава Pb-Zn-Ag при *T* = 873–1673 *K*

Таблица 3.33

Содержание компонентов го-2п-Ад сплавов в жидкой и газовой фазах при Грас/Гэкс	Содержание компонентов	Pb-Zn-Ag сплавов в ж	кидкой и газовой о	разах при $T_{\text{pac}}/T_{\text{экс}}$
--	------------------------	----------------------	--------------------	---

$T_{\rm pac}/T_{ m экс}, K$	Р, Па	x_{Pb}	x_{Zn}	χ_{Ag}	УZn	УРь	УАg
298	101330	0,75	0,16	0,09	-	-	-
847/830	133					3,19.10-6	1,03.10-11
745/730	13,3	~0,75	< 0,0001	~0,09	>0,9999	8,35.10-7	5,42.10-13
665,5/650	1,33					2,22.10-7	2,93.10-14
298	101330	0,57	0,36	0,07	-	-	-
806/800	133					6,15 [.] 10 ⁻⁷	$1,18 \cdot 10^{-12}$
713/700	13,3	~0,57	< 0,0001	~0,07	>0,9999	$1,59^{\cdot}10^{-7}$	$6,11^{\cdot}10^{-14}$
640/620	1,33					4,25.10-8	3,33.10-15
298	101330	0,40	0,55	0,05	-	-	-
786/770	133					$2,04 \cdot 10^{-7}$	3,08.10-13
697/710	13,3	~0,40	< 0,0001	~0,05	>0,9999	5,32 [.] 10 ⁻⁸	$1,62 \cdot 10^{-14}$
627,5/640	1,33					1,42.10-8	~1 [.] 10 ⁻¹⁶
298	101330	0,20	0,77	0,03	-	-	-
770,5/760	133					5,28 [.] 10 ⁻⁸	8,14.10-14
685,5/670	13,3	~0,20	< 0,0001	~0,03	>0,9999	1,39 [.] 10 ⁻⁸	4,33.10-15
618/600	1,33					3,74.10-9	<1.10-16

Из полученных результатов путем подстановки соответствующих значений γ_{Pb} , γ_{Zn} , γ_{Ag} , P, P_{Pb}^* , P_{Zn}^* , P_{Ag}^* , при различных температурах в уравнениях (2.7) – (2.10). Из полученных результатов следует, что равновесная температура, соответствующая практически полному переходу цинка в возгоны снижается с 847–770 до 665–618 K – при уменьшении давления 133–1,33 Па и содержания долей свинца (0,75–0,2) и серебра (0,09–0,03) в исходном сплаве (табл. 3.33, рис. 3.20). Таким образом, достигается эффективное разделение цинка от свинца и серебра.

Рис. 3.20. Фазовая диаграмма Pb-Zn-Ag сплавов (*a*) и содержание компонентов в жидкой (*1*–5,*б*) и газовой (*66*,*7г*) фазах

Таблица 3.34

Отклонения температур равновесия и мольной доли компонентов в возгонах для Pb-Zn-Ag

1 2	1 1		<u> </u>								
	Максимальное отклонение										
$\Delta \max T, K$	Δ max \mathcal{Y} Zn	∆maxYPb	∆maxYAg								
63	0,0214	<0,001	<0,0001								
	Среднее отклонение										
δ <i>Τ</i> , <i>K</i>	δy _{Zn}	δy _{Pb}	δy _{Ag}								
41	0,0102	<0,001	<0,0001								
1											

 $\delta T = (\frac{1}{n} \sum_{i=1}^{n} (T_i^{exp} - T_i^{cal})^2)^{0.5};$ $\delta y = (\frac{1}{n} \sum_{i=1}^{n} (y_i^{exp} - y_i^{cal})^2)^{0.5},$ где *n* - число измерений, *T*-температура системы

Рассчитанные по уравнению Вильсона значения удовлетворительно согласуются с экспериментальными данными (табл. 3.34). Возможные ошибки при расчете

могут быть из-за показателей для двойных систем, которые оказывают влияние на многокомпонентные системы, особенно асимметричные.

Кроме того, для многокомпонентных систем учитываются только бинарные взаимодействия между атомами, которыми в многокомпонентных системах пренебрегают, применяя уравнение Вильсона. С другой стороны, если имеет место сильное взаимодействие между разными атомами и учитываются физические свойства элементов, входящих в состав сплава, применимость уравнения Вильсона ограничена. Уравнение Вильсона можно использовать для расчета данных *VLE* трехкомпонентной системы с приемлемыми отклонениями (табл. 3.34), возникающими изза массных потерь в ходе экспериментов и отличия экспериментальных условий от идеального состояния равновесия. Кроме того, принятые при расчетах упрощения также привносят некоторые неточности.

3.3. Кинетика испарения металлов из Zn-Pb-Ag сплава

Начальные участки зависимостей $\ln w(t) - (S/V)t$ (табл. 3.35) описываются линейными функциями (рис. 3.21). Процесс испарения металлов из Zn-Pb-Ag сплава при данных условиях эксперимента соответствует реакции первого порядка. Линейные зависимости, полученные при использовании метода наименьших квадратов, представлены в табл. 3.36.

Таблица 3.35

			- 0		,	
ΤΥ	t c	Macca	V^{-7} ,	w(t), %	(S/V)'t'10 ⁵ ,	$\ln w(t)$
Ι, Λ	ι, ε	сплава, г	м ³	$Zn/Pb/_{\Delta}w(t)$ ·10 ⁻³ Ag	сек/м	Zn/Pb/Ag
	0	80,0	103,21	77/20/3	0	-0,261/ -1,609/ -3,5066
	1200	47,61	35,09	39,80/16,71/2,03	4,37	-0,921/ -1,789/ -3,5072
1072	2400	30,02	13,26	20,57/13,95/4,07	12,09	-1,581/ -1,970/ -3,5079
1075	3600	20,22	5,69	10,63/11,65/6,1	24,04	-2,242/ -2,150/ -3,5086
	4800	14,58	2,80	5,49/9,74/8,12	40,60	-2,902/ -2,329/ -3,5093
	6000	11,17	1,57	2,84/8,13/10,16	61,56	-3,561/ -2,509/ -3,5099

Экспериментальные и расчетные параметры возгонки сплава Zn-Pb-Ag (77-20-3) при давлении 13.3 Па

ти	t, c	Macca	V^{-7} ,	w(t), %	(S/V)'t'10 ⁵ ,	$\ln w(t)$
Ι, Λ	ι, ε	сплава, г	м ³	$Zn/Pb/_{\Delta}w(t)$ ·10 ⁻³ Ag	сек/м	Zn/Pb/Ag
	1200	44,08	30,22	37,48/14,82/6,6	4,58	-0,981/-1,909/-3,5086
	2400	25,78	9,77	18,24/10,98/13,1	13,35	-1,701/-2,209/-3,5109
1273	3600	15,55	3,34	8,88/8,13/19,7	28,00	-2,421/-2,509/-3,5132
	4800	10,08	1,37	4,32/6,02/26,2	49,82	-3,141/-2,809/-3,5153
	6000	6,93	0,62	2,1/4,46/32,8	79,02	-3,861/-3,109/-3,5175
	1200	41,13	26,40	35,30/13,14/21,2	4,81	-1,041/-2,029/-3,5136
	2400	22,21	7,38	16,18/8,63/42,2	14,70	-1,821/-2,449/-3,5207
1473	3600	12,82	2,34	7,42/5,67/63,1	32,32	-2,601/-2,869/-3,5278
	4800	8,04	0,87	3,40/3,73/83,8	59,86	-3,381/-3,289/-3,5349
	6000	5,53	0,39	1,56/2,45/104,3	97,62	-4,161/-3,709/-3,5420

Таблица 3.35 (окончание)

Рис. 3.21. Зависимость lnw_{Me} – (*S/V*)*t* для цинка (*a*), свинца (*б*), серебра (*в*) в сплаве Zn-Pb-Ag (0,77-0,20-0,03) при давлении 13,3 Па и температуре, *К*: 1073 (*1*); 1273 (*2*); 1473 (*3*)

Таблица 3.36

Т, К	<i>Р</i> , Па	Zn/Pb/Ag	Уравнение	R^2	$\pm_{\Delta} \ln w(t)$
		0	$\ln w_{\rm Zn} = -5,361 \cdot 10^{-7} ({\rm S/V})t - 0,261$	0,974	0,100
1073			$\ln w_{\rm Pb} = -1,462 \cdot 10^{-7} ({\rm S/V})t - 1,609$	0,971	0,005
			$\ln w_{\rm Ag} = -3,507 \ 10^{-10} (\rm S/V)t - 3,5066$	0,975	0,001
			$\ln w_{\rm Zn} = -4,555 \cdot 10^{-7} ({\rm S/V})t - 0,261$	0,974	0,082
1273	13,3		$\ln w_{\rm Pb} = -1,898 \cdot 10^{-7} ({\rm S/V})t - 1,609$	0,973	0,004
			$\ln w_{\rm Ag} = -1,448 \cdot 10^{-9} (\rm S/V)t - 3,5066$	0,967	0,003
			$\ln w_{\rm Zn} = -3,995 \cdot 10^{-7} ({\rm S/V})t - 0,261$	0,967	0,076
1473		77/20/3	$\ln w_{\rm Pb} = -2,151 \cdot 10^{-7} ({\rm S/V})t - 1,609$	0,978	0,005
			$\ln w_{\rm Ag} = -3,631^{\cdot}10^{-9}({\rm S/V})t - 3,5066$	0,964	0,002
			$\ln w_{Zn} = -5,505 \cdot 10^{-7} (S/V)t - 0,261$	0,973	0,098
	133		$\ln w_{\rm Pb} = -1,338 \cdot 10^{-7} ({\rm S/V})t - 1,609$	0,970	0,006
			$\ln w_{\rm Ag} = -4,291 \cdot 10^{-10} ({\rm S/V})t - 3,5066$	0,978	0,003
			$\ln w_{Zn} = -5,171 \cdot 10^{-7} (S/V)t - 0,261$	0,975	0,076
	1,33		$\ln w_{\rm Pb} = -1,583 \cdot 10^{-7} ({\rm S/V})t - 1,609$	0,972	0,005
			$\ln w_{\rm Ag} = -8,098 \cdot 10^{-10} ({\rm S/V})t - 3,5066$	0,968	0,001
			$\ln w_{Zn} = -4,415 \cdot 10^{-7} (S/V)t - 0,598$	0,969	0,094
1073		55/40/5	$\ln w_{\rm Pb} = -3,370 10^{-7} ({\rm S/V})t - 0,916$	0,972	0,004
			$\ln w_{\rm Ag} = -10,56 \cdot 10^{-10} ({\rm S/V})t - 2,9957$	0,974	0,003
			$\ln w_{Zn} = -3,192 \cdot 10^{-7} (S/V)t - 1,022$	0,971	0,087
	13,3	36/57/7	$\ln w_{\rm Pb} = -5,310 \cdot 10^{-7} ({\rm S/V})t - 0,562$	0,978	0,005
			$\ln w_{\rm Ag} = -16,34 \cdot 10^{-10} ({\rm S/V})t - 2,6593$	0,976	0,002
			$\ln w_{Zn} = -1,448 \cdot 10^{-7} (S/V)t - 1,833$	0,975	0,077
		16/75/9	$\ln w_{\rm Pb} = -7,132 \cdot 10^{-7} ({\rm S/V})t - 0,288$	0,968	0,006
			$\ln w_{\rm Ag} = -21,49 \cdot 10^{-10} ({\rm S/V})t - 2,4079$	0,979	0,004

Кинетические уравнения возгонки Zn-Pb-Ag сплавов при различных параметрах

Константа испарения металлов k_{Me} определяется из наклона линейной зависимости $\ln w(t) - (S/V)t$. Этот показатель также можно рассматривать как коэффициент общего массопереноса. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава зависят от температуры, давления и химического состава сплава.

При увеличении температуры 1073–1473 *К* (P = 13,3 Па; Zn-Pb-Ag (77-20-3) значения k_{Me} , м сек⁻¹ практически постоянны для цинка и возрастают для свинца и серебра: ~5·10⁻⁷, (1,462–2,151)·10⁻⁷, (0,351–3,631)·10⁻⁹, соответственно.

При понижении давления 133–1,33 Па (T = 1073 K; Zn-Pb-Ag (77-20-3) значения k_{Me} , м'сек⁻¹ практически постоянны для цинка, но возрастают для свинца и серебра: ~5·10⁻⁷, (1,338–1,583)·10⁻⁷, (0,429–0,810)·10⁻⁹, соответственно.

При увеличении доли металлов в сплаве 0,16–0,77 Zn; 0,20–0,75 Pb; 0,03–0,09 Ag ($T = 1073 \ K$; $P = 13,3 \ \Pi a$) значения k_{Me} , м сек⁻¹ возрастают для цинка, свинца и серебра: (1,448–5,363)·10⁻⁷, (1,462–7,132)·10⁻⁷, (0,351–2,149)·10⁻⁹, соответственно.

Линейные зависимости $\ln K_{Me} - 1/T$, построенные с помощью регрессионного анализа экспериментальных данных, показывают, что влияние температуры на величину коэффициента скорости испарения металлов усиливается от цинка к серебру (рис. 3.22).

Рис. 3.22. Зависимость lnK_{Me} – 1/Т для цинка (1), свинца (2), серебра (3) в сплаве Zn-Pb-Ag (0,77-0,20-0,03) при давлении 13,3 Па

С помощью уравнения (2.34) получена величина кажущейся энергии активации испарения (*E*, кДж/моль) металлов: ~ 0 Zn; 12,68 Pb; 76,77 Ag (табл. 3.37).

Уровень E_{Me} в условиях данного эксперимента значительно ниже, чем значение энергии активации при испарении чистых компонентов сплава, кДж/моль: 128 Zn; 150 Pb; 279 Ag, в температурном диапазоне 1073–1473 *K* и при давлении 13,3 Па [110, 111]. Это обусловлено меньшим влиянием температуры на возгонку растворенных компонентов сплава, чем для чистых металлов, и учитывается при определении общей скорости реакции испарения. Для точного расчета скорости испарения, как правило, необходимо учитывать неидеальные условия в системе. Уравнение Вильсона базируется на концепции локального состава, который обеспечивает адекватное представление о неидеальных смесях [112].

Таблица 3.37

КИНСТИЧЕСКИЕ КОНСТАНТЫ (М/С) И ЭНЕРГИЯ АКТИВАЦИИ Е (КДЖ/МОЛВ) ЕП-1 О-АЗ СПЛАВОВ							
Т, К	<i>P</i> , Па	Zn/Pb/Ag	$\gamma_{Zn/Pb/Ag}$	k _{Zn/Pb/Ag}	$k_{Zn/Pb/Ag}^{V}$	$k_{Zn/Pb/Ag}^{L}$	$E_{\rm Zn/Pb/Ag}$
			0,986	5,361.10-7	12,314	5,362 10 ⁻⁷	
1073			0,874	$1,462 \cdot 10^{-7}$	7,645.10-6	$1,491 \cdot 10^{-7}$	
			1,0	3,507.10-10	$6,168^{-10}$	8,129 [.] 10 ⁻¹⁰	
			0,987	4,555.10-7	85,098	4,285.10-7	~0/
1273	13,3		0,878	$1,898 \cdot 10^{-7}$	$1,817 \cdot 10^{-4}$	$1,787 \cdot 10^{-7}$	12,68/
			0,999	1,448.10-9	$6,280^{-10^{-8}}$	$1,482 \cdot 10^{-9}$	76,77
			0,987	3,995.10-7	334,812	3,995.10-7	
1473		77/20/3	0,882	$2,151\cdot 10^{-7}$	$1,768^{\cdot}10^{-3}$	$2,151\cdot10^{-7}$	
			1,0	3,631.10-9	$1,771 \cdot 10^{-6}$	3,638 ⁻ 10 ⁻⁹	
	133			5,505.10-7	12,314	5,505.10-7	
			0.086	$1,338 \cdot 10^{-7}$	7,645 [.] 10 ⁻⁶	$1,362 \cdot 10^{-7}$	
			0,980	$4,291\cdot10^{-10}$	$6,168^{-10}$	$1,410^{-1}10^{-9}$	
	1,33		1.0	$5,171 \cdot 10^{-7}$	12,314	5,171.10-7	
			1,0	$1,583 \cdot 10^{-7}$	7,645 [.] 10 ⁻⁶	$1,616\cdot10^{-7}$	
				8,098 ⁻ 10 ⁻¹⁰	$6,168^{-10}$	$-2,59\cdot10^{-9}$	
			0,955	4,415.10-7	8,519	4,415 [.] 10 ⁻⁷	
1073		55/40/5	0,940	3,370.10-7	$1,644^{\cdot}10^{-5}$	3,441.10-7	—
			0,988	$10,56^{-10}$	1,016 [.] 10 ⁻⁹	$-26,8\cdot10^{-9}$	
			0,923	$3,192 \cdot 10^{-7}$	5,390	3,192.10-7	
	13,3	36/57/7	0,974	5,310.10-7	$1,745^{\cdot}10^{-6}$	7,633.10-7	
			0,967	$16,34 \cdot 10^{-10}$	$1,392 \cdot 10^{-9}$	-9,40.10-9	
		16/75/9	0,887	$1,448 \cdot 10^{-7}$	2,302	1,448.10-7	
			0,993	7,132.10-7	3,257.10-5	7,292.10-7	
			0,940	$21,49 \cdot 10^{-10}$	$1,739 \cdot 10^{-9}$	$-3,95\cdot10^{-9}$	

Кинетические константы (м/с) и энергия активации *E* (кДж/моль) Zn-Pb-Ag сплавов

В данном исследовании рассчитанные коэффициенты активности по уравнению Вильсона для Zn-Pb-Ag системы представлены в табл. 3.37. Активности для жидкой фазы показывают отрицательные отклонения от идеальности и, наряду со снижением энергии активации для компонентов сплава, обусловлены уменьшением энергии взаимодействия между полиметаллами (Zn-Pb, Zn-Ag, Pb-Ag) по сравнению с монометаллами (Zn-Zn, Pb-Pb, Ag-Ag). Компоненты из состава Zn-Pb-Ag сплава обладают меньшими значениями давления насыщенных паров по отношению к чистым металлам, что приводит к необходимости дополнительного повышения температуры или снижения давления в системе при испарении сплавов. Ранее упоминалось, что k_{Me} можно определить экспериментально по изменению концентрации металла со временем переработки. С другой стороны, k_{Me}^V можно рассчитать для заданной температуры, химического состава расплава и термодинамических параметров, определенных по уравнению (2.33). Поэтому коэффициент массопереноса в жидкой фазе k_{Me}^L можно рассчитать по уравнению (2.32) (табл.3.37). Показано, что значение общего коэффициента массопереноса k_{Me} меньше, чем коэффициент скорости испарения k_{Pb}^V при тех же условиях (за исключением серебра при высоком давлении, низких температуре и содержании в сплаве). Кроме того, значения общего коэффициента массопереноса k_{Meb} сопоставимы с коэффициентами массопереноса в жидкой фазе k_{Me}^L (кроме серебра при низких температурах). Таким образом, скорость испарения легко возгоняемых цинка и свинца из Zn-Pb-Ag сплава, в основном, контролируется массопереносом в жидкой фазе при данных условиях эксперимента.

Выявленные значения констант скорости возгонки компонентов сплавов Zn-Pb-Ag позволили определить основные параметры технологического оборудования, необходимого для осуществления процесса последовательного разделения Zn, Pb и Ag, например из сплава Zn-Pb-Ag состава, мол.% / мас.%: 77/53 – 20/43,6 – 3/3,4 с плотностью $\rho = 8,678$ г/см³. Поскольку экспериментальные данные были получены при значении S/V = 0,007 м⁻¹ для площади и глубины расплава 1 м² и 0,007 м, соответственно, объем расплава составит 0,007 м³ с массой 61 кг (32,3 кг Zn; 26,6 кг Pb; 2,4 кг Ag). За промежуток времени 100 мин при температуре 1073 *K* и давлении 13,3 Па будет извлечено из расплава 96,3 % (31,1 кг) цинка; 59,3 % (15,8 кг) свинца и 0,3 % (0,008 кг) серебра.

3.4. Выводы

1. Для бинарных сплавов Pb-Zn/Pb-Ag/Zn-Ag в интервалах температур 873– 1573/1073–1773/823–1073 *К* рассчитаны давления насыщенного пара (p^* , Па) для Pb/Zn ($6\cdot10^{-2}-4,91\cdot10^3$)/($1,55\cdot10^3-1,76\cdot10^6$); Pb/Ag ($7,15-2,33\cdot10^4$)/($6,74\cdot10^{-3}-8,75\cdot10^2$); Zn/Ag ($5,79\cdot10^2-3,10\cdot10^4$)/($7,08\cdot10^{-7}-6,74\cdot10^{-3}$). Высокие значения коэффициентов разделения $\log\beta_{Zn/Pb} = 2,47-4,55$; $\log\beta_{Pb/Ag} = 1,37-3,5$; $\log\beta_{Zn/Ag} = 6,19-10,06$ создают теоретические предпосылки для селективной возгони вначале цинка, а затем и свинца. 2. На основе объемной модели молекулярного взаимодействия *MIVM* (*molecular interaction volume model*) в интервалах температур 873–1573/1073–1773/823–1073 *К* рассчитаны коэффициенты активности с отрицательными отклонениями от идеальности ($\gamma_{Me} \le 1$) при содержании компонентов $x_{Me} = 0,01-0,99$ мол. доля в бинарных сплавах: $\gamma_{Pb/Zn} = (0,68-1,0)/(0,623-1,0)$; $\gamma_{Pb/Ag} = (0,43-1,0)/(0,26-1,0)$; $\gamma_{Zn/Ag} = (0,11-1,0)/(0,06-1,0)$, соответственно.

3. Анализ «*T*–*х*» диаграмм бинарных сплавов показывает, что содержание менее летучего компонента в газовой фазе (y_{Me} , мол. доля) возрастает при увеличении его содержания в сплаве ($x_{Me} = 0,99-0,9999$ мол. доля) и росте равновесной температуры «расплав–газ» (T_{liq}) при повышении давления (1,33/13,3/133 Па), например в системе Pb–Zn: y_{Pb} ·10⁻³ = 0,05–52,35/0,15–146,19/0,52–342,54 при T_{liq} = 783–1035/890–1225/1035–1486 *K*.

4. Анализ «*P*–*x*» диаграмм бинарных сплавов показывает, что содержание менее летучего компонента в газовой фазе (y_{Me} , мол. доля) возрастает при увеличении его содержания в сплаве ($x_{Me} = 0,99-0,9999$ мол. доля) и снижении давления газовой фазы (P_g , Па) при данной температуре: для Pb–Zn при 873/1073/1273 *К*: y_{Pb} ·10⁻³ = 0,13–12,96/0,67–62,21/2,15–179,43 при $P_g = 9,67-0,1/219,32-2,33/1768-21,39$.

5. Термодинамические параметры систем Pb–Zn/Ag–Pb/Ag–Zn в диапазонах исследованных температур 823–1773K, для поверхностного слоя при фазовом переходе «жидкость–газ» зависят от состава сплавов ($x_{Me} = 0,1-0,9$ мол. доля) и температуры процесса: молярная избыточная энергия Гиббса – $G_m^E = 159,8-560/-(10,2-1341)/1362-(-658)$ Дж/моль; энтальпия – $H_m^E = 87,1-292,5/323-1532/1496-5686$ Дж/моль; энтропия – $S_m^E = 0,04-0,18/-(0,52-1,65)/-(1,55-5,35)$ Дж/мольK.

6. Анализ диаграмм тройного сплава Pb-Zn-Ag переменного состава показывает, что содержание трудно возгоняемых свинца и серебра в составе конденсата цинка ($y_{Zn} > 0,9999$ мол. доля) снижается с уменьшением исходного содержания металлов (x_{Me} , мол. доля) в сплаве ($x_{Pb} = 0,75-0,20, x_{Ag} = 0,09-0,03$) и равновесной температуры при падении давления (133/13,3/1,33 Па), например в системе

98

 $x_{\text{Pb/Zn/Ag}} = 0,75/0,16/0,09$: $y_{\text{Pb}} = (31,9/8,35/2,22) \cdot 10^{-7}$, $y_{\text{Ag}} = (103/5,42/0,29) \cdot 10^{-13}$ при $T_{liq} = 847/745/665 \ K$.

7. Рассчитаны термодинамические параметры процесса испарения компонентов сплава Pb-Zn-Ag переменного состава 0,75-0,16-0,09/0,57-0,36-0,07/ 0,4-0,55-0,05/0,2-0,77-0,03 при T = 873-1673 $K: -_{\Delta}G_{Pb}$, кДж/моль = 2,14–4,1/4,28–8,2/7,115–13,53/12,7–24,02; $-_{\Delta}G_{Zn} = 14,2-26,99/8,02-15,20/4,69-8,88/2,01-3,8;$ – $_{\Delta}G_{Ag} = 17,91-34,43/19,53-37,53/21,82-41,89/25,45-48,77.$

8. Процесс испарения металлов из Pb-Zn-Ag сплава в диапазоне температур 1073–1473 *К* соответствует реакции первого порядка, например, для $x_{Pb/Zn/Ag} = 0,75/0,16/0,09$ при T = 1073 *К* и P = 13,3 Па $\ln w_{Zn} = -5,36\cdot 10^{-7}(S/V)t - 0,26$; $\ln w_{Pb} = -1,46\cdot 10^{-7}(S/V)t - 1,61$; $\ln w_{Ag} = -3,51\cdot 10^{-10}(S/V)t - 3,51$.

9. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава зависят от температуры, давления и химического состава сплава, например в диапазоне 1073–1473 *К* (*P* = 13,3 Па; $x_{Pb/Zn/Ag} = 0,20/0,77/0,03$) значения k_{Me} , м сек⁻¹практически постоянны для Zn (~5·10⁻⁷), но возрастают для Pb и Ag: (1,462–2,151)·10⁻⁷ и (0,351–3,631)·10⁻⁹, соответственно; в интервале 133–1,33 Па (*T* = 1073 *K*) значения k_{Me} также возрастают для Pb и Ag: (1,338–1,583)·10⁻⁷ и (0,429–0,810)·10⁻⁹, соответственно.

10. Линейные зависимости $\ln k_{Me}$ –1/Т показывают, что влияние температуры на величину коэффициента скорости испарения металлов усиливается от Zn к Ag: $tg\alpha_{Zn/Pb/Ag/} = \sim 0/-0,1515/-0,926$. Величина кажущейся энергии активации испарения (*E*, кДж/моль) металлов, практически, отсутствует у цинка в исследованном диапазоне температур и увеличивается от свинца к серебру: 12,68 Pb; 76,77 Ag.

Глава 4. Исследование основных закономерностей переработки Sb–Pb–Sn съемов (шлаков) от рафинирования свинца

4.1. Влияние параметров вакуумной дистилляции на селективное выделение сурьмы, свинца и олова из бинарных композиций

4.1.1. Система «сурьма-олово»

Необходимые для расчета параметры Sn-Sb сплава даны в табл. 4.1.

Таблица 4.1

		,					
<i>і–ј</i> сплав	Т, К	γ_{Sn}^{∞}	γ_{Sb}^{∞}	B_{Sn-Sb}	B_{Sb-Sn}	Z_{Sn}	Z_{Sb}
Sn-Sb	905	0,411	0,411	1,1095	1,0937	6,5512	6,9698
Компонент	A	В	С	D	$V_m = f(T)$, см ³ /моль		
Sn	-15500	0	0	10,355	17,0[1 -	+ 0,87 [.] 10 ⁻⁴ ('	Г–505)]
Sb	-6500	0	0	8,495	18,8[1	$+1,3.10^{-4}(7)$	[-904)]

Значения γ_i^{∞} , γ_j^{∞} , B_{ij} , B_{ji} , Z_i , Z_j , \mathbf{p}_i^* , \mathbf{p}_j^* , $V_{m(i,j)}$ сплава Sn-Sb

Сурьма имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, олово имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает предпосылки для разделения этих металлов (табл. 4.2).

Для оценки возможности разделения элементов *i* и *j* бинарного сплава *i–j* вакуумной дистилляцией используем рассчитанные коэффициенты активности (табл. 4.3) и коэффициент разделения β_i (3.2).

Значения $\beta_{Sb} > 1$ (рис. 4.1, табл. 4.4), поскольку содержание сурьмы в газовой фазе больше, чем в жидкой ($y_{Sb} >> x_{Sb}$). Сурьма обогащает газовую фазу, а олово накапливается в жидкой фазе ($x_{Sn} >> y_{Sn}$), таким образом, бинарный сплав разделяется на сурьму и олово.

Таблица 4.2

I dec III	аппыс давление и соо	пошение дивления на	upob bo n bli
Т, К	<i>р*</i> _{Sb} , Па	<i>р*</i> _{Sn} , Па	$p*_{ m Sb}$ / $p*_{ m Sn}$
823	3,95	3,32.10-9	1,19 ⁻ 10 ⁹
873	11,205	3,98.10-8	$2,81 \cdot 10^8$
923	28,363	3,65.10-7	$7,678 \cdot 10^7$
973	65,257	2,66.10-6	$2,45\cdot 10^7$
1023	138,401	$1,60^{-5}$	8,66 106
1073	273,664	8,12.10-5	$3,37 \cdot 10^{6}$

Рассчитанные давление и соотношение давления паров Sb и Sn

Таблица 4.3

	v		X _{Sn}									
Ι, Κ	Ŷ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9		
022	γ_{Sn}	0,433	0,517	0,604	0,691	0,774	0,849	0,912	0,960	0,990		
823	γsb	0,990	0,960	0,913	0,850	0,776	0,694	0,609	0,523	0,439		
072	γsn	0,456	0,539	0,623	0,707	0,786	0,857	0,917	0,962	0,990		
0/5	γsb	0,990	0,963	0,918	0,859	0,788	0,710	0,627	0,544	0,462		
022	γ _{Sn}	0,478	0,559	0,641	0,721	0,797	0,865	0,921	0,964	0.991		
925	γsb	0,991	0,965	0,922	0,866	0,799	0,724	0,645	0,563	0,483		
072	γ _{Sn}	0.498	0,577	0,657	0,734	0,807	0,872	0,926	0,966	0,991		
975	γsb	0,992	0,967	0,927	0,873	0,809	0,737	0,660	0,581	0,502		
1022	γ_{Sn}	0,517	0,594	0,671	0,746	0,816	0,878	0,929	0,968	0,992		
1023	γ_{Sb}	0,992	0,968	0,930	0,880	0,818	0,749	0,675	0,598	0,521		
1072	γ _{Sn}	0,534	0,610	0,685	0,757	0,824	0,883	0,933	0,969	0,992		
10/5	$\gamma_{\rm Sb}$	0,992	0,970	0,934	0,885	0,826	0,760	0,688	0,613	0,538		

Рассчитанные значения коэффициентов активности Sb и Sn в расплаве

Таблица 4.4

	Рассчитанные значения коэффициента разделения сурьмы и олова (logβsb)												
x _{Sn}	823 K	873 K	923 K	973 K	1023 K	1073 K							
0,1	9,435	8,786	8,207	7,689	7,221	6,797							
0,2	9,344	8,701	8,128	7,614	7,150	6,729							
0,3	9,255	8,618	8,049	7,539	7,079	6,662							
0,4	9,166	8,534	7,970	7,465	7,009	6,596							
0,5	9,077	8,450	7,892	7,391	6,939	6,529							
0,6	8,988	8,368	7,814	7,317	6,869	6,463							
0,7	8,900	8,284	7,736	7,243	6,799	6,395							
0,8	8,812	8,202	7,657	7,169	6,728	6,329							
0,9	8,722	8,118	7,579	7,094	6,658	6,262							

Коэффициент разделения сурьмы и свинца возрастает ($log\beta_{Sb} = 6,262-9,435$) по мере снижения температуры процесса (1073–823 *K*) и доли олова ($x_{Sn} = 0,9-0,1$) в составе бинарного Sn-Sb сплава, для которого с учетом равенства (2.7) содержание металлов в газовой фазе равняется:

$$y_{Sn} = \left[1 + \frac{p_{Sb}^* \gamma_{Sb} x_{Sb}}{p_{Sn}^* \gamma_{Sn} x_{Sn}}\right]^{-1}, \quad y_{Sb} = \left[1 + \frac{p_{Sn}^* \gamma_{Sn} x_{Sn}}{p_{Sb}^* \gamma_{Sb} x_{Sb}}\right]^{-1}$$

Зависимость количества олова в газовой фазе y_{Sn} от его содержания в расплаве $x_{\text{Sn}} = 0,1-0,9$ и температуры процесса T = 823-1073 *К* представлена на рис. 4.2 и в табл. 4.5.

Таблица 4.5

5

1

Sn

0.4

 $x_{\rm Sn}$

0.6

0.8

ΤV	X _{Sn}											
Ι,Λ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9			
823		<	1		1	2	3	6	17			
873	<	:1	1	2	4	6	12	25	69			
923	1	2	4	7	13	23	43	88	237			
973	2	6	12	23	41	72	133	271	1000			
1023	7	18	36	65	115	203	371	1000	2000			
1073	18	47	93	169	296	517	939	2000	5000			

Рассчитанные значения y_{Sn} 10⁻⁹ сплава Sn-Sb

 $\log \beta_{Sb}$

О чистоте отогнанной сурьмы можно судить по выявленным зависимостям $(y_{S_n}-x_{S_n})$ при заданном температурном режиме (рис. 4.2, 4.3). Сурьма может быть отделена от олова при температуре возгонки свыше 550 °C. При известном исходном количестве олова в сплаве можно подобрать температуру процесса, обеспечивающую заданную остаточную концентрацию примеси в рафинированной сурьме. Для исходного значения $x_{Sn (at. \%/Mac.\%)} = 50/48,75$ при 550 °C $y_{Sn (at. \%/Mac.\%)} =$ 1,0·10⁻⁹/ 0,975·10⁻⁹, а при 700 °С $y_{\text{Sn (ат. % / мас. %)}} = 41 \cdot 10^{-9} / 39,97 \cdot 10^{-9}$, т.е. содержание олова в отогнанной сурьме возрастает более, чем в 40 раз при повышении температуры возгонки на 150 °C.

				TTT									
	X _{Sn}												
Ι, Λ	γ	0,001	0,003	0,005	0,01	0,02	0,03	0,04	0,05				
000	γ_{Sn}	0,355	0,357	0,358	0,362	0,370	0,377	0,385	0,393				
823	γsb	1,0	1,0	1,0	1,0	1,0	0,999	0,999	0,998				
072	γSn	0,379	0,381	0,382	0,386	0,394	0,401	0,409	0,417				
0/5	γsb	1,0	1,0	1,0	1,0	1,0	0,999	0,999	0,998				
022	γ_{Sn}	0,402	0,403	0,405	0,409	0,416	0,424	0,431	0,439				
925	γsb	1,0	1,0	1,0	1,0	1,0	0,999	0,999	0,998				
072	γ_{Sn}	0,423	0,425	0,426	0,430	0,437	0,445	0,452	0,460				
975	$\gamma_{\rm Sb}$	1,0	1,0	1,0	1,0	1,0	0,999	0,999	0,998				
1022	γsn	0,443	0,444	0,446	0,450	0,457	0,464	0,472	0,479				
1025	$\gamma_{\rm Sb}$	1,0	1,0	1,0	1,0	1,0	0,999	0,999	0,998				
1072	γ _{Sn}	0,462	0,463	0,464	0,468	0,475	0,483	0,490	0,497				
10/5	γsb	1,0	1,0	1,0	1,0	1,0	0,999	0,999	0,998				

Рассчитанные коэффициенты активности Sn-Sb сплава

Таблица 4.7

Таблица 4.6

Рассчитанные значения у_{Sn}·10⁻¹⁰ Sn-Sb сплава

XSn	823	873	923	973	1023	1073
0,001		< 1	< 1	< 1	1	1
0,003				1	2	4
0,005	< 0,1			1	3	7
0,01			1	2	5	14
0,02			1	4	11	29
0,03			2	6	17	44
0,04	0,15	1	2	8	23	61
0,05	0,2	1	3	10	29	78

По значениям коэффициентов активности (табл. 4.3) определены активности олова и сурьмы в расплаве (рис. 4.4) [100]. Для построения «*T-x*» диаграммы системы *i*–*j* использован интерактивный алгоритм значений x_i для определенной температуры до тех пор, пока сумма парциальных давлений становится равной внешнему давлению [101, 102]. Подставляя соответствующие величины γ_{Sn} , γ_{Sb} , *p*, p_{Sn} * и p_{Sb} * при различных температурах (табл. 4.8, 4.9) в уравнения (3.3), (3.5) и (3.6), получаем «*T-x*» фазовую диаграмму сплава Sn-Sb (рис. 4.5).

Рис. 4.4. Активности (*a*) и коэффициенты активности (γ) компонентов Sn-Sb сплава при 823 *K*

Таблица 4.8

Рассчитанные и опытные значения γ_{Sn} , γ_{Sb} , T_{liq} Sn-Sb сплава для «*T-x*» диаграмм

	1 we internet in cubitible one termin [50, 100 on be childred Ath (1 00) And particip									
<i>P</i> , Па	x_{Sn}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
122	T_{pac}, K	1028,2	1038,3	1050,9	1066,4	1085,5	1109,6	1141,2	1185,8	1263,8
	Тэкс, К	1020	1030	1050	1060	1080	1105	1130	1180	1260
155	γ_{Sn}	0,519	0,599	0,679	0,756	0,826	0,887	0,937	0,973	0,993
	γ_{Sb}	0,992	0,969	0,932	0,884	0,828	0,767	0,704	0,645	0,592
12.2	T_{pac}, K	887,9	895,6	905,3	918,9	932,1	950,7	974,8	1008,5	1065,6
	$T_{\mathfrak{KC}}, K$	880	890	900	910	930	940	970	1000	1055
15,5	γ_{Sn}	0,463	0,549	0,636	0,720	0,799	0,869	0,926	0,967	0,992
	γ_{Sb}	0,991	0,964	0,921	0,841	0,801	0,732	0,661	0,593	0,536
1,33	T_{pac}, K	781,2	787,4	795,2	804,8	816,9	831,6	850,8	877,3	921,4
	$T_{\mathfrak{KC}}, K$	775	780	790	800	810	825	840	870	915
	γ_{Sn}	0,411	0,501	0,593	0,684	0,772	0,850	0,915	0,962	0,991
	γ_{Sb}	0,989	0,958	0,909	0,847	0,775	0,698	0,620	0,547	0,483

Таблица 4.9

Рассчитанные и опытные значения γ_{Sn} , γ_{Sb} , T_{liq} , y_{Sn} Sn-Sb сплава для «*T-x*» диаграмм

<i>Р</i> , Па	<i>x</i> _{Sn}	0,01	0,90	0,95	0,96	0,97	0,98	0,99	0,9999
133	T_{pac}, K	1021	1263,8	1345,2	1372,6	1409	1464	1563	1878
	$T_{ m {\tiny ЭКС}}, K$	1010	1260	1340	1370	1400	1455	1555	1870
	$y_{\rm Sn} \cdot 10^{-4}$	~0	0,83	4,85	8,33	16,47	43,15	204,2	9498,3
13,3	T_{pac}, K	882,4	1065,6	1123,9	1143,2	1168,9	1206,2	1275,3	1664
	$T_{\mathfrak{I} \kappa c}, K$	875	1060	1120	1140	1160	1200	1265	1655
	$y_{\rm Sn} \cdot 10^{-4}$	~0	0,04	0,26	0,45	0,91	2,36	11,82	8245,2
1,33	T_{liq}, K	776,9	921,4	965,3	979,6	999,2	1025,9	1075,3	1472
	$y_{\rm Sn} \cdot 10^{-4}$	~0	0,002	0,014	0,025	0,051	0,13	0,65	5025,9

Из рис. 4.5 следует, что диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на благоприятное влияние низкого давления на разделение Sb и Sn. Например, для получения конденсата сурьмы (Sb \approx 0,99) и, соответственно, остатка олова (Sn \approx 0,99) при P = 13,3 Па температура не должна превышать ~1275 *К*. Неизменное содержание олова (Sn \approx 0,99), остающегося в жидкой фазе, при падении давления P = 133-1,33 Па достигается при меньшей температуре возгонки сурьмы T = 1563-1075 *К*.

С помощью «*T-x*» фазовых диаграмм можно анализировать протекание дистилляции, например, при P = 133,3/13,3/1,33 Па для сплавов с $x_{Sn} = 0,01-0,99$ минимальная температура процесса должна быть не менее 1021/882/777 *К*. Для фазовых диаграмм *VLE* может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Предполагая, что мольная доля Sn в сырье сплава $x_0 = 0,5$, соответствующая температура перегонки ~1300 К и давление 133 Па, по правилу «рычага» может быть построена линии связи *AB* на «*T-x*» диаграмме (рис. 4.5), где кривые жидкости и пара пересекаются в точке *A* и *B*, соответственно. Когда система достигает равновесия, составы *A* и *B* равняются $x_l u y_g$, соответственно. По правилу рычага можно получить:

$$\frac{n_l}{n_g} = \frac{x_o - y_g}{x_l - x_o} = \frac{|OB|}{|OA|} = \frac{0.5 - 0.037}{0.8 - 0.5} = \frac{0.463}{0.3}$$

где $n_l = 0,463$ и $n_g = 0,3$ – количество вещества в остатках и возгонах; |OB| и |OA| длина соответствующих отрезков на линии *AB*. Общее количество молей вещества исходного сплава *n*, то $n = n_l + n_g$:

$$n_{l} = \frac{x_{o} - y_{g}}{x_{l} - y_{g}} n = \frac{|OB|}{|AB|} n = \frac{0.463}{0.763} n = 0.607n , n_{g} = \frac{x_{l} - x_{o}}{x_{l} - y_{g}} n = \frac{|OA|}{|AB|} n = \frac{0.3}{0.763} n = 0.393n.$$

Расчет диаграмм «*P*-*x*» похож на построение «*T*-*x*» диаграмм (рис. 4.6). Значения γ_{Sn} , γ_{Sb} можно вычислить из уравнений (3.9) и (3.10) для серии величин x_{Sn} при заданной температуре системы, а давление насыщенных паров p_{Sn}^* и p_{Sb}^* рассичтывается из уравнений в табл. 4.1 при той же температуре. Затем, определяют давление *p* системы, соответственно, для серий x_{Sn} , x_{Sb} , γ_{Sn} , γ_{Sb} , p_{Sn}^* и p_{Sb}^* , основанных на уравнении (3.4) (табл. 4.10), после чего получают y_{Sn} из уравнения (3.6) (табл. 4.11) [104, 105].

Таблица 4.10

					x _{Sn}				
1,1	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
823	3,52	3,04	2,53	2,02	1,53	1,10	0,72	0,41	0,17
972	9,98/	8,63/	7,20/	5,78/	4,42/	3,18/	2,11/	1,22/	0,52/
0/5	9,0	8,5	7,0	6,0	4,1	3,0	2,0	1,1	0,5
923	25,30	21,90	18,31	14,74	11,33	8,21	5,49	3,19	1,37
072	58,21/	50,47/	42,36/	34,20/	26,42/	19,23/	12,91/	7,59/	3,27/
975	57	51	41	34	25	19	13	8	3,1
1023	123,6	107,2	90,10	73,08	56,61	41,47	28,03	16,55	7,21
1072	244,3/	212,3	179,1/	145,2/	113,0/	83,18/	56,49/	33,57/	14,72/
1075	240	210	170	140	110	80	58	31	13

Рассчитанные/опытные значения *P* (Па) сплава Sn-Sb для *x*_l в «*P*-*x*» диаграммах

	i dee initaliible, onbittible ona tennin i gas, 150, 551 entitaba on be Atha (e 100) Ana pasisi								
Т, К	x_{Sn}	0,9	0,99	0,999	0,9999				
	γsb	0,462	0,392	0,375	0,374				
873	$log P_g$, [Па]	-0,286/-0,28	-1,357/-1,34	-2,377/-2,4	3,378/3,38				
	$y_{\rm Sn} \cdot 10^{-3}$	0,685	8,960	94,68	950,1				
973	γsb	0,502	0,434	0,418	0,417				
	$logP_g$, [Π a]	0,515/0,5	-0,548/-0,53	-1,569/-1,57	-2,565/-2,57				
	$y_{\rm Sn} \cdot 10^{-3}$	7,242	93,05	984,2	9764				
1073	γsb	0,538	0,471	0,456	0,456				
	$log P_g$, [Па]	1,168/1,16	0,11/0,105	-0,903/-0,9	-1,886/-1,89				
	$y_{\rm Sn} \cdot 10^{-3}$	49,53	623,6	6489	62450				

Рассчитанные/опытные значения *P_{gas}*, *γ*_{Sb}, *y*_{Sn} сплава Sn-Sb для «*P-x*» диаграмм

Таблица 4.11

Фазовая диаграмма «*P*–*x*» может быть использована для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки, если режим дистилляции выбирается на основе *VLE* диаграмм, исходя из требуемого содержания металлов в дистилляте и остатке. Например, «*P*-*x*» кривые при 973 К, где давление изменяется в диапазоне (2,54–2600)·10⁻ ⁴ Па, указывают на то, что возгоны и остаток достигают высокой степени разделения: при $P \ge 2,54 \cdot 10^{-4}$ Па содержание Sb в остатке (*x*_{Sb}) и, соответственно, Sn в конденсате (*y*_{Sn}) составляет не более 0,01. По мере дальнейшего снижения давления количество примесей в возгонах и остатках, соответственно олова и сурьмы, возрастает. Полученные результаты дополняют ранее полученные данные из «*T*-*x*» диаграмм Sn–Sb сплава.

Термодинамические параметры Sn–Sb сплава для диапазона исследованных температур определили по уравнению (3.7) (табл. 4.12, рис. 4.7). Молярная избыточная энергия Гиббса G_m^E для границы раздела «жидкость–газ» смеси *i-j* характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Sn–Sb сплава и температуры процесса. Энтальпия поверхностного слоя или избыточная внутренняя энергия (H^E_m) складывается из энергии Гиббса и теплоты образования поверхности (TS^E_m), где S^E_m – энтропия, представляющая собой скрытую теплоту образования единицы площади поверхности (связанная энергия) в необратимом изотермическом процессе при температуре *T*. Отрицательные значения H^E_m свидетельствуют об экзотермическом характере процесса дистилляции компонентов Sn–Sb сплава.

Таблица	4.12
---------	------

Рассчитанные значения G_m^E , H_m^E , S_m^E сплава Sn-Sb										
	$-G_m^E$, Дж/моль									
Т,К					XSn					
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
823	754,7	1353	1770	2017	2096	2007	1752	1333	748,3	
873	752,6	1349	1766	2013	2092	2004	1749	1331	747,3	
923	750,4	1346	1762	2008	2088	2000	1747	1329	746,5	
973	748,2	1342	1757	2004	2083	1997	1744	1327	745,6	
1023	746,0	1339	1753	1999	2079	1993	1742	1325	744,7	
1073	743,8	1335	1749	1995	2075	1990	1739	1323	743,7	
—Н ^{<i>E</i>} Дж/моль	790,57	1411,2	1840,2	2090,5	2166,2	2064	1793,7	1365,9	763,15	
<i>S</i> ^E , Дж∕моль ⁻ К	0,0435	0,0709	0,0851	0,0891	0,0851	0,0691	0,0509	0,0400	0,0181	

Рис. 4.7. Зависимость "_"*G* – *T*" для сплава Sn-Sb при *x*_{рь}: 0,1–0,9 (*1*–9)

Относительно невысокие значения молярной избыточной энергии Гиббса – $G_m^E = 0,744-2,096$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*–*j* Sn–Sb сплава в жидком состоянии, э-в: –($\varepsilon_{ij} - \varepsilon_{jj}$) = –0,0081; –($\varepsilon_{ji} - \varepsilon_{ii}$) = 0,0070 [106].
4.1.2. Система «свинец-олово»

Необходимые для расчета параметры Pb-Sn сплава даны в табл. 4.13.

i—j	T V	$\gamma_{Pb}^{\infty}/\gamma_{Sn}^{\infty}$		В	•	Ζ				
сплав	Ι, Λ			B_{Pb-Sn}	B_{Sn-Pb}	Pb	Sn			
Pb/Sn	1050	1,1/0),411	1,1131	0,8052	8,91	8,81			
Металл	-A	<i>—B</i>	С	D	D $V_m =$		ИОЛЬ			
Pb	10130	0,985	-	13,28	19,4[1	$1 + 1,24 \cdot 10^{-4}$	T-600)]			
Sn	15500	_	_	10,355	17,0[1	$+0,87 \cdot 10^{-4}$	T–505)]			

Значения γ_i^{∞} , γ_i^{∞} , B_{ii} , B_{ii} , Z_i , Z_j , p_i^* , p_j^* , $V_{m(i,j)}$ компонентов сплава Pb-Sn

Свинец имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, олово имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает теоретические предпосылки для разделения этих металлов вакуумной дистилляцией (табл. 4.14).

Таблица 4.14

Таблица 4.13

Рассчита	Рассчитанные давление и соотношение давления паров Pb и Sn									
Т, К	<i>р*</i> _{Рb} , Па	<i>p*</i> sn, Па	$p*_{ m Pb}$ / $p*_{ m Sn}$							
823	0,013	3,322.10-9	3,913 [.] 10 ⁶							
873	0,06	3,982.10-8	$1,507 \cdot 10^{6}$							
923	0,242	3,647 [.] 10 ⁻⁷	6,636 ⁻ 10 ⁵							
973	0,843	2,66.10-6	3,168 [.] 10 ⁵							
1023	2,588	1,598 [.] 10 ⁻⁵	$1,62 \cdot 10^5$							
1073	7,146	8,119.10-5	8,801 ⁻ 10 ⁴							

Таблица 4.15

	Рассчитанные значения коэффициентов активности Pb и Sn в расплаве									
						$x_{\rm Pb}$				
Ι, Λ	Ŷ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
873		1,474	1,312	1,202	1,127	1,076	1,042	1,021	1,008	1,002
023		1,005	1,019	1,038	1,061	1,085	1,109	1,133	1,155	1,174
872		1,458	1,306	1,200	1,127	1,077	1,043	1,021	1,008	1,002
075		1,005	1,018	1,037	1,060	1,085	1,111	1,137	1,161	1,184
022		1,442	1,298	1,198	1,127	1,078	1,044	1,022	1,009	1,002
925	γpb	1,005	1,018	1,037	1,060	1,085	1,112	1,139	1,166	1,191
073	γ_{Sn}	1,427	1,291	1,194	1,126	1,078	1,044	1,022	1,009	1,002
915		1,005	1,017	1,036	1,059	1,084	1,112	1,140	1,169	1,196
1022		1,412	1,283	1,190	1,124	1,077	1,044	1,023	1,009	1,002
1025		1,005	1,017	1,035	1,058	1,083	1,111	1,141	1,170	1,199
1073		1,397	1,275	1,186	1,122	1,076	1,044	1,023	1,009	1,002
1075		1,004	1,016	1,034	1,057	1,082	1,110	1,140	1,171	1,201

Для оценки возможности разделения элементов *i* и *j* бинарного сплава *i*–*j*

вакуумной дистилляцией используем рассчитанные коэффициенты активности (табл. 4.15) и коэффициент разделения β_i (3.2).

Значения $\beta_{Pb} > 1$ (рис. 4.8, табл. 4.16), поскольку содержание свинца в газовой фазе больше, чем в жидкой ($y_{Pb} >> x_{Pb}$). Свинец обогащает газовую фазу, а олово накапливается в жидкой фазе ($x_{Sn} >> y_{Sn}$), таким образом, бинарный сплав разделяется на свинец и олово.

Таблица 4.16

Таблица 4.17

	Рассчитанные значения коэффициента разделения (<i>log</i> β _{Pb}) сплава Pb-Sn									
			XPb							
Ι, Λ	0,1	0,3	0,5	0,7	0,9					
823	6,745	6,642	6,575	6,533	6,509					
923	5,979	5,885	5,819	5,775	5,747					
1023	5,357	5,27	5,207	5,163	5,132					
1073	5,088	5,004	4,942	4,897	4,866					

Коэффициент разделения олова и свинца возрастает ($log\beta_{Pb} = 4,866-6,745$) по мере снижения температуры процесса (1073–823 *K*) и доли свинца ($x_{Pb} = 0,9-0,1$) в составе бинарного Sn-Sb сплава, для которого с учетом равенства (2.7) содержание металлов в газовой фазе равняется:

$$\mathcal{Y}_{Pb} = \left[1 + \frac{p_{Sn}^* \gamma_{Sn} x_{Sn}}{p_{Pb}^* \gamma_{Pb} x_{Pb}}\right]^{-1}, \ \mathcal{Y}_{Sn} = \left[1 + \frac{p_{Pb}^* \gamma_{Pb} x_{Pb}}{p_{Sn}^* \gamma_{Sn} x_{Sn}}\right]^{-1}.$$

Зависимость количества компонентов сплава в газовой фазе от содержания Рb в расплаве (*x*_{Pb}) представлена на рис. 4.9 и в табл. 4.17.

Рассчитанные значения y_{Sn} 10 ⁻⁷ сплава Pb-Sn									
ТК Хрь									
Ι,Λ	0,1	0,3	0,5	0,7	0,9				
823	16,21	5,32	2,66	1,26	0,34				
923	94,44	30,41	15,15	7,19	1,99				
1023	395,38	125,26	62,07	29,50	8,22				
1073	734.90	231.14	114.26	54.27	15.13				

Свинец может быть отделен от олова при температуре возгонки свыше 550 °C. При известном исходном количестве свинца/олова в сплаве можно подобрать температуру процесса, обеспечивающую заданную концентрацию примеси (олово) в конденсате свинца. Например, для $x_{\text{Sn}(\text{ar.}\%/\text{mac.}\%)} = 90/83,8$ при 550 °C $y_{\text{Sn}(\text{ar.}\%/\text{mac.}\%)} = 1,62 \cdot 10^{-6}/1,51 \cdot 10^{-6}$, а при 650 °C $y_{\text{Sn}(\text{ar.}\%/\text{mac.}\%)} = 9,44 \cdot 10^{-6}/8,79 \cdot 10^{-6}$,

т.е. содержание олова в отогнанном свинце возрастает в ~6 раз при повышении температуры возгонки на 100 °C.

По значениям коэффициентов активности (табл. 4.15) определены активности олова и сурьмы в расплаве (рис. 4.10) [100].

Рис. 4.10. Активности (*a*) и коэффициенты активности (γ) компонентов Pb-Sn сплава при 823*K*

Рис. 4.11. Фазовые диаграммы "*Т*-*x*" при *P*, Па: 1,33 (*1*); 13,33 (2); 133,3 (*3*) 98000 (*4*) [109]

Рис. 4.12. Фазовые диаграммы "*P*–*x*" при *T*, *K*: 873 (*1*); 973 (2); 1073 (*3*)

Таблица 4.18

0

-2

-4

-6

-8

<i>Р</i> , Па	Х _{Рb}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	T_{pac}, K	1809,5	1759,4	1723,6	1696,5	1675	1656,9	1641,3	1627,4	1614,7
122	$T_{\mathfrak{KC}}, K$	1815	1765	1730	1700	1684	1660	1645	1630	1620
155	γPb	1,244	1,183	1,133	1,093	1,061	1,037	1,020	1,008	1,002
	γ_{Sn}	1,003	1,011	1,024	1,042	1,064	1,089	1,118	1,149	1,183
	T_{pac}, K	1553,8	1498,2	1465,7	1443,3	1426,3	1412,3	1400,4	1389,8	1380,3
12.2	Тэкс, К	1560	1500	1470	1450	1430	1420	1410	1400	1390
15,5	γ_{Pb}	1,287	1,214	1,153	1,105	1,068	1,041	1,021	1,009	1,002
	γ_{Sn}	1,003	1,013	1,028	1,048	1,072	1,099	1,129	1,161	1,195
	T_{pac}, K	1343,8	1296,8	1271,5	1254,4	1241.,5	1230,9	1221,9	1213,7	1206,5
1 22	$T_{\mathfrak{KC}}, K$	1340	1305	1280	1260	1245	1237	1225	1220	1210
1,33	γ_{Pb}	1,329	1,240	1,169	1,114	1,073	1,043	1,022	1,009	1,002
	γ_{Sn}	1,004	1,014	1,031	1,052	1,077	1,106	1,136	1,168	1,201

Рассчитанные и опытные значения у_{Sn}, у_{Pb}, *T*_{liq} Pb-Sn сплава для «*T-x*» диаграмм

Из «*T-х*» диаграмм (рис. 4.11, табл.4.18, 4.19) следует, что диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на благоприятное влияние низкого давления на разделение Pb и Sn. Например, для получения конденсата свинца (Pb \ge 0,999) при *P* = 1,33 Па температура не должна превышать ~1200 *K*.

Таблица 4.19

Tude infumitie in onisituite shu territi (Sii, Fe, Tug, Sii To Shi ethiusu Ashi (Tug, Anu pumiti									
<i>Р</i> , Па	ХРb	0,0001	0,01	0,03	0,05	0,90	0,95	0,97	0,99
	T_{pac}, K	1883	1874,5	1858,2	1842,9	1614,7	1608.8	1606,4	1604,1
	$T_{ m {\tiny ЭКС}}, K$	1870	1865	1850	1840	1600	1598	1600	1602
133	γPb	1,317	1,309	1,294	1,279	1,002	1,0	1,0	1,0
	γ_{Sn}	1,0	1,0	1,0	1,001	1,183	1,201	1,208	1,215
	${\mathcal Y}$ Pb	0,00109	0,09	0,25	0,35	0,9947	0,9973	0,9980	0,9994
	T_{pac}, K	1678,8	1660,7	1628,8	1602,1	1380,3	1375,7	1374,1	1372,3
	$T_{ m экс}, K$	1680	1670	1630	1600	1375	1370	1374	1371
13,3	$\gamma_{ ext{Pb}}$	1,359	1,353	1,333	1,325	1,002	1,001	1,0	1,0
	γ_{Sn}	1,0	1,0	1,0	1,001	1,195	1,213	1,220	1,227
	${\mathcal Y}$ Pb	0,0025	0,22	0,50	0,66	0,9986	0,9989	0,9997	0,9999
	T_{pac}, K	1514,5	1478,5	1426,7	1393	1206,5	1203	1201,8	1200,4
	$T_{\mathfrak{I}\mathfrak{K}\mathfrak{C}},K$	1510	1480	1430	1400	1200	1205	1202	1203
1,33	$\gamma_{ ext{Pb}}$	1,401	1,399	1,388	1,373	1,002	1,001	1,0	1,0
-	γSn	1,0	1,0	1,0	1,001	1,201	1,218	1,224	1,231
	УРb	0,00633	0,45	0,77	0,88	0,9995	0,9999	>0	,9999

Рассчитанные и опытные значения $v_{S_{T}}$, $v_{D_{T}}$, $T_{L_{T}}$, $v_{S_{T}}$ Ph-Sn сплава лля «T-r» лиаграмм

Содержание Sn, остающегося в жидкой фазе, при $P \le 13,3$ Па и $T \le 1660$ K, выше, чем при $P \le 133,3$ Па и $T \le 1875 K$, что свидетельствует о том, что чем ниже давление, тем выше эффективность возгонки свинца при соответствующей температуре. Кроме того, с помощью «*T-x*» фазовых диаграмм можно анализировать протекание дистилляции: при P = 133,3/13,3/1,33 Па для сплавов с $x_{\rm Pb} \leq$ 0,1/0,2/0,8 температура процесса минимальная быть должна не менее 1870/1660/1480 К. По мере дальнейшего увеличения содержания свинца в сплаве $(x_{Pb} \ge 0, 1-0, 8)$ температура возгонки компонентов снижается до минимальных значений 1604–1200 К, обеспечивая максимальное содержание свинца и олова в возгонах и остатках, соответственно.

Для фазовых диаграмм *VLE* может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Предполагая, что мольная доля Pb в сырье сплава

113

 $x_0 = 0,7$, соответствующая температура перегонки 1720 *К* и давление 133 Па, по правилу «рычага» может быть построена линии связи *AB* на «*T-x*» диаграмме (рис.4.11), где кривые жидкости и пара пересекаются в точке *A* и *B*, соответственно. Когда система достигает равновесия, составы *A* и *B* равняются x_i и y_g , соответственно. По правилу рычага можно получить:

$$\frac{n_l}{n_g} = \frac{y_g - x_o}{x_o - x_l} = \frac{|OB|}{|OA|} = \frac{0.85 - 0.7}{0.7 - 0.3} = \frac{0.15}{0.4}$$

где $n_l = 0,15$ и $n_g = 0,4$ — количество вещества в остатках и возгонах; |OB| и |OA|длина соответствующих отрезков на линии *AB*. Если общее количество молей вещества исходного сплава *n*, то $n = n_l + n_g$:

$$n_{l} = \frac{y_{g} - x_{o}}{y_{g} - x_{l}} n = \frac{|OB|}{|AB|} n = \frac{0.15}{0.55} n = 0.273n;$$
$$n_{g} = \frac{x_{o} - x_{l}}{y_{g} - x_{l}} n = \frac{|OA|}{|AB|} n = \frac{0.4}{0.55} n = 0.727n.$$

Фазовые диаграммы «*P*–*x*» (рис. 4.12, табл.4.20, 4.21) востребованы для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки, если режим дистилляции выбирается на основе *VLE* диаграмм, исходя из требуемого содержания металлов в дистилляте и остатке. Например, «*P*-*x*» кривые при 1073 *K*, где давление колеблется от $1 \cdot 10^{-4}$ до $1 \cdot 10^{-2}$ Па, указывают на то, что возгоны и остаток достигают высокой степени разделения: при $x_{Pb} \ge 0,036$ и *P* = 0,01 Па содержание Pb в конденсате и, соответственно, Sn в остатке $\ge 0,99$. Полученные результаты дополняют ранее полученные данные из «*T*-*x*» диаграмм Pb–Sn сплава.

Таблица 4.20

					$x_{\rm Pb}$				
Ι, Λ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
072	1 051	2 200	4,534/	5,668/	6,764/	7,861/	8,986/	10.14	11.24
0/5	1,834	5,299	4,49	5,4	6,5	7,5	8,7	10,14	11,54
072	25.14	15 17	63,08/	79,30/	94,90/	110,3/	125,95/	142 10	150 76
975	23,14	43,47	60	80	90	105	120	142,10	138,70
1073	200.3	201 /	531,8/	670,5/	803,6/	935,5/	1069,4/	1205.2	12464
1075	209,5	301,4	510	650	800	900	1048	1203,5	1340,4

Рассчитанные/опытные значения *Pt*10⁻⁴(Па) сплава Pb-Sn

Таблица 4.21

<i>T</i> , <i>K</i>	УРЬ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	$x_{\rm Pb} \cdot 10^{-6}$	2,1	4,6	8,0	12,3	18,5	27,8	43,0	74,0	166,0
072	γPb					1,716				
075	D .10-8	1 125	4 075	5,708/	6,636/	7,974/	9,980/	13,26/	10.05	20.80
	<i>F</i> g 10	4,433	4,973	5,5	6,5	8,0	10,0	12,5	19,95	39,80
	$x_{\rm Pb} \cdot 10^{-5}$	1,04	2,33	4,0	6,22	9,33	14,0	21,7	37,3	84,3
073	γPb				1,621				1,620	1,619
915	D .10 ⁻⁶	2 057	2 2 2 5	3,801/	4,435/	5,322/	6,655/	8,852/	12 20	76 69
	<i>F</i> g 10	2,937	5,525	3,7	4,3	5,5	6,5	8,6	15,50	20,08
	$x_{\rm Pb} \cdot 10^{-4}$	0,385	0,865	1,49	2,31	3,47	5,20	8,10	13,90	31,20
1073	γPb		1,5	67			1,566		1,564	1,561
1073 -	$D \cdot 10^{-4}$	0.002	1 014	1,16/	1,352/	1,623/	2,027/	2,705/	1 056	8 08
	$P_{g} \cdot 10^{-4}$	$P_g \cdot 10^{-4}$ 0,902	1,014	1,0	1,25	1,5	2,0	2,6	4,030	8,08

Рассчитанные/опытные значения y_{Pb} , P_g (Па), γ_{Pb} , $\gamma_{Sn} = 1,0$ для «*T-x*» диаграмм Pb-Sn сплава

Термодинамические параметры Pb–Sn сплава для диапазона исследованных температур определили по уравнению (3.7) (табл. 4.22, рис. 4.13).

Рис.4.13. Зависимость " $_{\Delta}G - T''$ для сплава Pb-Sn при $x_{\rm Pb}$: 0,1–0,9 (1–9)

Молярная избыточная энергия Гиббса G_m^E для границы раздела «жидкость– газ»смеси *i-j* характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Pb–Sn сплава и температуры процесса.

Энтальпия поверхностного слоя или избыточная внутренняя энергия (H^{E}_{m}) складывается из энергии Гиббса и теплоты образования поверхности (TS^{E}_{m}), где S^{E}_{m} - энтропия, представляющая собой скрытую теплоту образования единицы

площади поверхности (связанная энергия) в необратимом изотермическом процессе при температуре T. Положительные значения H^{E}_{m} свидетельствуют об эндотермическом характере процесса дистилляции компонентов Pb–Sncплава.

Рассчитанные значения G_m^E , H_m^E , S_m^E сплава Pb-Sn

Таблица 4.22

				G		ц				
Ι,Λ		1	1		ЛРb	1	1	1	1	
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	
823	289,15	483,03	596,26	641,43	629,41	569,58	470,10	338,04	179,55	
873	292,84	490,93	608,16	656,55	646,52	587,13	48,.3	350,94	187,07	
923	296,53	498,83	620,06	671,66	663,62	604,68	502,51	363,84	194,59	
973	300,21	506,74	631,96	686,78	680,73	622,23	518,71	376,73	202,11	
1023	303,90	514,64	643,86	701,89	697,83	639,78	534,92	389,63	209,63	
1073	307,59	522,54	655,76	717,01	714,94	657,33	551,12	402,53	217,15	
H_m^E ,	229.46	252.06	400.4	202 65	247.94	290.7	202.27	105 74	55 772	
Дж/моль	228,40	352,90	400,4	392,03	347,84	280,7	205,57	125,74	55,775	
<i>S</i> ^{<i>E</i>} , Дж/моль <i>К</i>	0,0737	0,158	0,238	0,3023	0,3421	0,351	0,3241	0,258	0,1504	

Относительно невысокие значения молярной избыточной энергии Гиббса $G_m^E \le 0,72$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*–*j* Pb–Sncплава в жидком состоянии, э-в:– $(\varepsilon_{ij} - \varepsilon_{jj}) = 0,0097; -(\varepsilon_{ii} - \varepsilon_{ii}) = -0,0196$ [106].

4.1.3. Система «свинец-сурьма»

Необходимые для расчета параметры Pb-Sbсплава даны в табл. 4.23.

Таблица 4.23

					-		
<i>і–ј</i> сплав	Т, К	γ_{Pb}^{∞}	γ_{Sb}^{∞}	B_{Pb-Sb}	B_{Sb-Pb}	Z_{Pb}	Z_{Sb}
Pb-Sb	905	0,779	0,779	0,9517	1,0997	8,91	10,82
Компонент	A	В	С	D	$V_m =$	f(T), cm ³ /m	моль
Pb	-10130	-0,985	0	13,28	19,4[1 -	+ 1,24 [.] 10 ⁻⁴ ('	T-600)]
Sb	-6500	0	0	8,495	18,8[1	$+1,3.10^{-4}(1)$	[-904)]

Значения параметров γ_i^{∞} , γ_j^{∞} , B_{ij} , B_{ji} , Z_i , Z_j , p_i^* , p_j^* , $V_{m(i,j)}$ сплаваPb-Sb

Сурьма имеет высокое давление насыщенных паров и легко испаряется в газовую фазу, свинец имеет низкое давление насыщенных паров и остается в жидкой фазе, что создает теоретические предпосылки для разделения этих металлов вакуумной дистилляцией (табл. 4.24).

	, ,	/ · · · · · · · · · · · · · · · · · · ·	
Т, К	<i>р*</i> _{Sb} , Па	<i>р*</i> _{Рb} , Па	$(p*_{\rm Sb}/p*_{\rm Pb})\cdot 10^3$
823	3,954	0,013	304,154
873	11,205	0,06	186,75
923	28,363	0,242	117,202
973	65,257	0,843	77,41
1023	138,401	2,588	53,478
1073	273,664	7,146	38,296

Рассчитанные давление и соотношение давления паров Sb и Pb

Для оценки возможности разделения элементов *i* и *j* бинарного сплава *i*–*j*вакуумной дистилляцией используем рассчитанные коэффициенты активности (табл. 4.25) и коэффициент разделения β_i (3.2).

Значения β_{Sb} > 1 (рис. 4.14, табл. 4.26), поскольку содержание сурьмы в газовой фазе больше, чем в жидкой (y_{Sb} >> x_{Sb}). Сурьма обогащает газовую фазу, а свинец накапливается в жидкой фазе (x_{Pb} >> y_{Pb}), таким образом, бинарный сплав разделяется на сурьму и свинец.

Рис.4.15. Равновесная диаграмма «жидкость–газ» Pb-Sn при температуре, *К*: 823 (1); 923 (2); 1023 (3); 1073 (4)

Таблица 4.25

Таблица 4.24

Рассчитанные значения коэффиц	иентов активности Рb и Sb в	расплаве
-------------------------------	-----------------------------	----------

$T \mathcal{V}$	24					x_{Pb}				
Ι, Λ	Ŷ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
072	γ _{Pb}	0,811	0,844	0,875	0,904	0,931	0,954	0,973	0,988	0,997
823	$\gamma_{\rm Sb}$	0,997	0,989	0,976	0,956	0,931	0,899	0,862	0,819	0,771

972	γ _{Pb}	0,822	0,853	0,883	0,910	0,935	0,957	0,975	0,989	0,997
075	γsb	0,998	0,990	0,977	0,959	0,935	0,906	0,871	0,831	0,787
022	γPb	0,832	0,862	0,890	0,916	0,939	0,960	0,977	0,989	0,997
925	γ_{Sb}	0,998	0,991	0,979	0,962	0,940	0,912	0,879	0,842	0,800
072	γ _{Pb}	0,841	0,869	0,896	0,921	0,943	0,962	0,978	0,990	0,997
975	γsb	0,998	0,991	0,980	0,964	0,943	0,917	0,887	0,852	0,812
1022	γPb	0,849	0,876	0,902	0,925	0,946	0,965	0,979	0,991	0,998
1025	γ_{Sb}	0,998	0,992	0,981	0,966	0,946	0,922	0,893	0,860	0,823
1073	γPb	0,856	0,882	0,907	0,929	0,949	0,967	0,981	0,991	0,998
1075	$\gamma_{\rm Sb}$	0,998	0,992	0,982	0,968	0,949	0,926	0,899	0,868	0,832

Таблица 4.26

Рассчитанные значения коэффициента разделения сурьмы и свинца (logβsb)

x _{Pb}	823 K	923 K	1023 K	1073 K
0,1	2,587	2,148	1,798	1,650
0,3	2,566	2,11	1,765	1,618
0,5	2,497	2,069	1,728	1,583
0,7	2,445	2,023	1,688	1,545
0,9	2,386	1,973	1,644	1,504

Коэффициент разделения сурьмы и свинца возрастает ($log\beta_{Sb} = 1,504-2,587$) по мере снижения температуры процесса (1073–823 *K*) и доли свинца ($x_{Pb} = 0,9-0,1$) в составе бинарного Pb-Sb сплава.

Зависимость количества свинца в газовой фазе $y_{\rm Pb}$ от содержания свинца в расплаве $x_{\rm Pb} = 0,1-0,9$ и температуры процесса T = 823-1073 *К* представлена на рис. 4.15 и в табл. 4.27.

Таблица 4.27

			$x_{\rm Pb}$		
Ι, Λ	0,1	0,3	0,5	0,7	0,9
823	0,00029	0,00122	0,00317	0,00830	0,0357
923	0,00079	0,00332	0,00846	0,0217	0,0874
1023	0,00176	0,00732	0,0184	0,0457	0,1695
1073	0,00248	0,0102	0,0254	0,0623	0,2199

Рассчитанные значения $y_{\rm Pb}$ сплава Pb-Sb

Сурьма может быть отделена от свинца при температуре возгонки свыше 550 °C. При известном исходном количестве свинца в сплаве можно подобрать температуру процесса, обеспечивающую заданную остаточную концентрацию примеси Pb в рафинированной сурьме. Для исходного значения x_{Pb} (ат. % / мас.%) = 90,0/93,9 при 550 °C y_{Pb} (ат. % / мас.%) = 3,57/ 3,72, а при 650 °C y_{Pb} (ат. % / мас.%) = 8,74/

/9,12, т.е. содержание свинца в отогнанной сурьме возрастает более, чем в 2 раза при повышении температуры возгонки на 100 °С.

Рассчитанные значения коэффициентов активности компонентов сплава Pb-Sb (табл. 4.25) позволили определить активности свинца и сурьмы в расплаве (рис. 4.16) [100].

Рис.4.16. Активности (*a*) и коэффициенты активности (γ) компонентов Pb-Sb сплава при 973 *K*

Из «*T* – *x*» диаграмм (рис. 4.17, табл. 4.28, 4.29) следует, что диапазон температур жидкой и газовой фаз уменьшается по мере снижения давления в системе, что указывает на благоприятное влияние низкого давления на разделение Sb и Pb. Например, для получения конденсата сурьмы (Sb \approx 0,99)) при *P* = 13,3 Па температура не должна превышать ~1050 *K*. Неизменное содержание свинца (Pb \approx 0,99), остающегося в жидкой фазе, при падении давления *P* = 133–1,33 Па достигается при меньшей температуре возгонки сурьмы *T* = 1200–960 *K*. С помощью «*T*-*x*» фазовых диаграмм можно анализировать протекание дистилляции, например, при *P* = 133,3/13,3/1,33 Па для сплавов с $x_{Pb} = 0,01-0,99$ минимальная температура процесса должна быть не менее 1021/882/777 *K*.

logP, [Па]

Рис 4.18. Фазовые диаграммы "*P*-*x*" при *T*, *K*: 873 (*1*); 973 (*2*); 1073 (*3*)

Таблица 4.28

	Гассчит	анныс и	опытные	значених	i YPb, YAg,	1 liq F U-SU	сплава д	ля « <i>1-</i> л»	диаграмм	4
<i>Р</i> , Па	$x_{\rm Pb}$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
133	T_{pac}, K	1028	1037	1047	1060	1075	1094	1120	1157	1225
	$T_{\mathfrak{I}\mathcal{KC}}, K$	1030	1040	1050	1066	1082	1100	1126	1160	1230
	γ _{Pb}	0,850	0,878	0,904	0,928	0,949	0,967	0,982	0,992	0,998
	γ_{Sb}	0,998	0,992	0,982	0,967	0,949	0,928	0,904	0,879	0,856
	T_{pac}, K	887	894	902	911	923	937	957	984	1034
12.2	$T_{\mathfrak{I}\mathfrak{K}\mathcal{C}},K$	880	890	900	905	920	930	955	980	1030
15,5	γ _{Pb}	0,825	0,857	0,887	0,915	0,939	0,961	0,978	0,99	0,998
	γ_{Sb}	0,998	0,990	0,978	0,961	0,938	0,914	0,884	0,854	0,825
	T_{pac}, K	781	786	792	800	809	820	835	857	894
1 22	Тэкс, К	775	780	790	804	806	815	830	855	890
1,33	γ _{Pb}	0,801	0,836	0,870	0,901	0,929	0,954	0,974	0,988	0,997
	$\gamma_{\rm Sb}$	0,997	0,989	0,975	0,955	0,929	0,899	0,864	0,828	0,792

Рассчитанные и опытные значения γ_{Pb} , γ_{Ag} , T_{liq} Pb-Sb сплава для «*T-x*» диаграмм

Таблица 4.29

	1 4009	итанные знач	асния үрь, үдд,	$I_{liq}, y_{Pb} U-3U$	сплава для «	<i>1 -х»</i> диаграм.	IVI
<i>P</i> , Па	$x_{\rm Pb}$	0,90	0,95	0,96	0,97	0,99	0,9999
	T_{pac}, K	1225	1296	1319.5	1350.3	1464	1601
	$T_{ m экс}, K$	1230	1300	1315	1344	1460	1600
133	γ_{Pb}	0,998	1,0	1,0	1,0	1,0	1,0
	$\gamma_{\rm Sb}$	0,856	0,850	0,852	0,854	0,858	0,869
	y _{Pb} ·10 ⁻³	13,1	37,3	51,0	75,4	271,9	982,0
	T_{pac}, K	1034	1086	1103	1126	1216	1369
	$T_{\mathfrak{I}\mathfrak{K}\mathcal{C}}, K$	1030	1080	1100	1122	1212	1365
13,3	γ _{Pb}	0,998	0,999	1,0	1,0	1,0	1,0
	$\gamma_{\rm Sb}$	0,825	0,816	0,818	0,820	0,825	0,843
	$y_{\rm Pb} \cdot 10^{-3}$	4,6	13,7	18,9	28,9	126,6	970,0
	T_{pac}, K	894	932	946	963	1034	1196
	$T_{ m экс}, K$	890	930	940	960	1030	1192
1,33	γ_{Pb}	0,997	0,999	1,0	1,0	1,0	1,0
	γ_{Sb}	0,792	0,790	0,7895	0,789	0,788	0,817
	урь 10-3	1,55	4,68	6,59	10,11	50,8	940,0

Для фазовых диаграмм VLE может быть использовано правило рычага (правило отрезков) для прогнозирования количества вещества, остатков и возгонов при заданной температуре. Предполагая, что мольная доля Pb в сырье сплава $x_0 = 0.5$, соответствующая температура перегонки ~1300 К и давление 133 Па, по правилу «рычага» может быть построена линии связи AB на «T-x» диаграмме (рис. 4.17), где кривые жидкости и пара пересекаются в точке А и В, соответственно. Когда система достигает равновесия, составы A и B равняются $x_l u y_g$, соответственно. По правилу рычага можно получить:

$$\frac{n_l}{n_q} = \frac{x_o - y_g}{x_l - x_o} = \frac{|OB|}{|OA|} = \frac{0.5 - 0.037}{0.95 - 0.5} = \frac{0.463}{0.45}$$

где $n_l = 0,463$ и $n_g = 0,45-$ количество вещества в остатках и возгонах; |OB| и |OA|длина соответствующих отрезков на линии АВ. Общее количество молей вещества исходного сплава n, то $n = n_l + n_g$:

$$n_l = \frac{x_o - y_g}{x_l - y_g} n = \frac{|OB|}{|AB|} n = \frac{0.463}{0.913} n = 0.507n , n_g = \frac{x_l - x_o}{x_l - y_g} n = \frac{|OA|}{|AB|} n = \frac{0.45}{0.913} n = 0.493n.$$

Фазовые диаграммы «*P*-*x*» (рис. 4.18, табл. 4.30, 4.31) можно использовать для анализа компонентов получаемых продуктов в зависимости от температуры и давления в процессе вакуумной перегонки. Например, «*P-x*» кривые при 973 *K*, где давление изменяется в диапазоне 0,023–58,62 Па, указывают на то, что возгоны и остаток достигают высокой степени разделения: при P = 0.52 - 5.24 Па

содержание Sb в конденсате и, соответственно, Pb в остатке составляет 0,967–0,997. По мере дальнейшего снижения давления количество примесей в возгонах и остатках, соответственно свинца и сурьмы, возрастает. Полученные результаты дополняют ранее полученные данные из «*T-x*» диаграмм Pb–Sb сплава.

Таблица 4.30

					x_{Pb}				
Ι, Λ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
823	3,55	3,13	2,7	2,27	1,84	1,42	1,02	0,648	0,305
972	10.07	0 07	7,66/	6,44/	5,24/	4,06/	2,93/	1.96	0 883
075	10,07	0,07	7,5	6,3	5,0	4,0	2,85	1,00	0,005
923	25,48	22,49	19,44	16,37	13,33	10,35	7,48	4,78	2,27
072	59 67	51 74	44,73/	37,67/	30,68/	23,82/	17,22/	11.0	5 24
975	38,02	31,74	44,5	37,5	30,5	23,5	17,5	11,0	3,24
1023	124,3	109,8	95,06	80,24	65,49	51,07	37,12	23,85	11,56
1072	245 8	217.2	188/	158,7/	129,5/	101/	73,42/	47 10	22.0
1075	243,8	217,2	185	155	125	100	75	47,19	22,9

Рассчитанные/опытные значения *P* (Па) сплава Pb-Sb для *x*_lв «*P-x*» диаграммах

Таблица 4.31

Рассчитанные/о	пытные значения І	P_{gas}, γ_{Sb} ,	урь сплав	а Pb-Sb для	$\langle P-x \rangle$	диаграмм	

Т, К	x_{Pb}	0,9	0,99	0,999	0,9999
	γsb	0,787	0,743	0,738	0,738
872		0.054	-1,076/	-2,021/	-2,681/
075	<i>logr</i> _g , [11a]	-0,034	-1,06	-2,0	-2,63
	у _{Рb} 10 ⁻³	1,278	14,82	132	603
	$\gamma_{ m Sb}$	0,812	0,773	0,769	0,768
073		0.726	-0,282/	-1,167/	-1,638/
915	<i>logr</i> _g , [11a]	0,720	-0,27	-1,15	-1,65
	у _{Рb} ·10 ⁻³	2,972	33,39	259	765
	$\gamma_{ m Sb}$	0,832	0,797	0,794	0,793
1072		1 26	0,367/	-0,437/	-0,767/
1075	$log P_g$, [11a]	1,50	0,35	-0,43	-0,77
	урь 10-3	5,855	63,46	407	873

Термодинамические параметры Pb–Sb сплава для диапазона исследованных температур определили по уравнению (3.7) (табл. 4.32, рис. 4.19). Молярная избыточная энергия Гиббса G_m^E для границы раздела «жидкость–газ» смеси *i-j* характеризует величину удерживания вещества в поверхностном слое при фазовом переходе, которая существенно зависит от состава Pb–Sbсплава и температуры процесса. Энтальпия поверхностного слоя или избыточная внутренняя энергия (H^E_m) складывается из энергии Гиббса и теплоты образования поверхности (TS^E_m), где S^E_m –энтропия, представляющая собой скрытую теплоту образования единицы

площади поверхности (связанная энергия) в необратимом изотермическом процессе при температуре T. Отрицательные значения H^{E}_{m} свидетельствуют об экзотермическом характере процесса дистилляции компонентов Pb–Sbсплава.

Таблица 4.32

	Рассчитанные значения <i>G</i> ^{<i>E</i>} сплава Pb-Sb										
	$-G_m^E$, Дж/моль										
T,K		ХРь									
	0,1	0,2	0	0,4	0,5	0,6	0,7	0,8	0,9		
823	147,85	260,19	346,33	401,46	424,23	413,21	366,89	283,71	161,99		
873	147,22	258,84	344,24	398,71	420,97	409,68	363,44	280,79	160,18		
923	146,67	257,64	342,40	396,28	418,08	406,55	360,38	278,20	158,58		
973	146,18	256,57	340,75	394,11	415,50	403,77	357,66	275,90	157,15		
1023	145,74	255,61	339,28	392,16	413,20	401,27	355,22	273,84	155,86		
1073	145,34	254,76	337,95	390,41	411,12	399,02	353,03	271,99	154,73		
$-\mathbf{H}_{m}^{E},$	155.07	277.8	373 18	137 27	166 72	150 10	/11.81	321.60	185 54		
Дж/моль	155,97	277,0	575,40	437,27	400,72	439,19	411,01	521,09	165,54		
<i>S</i> ^{<i>E</i>} , Дж∕моль [.] К	0,0100	0,0217	0,0334	0,0440	0,0523	0,0565	0,0552	0,0467	0,0290		

Рис. 4.19. Зависимость " $_{\Lambda}G - T$ " для сплава Pb-Sb при $x_{\rm ph}$: 0,1–0,9 (1–9)

Относительно невысокие значения молярной избыточной энергии Гиббса – $G_m^E \le 0,42$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов *i*–*j* Pb–Sbсплава в жидком состоянии, э-в: – ($\varepsilon_{ij} - \varepsilon_{jj}$) = – 0,012; –($\varepsilon_{ji} - \varepsilon_{ii}$) = 0,014 [106].

4.2. Влияние параметров вакуумной дистилляции на селективное выделение компонентов тройного Sb–Pb–Sn сплава

Для тройного сплава Sb-Pb-Sn коэффициенты активности любого компонента можно рассчитать с помощью уравнения (2.25), в котором используют только бинарные параметры трех компонентов, входящих в двоичные файлы (табл. 4.33). Чтобы проверить адекватность результатов, полученных расчетным путем, подставили параметры Вильсона для компонентов двоичной системы (табл. 4.34) в уравнение (2.25), а затем по уравнению (2.26) определили долевую свободную энергию Гиббса для Pb, Sb и Sn в жидких Sb-Pb-Sn расплавах.

Таблица 4.33

Jilu	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$										
; ; offer		χ^{∞}/χ^{0}	∞ / ∞			B*			Z**		
<i>i—j</i> сплав	Ι, Λ	Y _{Pb} /Ys	n/YSb	Pb-Sb	Sb-Pb	Sn-Sb	Sb-Sn	Pb	Sn	Sb	
Pb/Sn-Sb	1300	1,1/0,41	11/1,1	0,951	1,099	1,109	1,0937	8,91	6,551	6,969	
Металл	-A***	<i>—B</i>	С	D		I	$V_m = f(T) ,$	см3/мо	ЛЬ		
Pb	10130	0,985	—	13,28		19,4	11+1,24	$10^{-4}(T -$	600)]		
Sn	15500	_	—	10,355	$17,0[1+0,87\cdot10^{-4}(T-505)]$						
Sb	6500	_	_	8,495		18,	8[1 + 1,3]	$0^{-4}(T-9)$	904)]		

Значения γ_i^{∞} , γ_j^{∞} , B_{ij} , B_{ji} , Z_i , Z_j , p_i^* , p_j^* , $V_{m(i,j)}$ компонентов сплавов Pb-Sb и Sn-Sb

* $B_{ij} = \exp\left[-\left(\frac{\varepsilon_{ij}-\varepsilon_{jj}}{kT}\right)\right], \ B_{ji} = \exp\left[-\left(\frac{\varepsilon_{ji}-\varepsilon_{ii}}{kT}\right)\right];$ **Z – координационное число жидких металлов *** $lg \ P^* = AT^{-1} + B \ lgT + CT + D$

Таблица 4.34

	Параметры Вильсона А _{i-j} для бинарных систем											
			$A_{i\text{-}j}$									
Система		T,K										
	873	1073	1273	1473	1673							
Pb-Sb	1,071	1,069	1,067	1,065	1,063							
Sb-Pb	0,934	0,935	0,937	0.939	0,941							
Sn-Sb	0,937	0,929	0,921	0,913	0,906							
Sb-Sn	1,067	1,077	1,086	1,095	1,104							
Pb-Sn	1,143	1,151	1,159	1,166	1,174							
Sn-Pb	0,875	0,869	0,863	0,857	0,852							

Показано (рис. 4.20), что наблюдается удовлетворительное соответствие между расчетными и экспериментальными данными ($S_i = 1,9$ %; $S_i^* = 0,1$ кДж./моль). По мере увеличения долей металлов в Sb-Pb-Sn сплаве величины

термодинамических параметров снижаются (табл. 4.35, рис. 4.20). Выявлены минимальные мольные доли компонентов сплава, соответствующие переходу от положительных значений энтальпии к отрицательным и, соответственно, от эндотермических к экзотермическим процессам в расплаве при дистилляции указанных металлов: $Pb \ge 0.15$; $Sb \ge 0.70$; $Sn \ge 0.75$.

Рис. 4.20. Зависимость свободной энергии Гиббса для свинца (*a*), сурьмы (*б*), олова (*в*) от температуры и содержания металлов в Pb-Sb-Sn сплаве при при мольных долях свинца: 0,15 (*1*); 0,125 (*2*); 0,1 (*3*); 0,05 (*4*), сурьмы: 0,7 (*5*); 0,5 (*6*); 0,3 (*7*); 0,125 (*8*), олова: 0,75 (*9*); 0,65 (*10*); 0,40 (*11*); 0,15 (*12*)

Таблица 4.35

Рассчитанные и опытные значения Д	$G(\kappa Дж/моль), \Delta I$	Н(Дж/моль).	$\Delta S(\Pi ж/K моль)$

i										
Состав		${\Delta}G_{ m Pb/Sb/Sn}$								
сплава			T,K	T,K						
Pb/Sb/Sn	873	1073	1273	1473	1673					
	•	Рассчитанн	ые значения		•					
15/70/15	13,8/2,6/13,8	16,9/3,2/17,0	20,1/3,8/20,1	23,3/4,4/23,3	26,4/5,0/26,4					
$-\Delta H_{\rm Pb/Sb/Sn}$,			1,33/1,56/-28,9		·					
$\Delta S_{\rm Pb/Sb/Sn}$,			15,8/3,0/15,8							
γPb/Sb/Sn		0,997-	-0,998/1,0/0,998	-0,996						
10/50/40	16,7/5,0/6,7	20,6/6,2/8,2	24,4/7,3/9,7	28,25/8,5/11,3	32,1/9,7/12,8					
$-\Delta H_{\rm Pb/Sb/Sn}$,		-	-19,2/-107,1/-7,	,7						
$\Delta S_{\rm Pb/Sb/Sn}$,			19,2/5,85/7,6							
γPb/Sb/Sn		0,996–0,9	995/1,0-0,999/0,	999–0,998						
5/30/65	22,2/8,7/3,1	27,3/10,8/3,9	32,4/12,8/4,6	37,5/14,8/5,3	42,6/16,8/6,0					
$-\Delta H_{\rm Pb/Sb/Sn}$,			-25,9/-77,3/-2,8	8						
$\Delta S_{\mathrm{Pb/Sb/Sn}},$			25,0/10,1/3,6							
γPb/Sb/Sn		0,994–0,9	92/0,999–0,998	/1,0–0,999						
12,5/12,5/75	15,1/15,1/2,1	18,6/18,6/2,6	22,1/22,0/3,0	25,6/25,5/3,5	29,0/29,0/4,0					
$-\Delta H_{\rm Pb/Sb/Sn}$,			-70,2/-46,6/48,5	5						
$\Delta S_{\mathrm{Pb/Sb/Sn}}$,			17,4/17,4/2,4							
γPb/Sb/Sn		0,994–0,9	92/0,999–0,998	/1,0–0,999						
		Опытные	значения							
12,5/12,5/75	14/14/1,8 16,5/16,5/2,2 21,5/21,3/2,5 23,4/23,6/3,1 28,0/28,0/3,7									
$-\Delta H_{\rm Pb/Sb/Sn}$,			-68,3/-44,7/46,2	2						
$\Delta S_{\rm Pb/Sb/Sn}$,			16,1/17,9/2,7							

Таблица 4.36

Содержание компонентов Pb-Sb-Sn сплавов в жидкой и газовой фазах

$T_{\rm pac}/T_{ m экc}, K$	Р, Па	x_{Pb}	$x_{\rm Sb}$	x _{Sn}	УSb	УРb	УSn		
298	101330	0,15	0,70	0,15	-	-	-		
1045,6/1040	133	0,1499				9,7·10 ⁻⁵	3,8.10-8		
900,7/910	13,3	> 0 1400	0,0001	~0,15	0,9999	$3,1.10^{-5}$	1,6.10-9		
791,1/800	1,33	>0,1499	> 0,1499	> 0,1499				0,98.10-5	6,5 [.] 10 ⁻¹¹
298	101330	0,10	0,50	0,40	-	-	-		
1070,7/1050	133	0,0999			0.0000	$1,07.10^{-4}$	$2,3.10^{-7}$		
919,2/910	13,3	0.0000	0,0001	~0,40	0,9999	3,4.10-5	9,3 [.] 10 ⁻⁹		
805,4/800	1,33	> 0,0999				$1,1.10^{-5}$	3,9.10-10		
298	101330	0,05	0,30	0,65	-	-	-		
1111,5/1100	133	0,0499				$1,1.10^{-4}$	1,3.10-6		
949,2/960	13,3	> 0.0400	0,0001	~0,65	0,9999	3,7.10-5	5,2.10-8		
828,3/840	1,33	> 0,0499				$1,2.10^{-5}$	2,1.10-9		
298	101330	0,1250	0,125	0,75	-	-	-		
1188,8/1180	133	0,1240	0,0010		0,9990	$1,05^{\cdot}10^{-3}$	$1,2.10^{-5}$		
1005\1000	13,3	0,1247	0,0003	~0,75	0,9997	3,4.10-4	$4,8.10^{-7}$		
787,1/780	1,33	0,1249	0,0001		0,9999	1.10-4	2.10-8		

По уравнению Вильсона с использованием данных для бинарных сплавов можно рассчитать равновесие «газ-жидкость» для тройной системы Pb-Sb-Sn путем подстановки соответствующих значений γ_{Pb} , γ_{Sb} , γ_{Sn} , P, P_{Pb}^* , P_{Sb}^* , P_{Sn}^* , при различных температурах в уравнениях (2.7)–(2.10) (табл. 4.36, рис. 4.21).

Рис. 4.21. Фазовая диаграмма Sb-Pb-Sn сплава (*a*) в жидкой (*x*) (*1*–5, *б*) и газовой (*y*) фазах (*6*, 7, *в*, *г*)

Из полученных результатов следует, что равновесная температура, соответствующая практически полному переходу сурьмы в возгоны (на 99,99 %) снижается с 1046–1189 до 787–828 *К* – при уменьшении давления 133–1,33 Па. Таким образом, достигается эффективное разделение сурьмы от свинца и олова, усиливающееся с понижением давления и, соответственно, температуры процесса.

Рассчитанные с помощью уравнения Вильсона значения удовлетворительно согласуются с экспериментальными данными. Причиной возможных ошибок при расчете могут быть используемые показатели для двойных систем, которые оказывают влияние на многокомпонентные системы, особенно асимметричные.

Кроме того, для многокомпонентных систем учитываются только бинарные взаимодействия между атомами, которыми в многокомпонентных системах пренебрегают, применяя уравнение Вильсона. С другой стороны, если имеет место сильное взаимодействие между разными атомами и учитываются физические свойства элементов, входящих в состав сплава, применимость уравнения Вильсона ограничена.

Таблица 4.37

Отклонения температур равновесия и мольной доли компонентов в возгонах	
для Pb-Sb-Sn системы	

divide the providence of the second									
Максимальное отклонение									
$\Delta \max T, K$	$\Delta max T, K$ $\Delta max YSb$ $\Delta max YPb$ $\Delta max YSn$								
≤61	0,0213	<0,001	<0,0001						
	Среднее о	тклонение							
δ <i>T</i> , <i>K</i>	$\delta T, K$ δy_{Sb} δy_{Pb} δy_{Sn}								
≤ 40	≤ 40 0,0101 <0,001 <0,0001								

Уравнение Вильсона можно использовать для расчета данных *VLE* трехкомпонентной системы с приемлемыми отклонениями, возникающими из-за массных потерь в ходе экспериментов и отличия экспериментальных условий от идеального состояния равновесия (табл. 4.37). Кроме того, принятые при расчетах упрощения также привносят некоторые неточности.

4.3. Кинетика испарения металлов из Sb-Pb-Sn сплава

Зависимости $\ln w(t) - (S/V)t$ (табл. 4.38) являются линейными (рис. 4.22).

Таблица 4.38

		50	10 511 (0,	<i>ee 0,10 0,00 mpn de</i>		10
	<i>t</i> 0	Macca	V^{-7} ,	w(<i>t</i>), %	(S/V)'t 10 ⁵ ,	$\ln w(t)$
Ι, Λ	ι, υ	сплава, г	M ³	Sb/Pb/ $\Delta w(t)$ ·10 ⁻³ Sn	сек/м	Sb/Pb/Sn
	0	80,0	105,88	12,50/12,50/75,00	0	-2,079/-2,079/ -0,2877
	1200	78,83	102,79	11,42/12,13/0,126	3,055	-2,169/ -2,109/ -0,2879
000	2400	77,75	99,97	10,44/11,77/0,252	6,167	-2,260/ -2,140/ -0,2880
823	3600	76,74	97,39	9,54/11,42/0,378	9,33	-2,350/ -2,170/ -0,2882
	4800	75,81	95,05	8,72/11,09/0,504	12,544	-2,440/ -2,199/ -0,2884
	6000	74,93	92,88	7,97/10,76/0,630	15,796	-2,529/ -2,229/ -0,2885

Экспериментальные и расчетные параметры возгонки сплава Sb-Pb-Sn (0.55-0.40-0 05) при лавлении 13 3 Па

Таблица 4.38 (окончание)

Т, К	<i>t</i> , c	Macca	V^{-7} ,	<i>w</i> (<i>t</i>), %	(S/V)'t'10 ⁵ ,	$\ln w(t)$
		сплава, г	M ³	Sb/Pb/ $\Delta w(t)$ ·10 ⁻³ Sn	сек/м	Sb/Pb/Sn
	1200	77,03	98,15	9,83/11,49/0,36	3,10	-2,319/-2,164/-2,2882
	2400	74,58	92,04	7,73/10,57/0,72	6,34	-2,56/-2,247/-2,2886
973	3600	72,55	87,17	6,08/9,72/1,08	9,68	-2,80/-2,331/-2,2891
	4800	70,86	83,24	4,79/8,93/1,44	13,11	-3,039/-2,416/-2,2896
	6000	69,43	80,01	3,76/8,21/1,80	16,61	-3,281/-2,500/-2,2901
	1200	74,59	92,05	7,73/10,57/0,72	3,17	-2,559/-2,247/-2,2886
	2400	70,86	83,24	4,79/8,93/1,44	6,55	-3,039/-2,416/-2,2896
1073	3600	68,24	77,39	2,96/7,55/2,16	10,07	-3,520/-2,584/-2,2906
	4800	66,34	73,36	1,83/6,38/2,88	13,68	-4,001/-2,752/-2,2915
	6000	64,94	70,51	1,13/5,40/3,60	17,32	-4,483/-2,919/-2,2925

Рис. 4.22. Зависимость $\ln w_{Me} - (S/V)t$ для Sb (*a*), Pb (*б*), Sn (*c*) в сплаве Sb-Pb-Sn (0,125-0,125-0,75) при давлении 13,3 Па и температуре, *K*: 823 (*1*); 973 (*2*); 1073 (*3*)

Процесс испарения металлов из Sb-Pb-Ag сплава при данных условиях эксперимента соответствует реакции первого порядка. Линейные зависимости получены при использовании метода наименьших квадратов (табл. 4.39).

Таблица 4.39

<i>T</i> , <i>K</i>	<i>P</i> , Па	Sb/Pb/Sn	Уравнение	R^2	$\pm_{\Delta} \ln w(t)$
	, í		$\ln w_{\rm Sb} = -2,849 \cdot 10^{-7} ({\rm S/V})t - 2,079$	0,999	0,0012
823			$\ln w_{\rm Pb} = -0.949 \cdot 10^{-7} (\rm S/V)t - 2.079$	0,998	0,0010
			$\ln w_{\rm Sn} = -5,318 \cdot 10^{-10} ({\rm S/V})t - 0,2877$	0,999	0,00010
			$\ln w_{\rm Sb} = -7,221 \cdot 10^{-7} ({\rm S/V})t - 2,092$	0,999	0,0010
973	13,3		$\ln w_{\rm Pb} = -2,561^{\cdot}10^{-7}({\rm S/V})t - 2,082$	0,999	0,0014
			$\ln w_{\rm Sn} = -1,442 \cdot 10^{-9} ({\rm S/V})t - 0,2877$	0,998	0,00011
			$\ln w_{\rm Sb} = -13,826 \cdot 10^{-7} ({\rm S/V})t - 2,110$	0,997	0,0011
		12,5/12,5/75	$\ln w_{\rm Pb} = -4,833 \cdot 10^{-7} (\rm S/V)t - 2,091$	0,998	0,0012
			$\ln w_{\rm Sn} = -2,777 \cdot 10^{-9} ({\rm S/V})t - 0,2877$	0,998	0,00013
	133 1,33		$\ln w_{\rm Sb} = -4,822 \cdot 10^{-7} (\rm S/V)t - 2,079$	0,998	0,0010
			$\ln w_{\rm Pb} = -1,864 \cdot 10^{-7} (\rm S/V)t - 2,079$	0,999	0,0013
			$\ln w_{\rm Sn} = -2,044 \cdot 10^{-9} ({\rm S/V})t - 0,2877$	0,998	0,0011
			$\ln w_{\rm Sb} = -39,667 \cdot 10^{-7} (\rm S/V)t - 2,079$	0,997	0,0012
			$\ln w_{\rm Pb} = -13,243 \cdot 10^{-7} ({\rm S/V})t - 2,079$	0,999	0,0010
1073			$\ln w_{\rm Sn} = -8,440^{-1}0^{-9}({\rm S/V})t - 0,2877$	0,998	0,0011
1075			$\ln w_{\rm Sb} = -18,614 \cdot 10^{-7} ({\rm S/V})t - 1,204$	0,999	0,0013
		30/5/65	$\ln w_{\rm Pb} = -2,797 \cdot 10^{-7} ({\rm S/V})t - 2,996$	0,998	0,0014
			$\ln w_{\rm Sn} = -2,171 \cdot 10^{-9} ({\rm S/V})t - 0,4308$	0,998	0,0013
			$\ln w_{\rm Sb} = -16,241 \cdot 10^{-7} (\rm S/V)t - 0,693$	0,997	0,0012
	13,3	50/10/40	$\ln w_{\rm Pb} = -3,476 \cdot 10^{-7} (\rm S/V)t - 2,303$	0,998	0,0011
			$\ln w_{\rm Sn} = -1,392 \cdot 10^{-9} ({\rm S/V})t - 0,9163$	0,998	0,0014
			$\ln w_{\rm Sb} = -10,877 \cdot 10^{-7} ({\rm S/V})t - 0,357$	0,999	0,0014
		70/15/15	$\ln w_{\rm Pb} = -2,449 \cdot 10^{-7} (\rm S/V)t - 1,897$	0,998	0,0014
			$\ln w_{\rm Sn} = -0,680^{\cdot}10^{-9}({\rm S/V})t - 1,8971$	0,999	0,0012

Кинетические уравнения возгонки Sb-Pb-Sn сплавов при различных параметрах

Константа испарения металлов k_{Me} определяется из наклона линейной зависимости $\ln w(t) - (S/V)t$, которую также можно рассматривать как коэффициент общего массопереноса. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава зависят от температуры, давления и химического состава сплава.

При увеличении температуры 823–1073 *К* (*P* = 13,3 Па; Sb-Pb-Sn = 12,5-12,5-75) значения k_{Me} , м сек⁻¹ возрастают для сурьмы, свинца и олова: (2,849–13,826)·10⁻⁷, (0,949–4,833)·10⁻⁷, (0,532–2,777)·10⁻⁹, соответственно.

При понижении давления 133–1,33 Па (T = 1073 K; Sb-Pb-Sn = 12,5-12,5-75) значения k_{Me} , м сек⁻¹ возрастают для сурьмы, свинца, олова: (4,822–39,667)·10⁻⁷,

(1,864–13,243) 10⁻⁷, (2,044–8,440) 10⁻⁹, соответственно.

Зависимость k_{Me} , м'сек⁻¹ легко возгоняемых сурьмы и свинца от доли металлов в сплаве Sb-Pb-Sn носит экспоненциальный характер, достигая максимума k_{Sb} = 39,667·10⁻⁷ и k_{Pb} = 39,667·10⁻⁷ при x_{Sb} = 0,3 и x_{Pb} = 0,125. Для олова константы скорости испарения возрастают (0,680–2,777)·10⁻⁹ м·сек⁻¹ для x_{Sn} = 0,15–0,7.

Линейные зависимости $\ln K_{Me} - 1/T$, построенные с помощью регрессионного анализа экспериментальных данных, показывают, что влияние температуры на величину коэффициента скорости испарения металлов усиливается от сурьмы к олову (рис. 4.23). Величина кажущейся энергии активации испарения (*E*, кДж/моль) металлов получена с помощью уравнения (2.34): 46,39 Sb; 47,80 Pb; 48,56 Sn (табл. 4.40).

Таблица 4.40

Л	инетичес	кие константы	(м/с) и эн	пергия активац	ии Е (кдж/мо.	іь) su-ru-sii ci	Павов
Т, К	<i>P</i> , Па	Sb/Pb/Sn	γsb/Pb/Sn	k _{Sb/Pb/Sn}	$k_{\rm Sb/Pb/Sn}^V$	$k_{\rm Sb/Pb/Sn}^L$	Esb/Pb/Sn
				$2,849 \cdot 10^{-7}$	$2,159\cdot 10^{-4}$	2,853 10 ⁻⁷	
823				$0,949 \ 10^{-7}$	$1,095 \cdot 10^{-8}$	$-1,238 \cdot 10^{-8}$	
				5,318.10-10	$1,102 \cdot 10^{-12}$	$-1,10\cdot10^{-12}$	
			0,999	4,072.10-7	5,94.10-4	4,075.10-7	
873			0,994	$1,383 \cdot 10^{-7}$	5,083 [.] 10 ⁻⁸	-8,037.10-8-	46.20/
	12.2		1,0	$7,775 \cdot 10^{-10}$	$1,283 \cdot 10^{-11}$	$1,304 \cdot 10^{-11}$	40,39/
	15,5			7,221.10-7	3,277 [.] 10 ⁻³	7,223.10-7	47,80/
973				$2,561 \cdot 10^{-7}$	6,742 [.] 10 ⁻⁷	$4,130^{-1}10^{-7}$	46,50
		10 5/10 5/75		$1,442 \cdot 10^{-9}$	$8,118 \cdot 10^{-10}$	$-1,858\cdot10^{-9}$	
		12,3/12,3/73		13,826.10-7	0,013	13,827.10-7	
				4,833 [.] 10 ⁻⁷	5,439 [.] 10 ⁻⁶	5,304.10-7	
				$2,777 \cdot 10^{-9}$	$2,360.10^{-8}$	$3,147 \cdot 10^{-9}$	
			0,999	4,822.10-7	0,013	4,822.10-7	
	133		0,993	$1,864 \cdot 10^{-7}$	5,439 [.] 10 ⁻⁶	$1,930^{-1}10^{-7}$	
			1,0	$2,044 \cdot 10^{-9}$	$2,360.10^{-8}$	$2,238 \cdot 10^{-9}$	
				39,667 [.] 10 ⁻⁷	0,013	39,679 [.] 10 ⁻⁷	
	1,33			13,243.10-7	5,439 [.] 10 ⁻⁶	$1,751 \cdot 10^{-6}$	
1073				8,440 [.] 10 ⁻⁹	$2,360\cdot10^{-8}$	1,314.10-8	
1075			0,990	18,614 [.] 10 ⁻⁷	0,031	$1,862 \cdot 10^{-6}$	
		30/5/65	0,859	$2,797 \cdot 10^{-7}$	$1,822 \cdot 10^{-6}$	3,285.10-7	—
			1,0	$2,171\cdot10^{-9}$	2,045.10-8	$2,429\cdot10^{-9}$	
			0,990	16,241.10-7	0,052	16,241.10-7	
	13,3	50/10/40	0,861	3,476 [.] 10 ⁻⁷	3,773 [.] 10 ⁻⁶	3,829.10-7	
			1,0	$1,392 \cdot 10^{-9}$	$1,258 \cdot 10^{-8}$	$1,565^{-}10^{-9}$	
			0,989	$10,877 \cdot 10^{-7}$	0,073	$10,877 \cdot 10^{-7}$	
		70/15/15	0,862	$2,449 \cdot 10^{-7}$	5,666 [.] 10 ⁻⁶	$2,560 \cdot 10^{-7}$	
			1.0	$0.680 \cdot 10^{-9}$	4,719 [.] 10 ⁻⁹	$0.794 \cdot 10^{-9}$	

Кинетические константы (м/с) и энергия активации *E* (кДж/моль) Sb-Pb-Sn сплавов

Уровень E_{Me} в условиях данного эксперимента значительно ниже, чем значение энергии активации при испарении чистых компонентов сплава, кДж/моль: 160 Sb; 150 Pb; 169 Sn при T = 823-1073 K и P = 13,3 Па [110, 111].

Рис. 4.23. Зависимость ln K_{Me} – 1/Т для сурьмы (1), свинца (2), олова (3) в сплаве Sb-Pb-Sn (0,125-0,125-0,75) при давлении 13,3 Па

Это обусловлено меньшим влиянием температуры на возгонку растворенных компонентов сплава, чем для чистых металлов, и учитывается при определении общей скорости реакции испарения.

Для точного расчета скорости испарения, как правило, необходимо учитывать неидеальные условия в системе. Уравнение Вильсона базируется на концепции локального состава, который обеспечивает адекватное представление о неидеальных смесях [112]. В данном исследовании рассчитанные коэффициенты активности (γ) по уравнению Вильсона для Sb-Pb-Sn системы представлены в табл. 4.40. Активности для жидкой фазы показывают отрицательные отклонения от идеальности, которые проявляются в уменьшении энергии взаимодействия между полиметаллами ε_{ii} (Sb-Pb, Sb-Sn, Pb-Sn) по сравнению с монометаллами ε_{ii} (Sb-Sb, Pb-Pb, Sn-Sn). Компоненты из состава Sb-Pb-Sn сплава обладают меньшими значениями давления насыщенных паров по отношению к чистым металлам, что приводит к необходимости дополнительного повышения температуры или снижения давления в системе при испарении сплавов.

Ранее упоминалось, что k_{Me} можно определить экспериментально по

изменению концентрации металла со временем переработки. С другой стороны, k_{Me}^{V} можно рассчитать для заданной температуры, химического состава расплава и термодинамических параметров, определенных по уравнению (2.33). Поэтому коэффициент массопереноса в жидкой фазе k_{Me}^{L} можно рассчитать по уравнению (2.32) (табл. 4.40). Показано, что значение общего коэффициента массопереноса k_{Me} меньше, чем коэффициент скорости испарения k_{Pb}^{V} при тех же условиях (за исключением свинца и олова при высоком давлении, низких температуре и содержании в сплаве). Кроме того, значения общего коэффициента массопереноса k_{Me} сопоставимы с коэффициентами массопереноса в жидкой фазе k_{Me}^{L} (кроме олова при низких температурах). Таким образом, скорость испарения легко возгоняемых сурьмы и свинца из Sb-Pb-Sn сплава, в основном, контролируется массопереносом в жидкой фазе при данных условиях эксперимента

Выявленные значения констант скорости возгонки компонентов сплавов Sb-Pb-Sn позволили определить основные параметры технологического оборудования, необходимого для осуществления процесса последовательного разделения Sb, Рь и Sn, например из сплава Sb-Pb-Sn состава, мол.% / мас.%: 12,5/11,7 – 12,5/19,9 -75/68.4 с плотностью $\rho = 8.03$ г/см³. Поскольку экспериментальные данные были получены при значении $S/V = 0.007 \text{ м}^{-1}$ для площади и глубины расплава 1 м² и 0,007 м, соответственно, объем расплава составит 0,007 м³ с массой 56,2 кг (6,6 кг Sb; 11,2 кг Pb; 38,4 кг Sn). За промежуток времени 1 час при *T* = 1073 *K* и *P* = 13,3 Па с 1 м² расплава (m = 56,2 кг; h = 0,007 м) в течение часа можно извлечь ~99,9 % (6,6 кг) сурьмы; 42,2 % (4,7 кг) свинца и 0,26 % (0,1 кг) олова. Для переработки 1 т исходного материала с площадью расплава ~18 м² потребуется ~1 час для удаления сурьмы и ~2,4 час для отгонки свинца; потери олова составят ~0,6 % от исходного количества в сплаве. При рабочей площади расплава 1,82 м² индукционной электропечи СКБ-6087 потребуется ~24 час для отгонки примесей из 1 т исходного сплава. Для увеличения производительности оборудования можно увеличить температуру возгонки, например, до 1373 К, тогда для отгонки сурьмы и свинца из 1 т исходного Sb-Pb-Sn сплава потребуется 6 час работы печи СКБ-6087; потери олова составят ~2 % от исходного количества в сплаве.

4.4. Выводы

1. Для бинарных сплавов Pb-Sb/Pb-Sn/Sb-Sn в интервалах температур 823– 1073 *К* рассчитаны давления насыщенного пара (p^* , Па) для Pb/Sb/Sn (0,01– 7,15)/(3,95–273,66)/(3,32·10⁻⁹–8,12·10⁻⁵). Высокие значения коэффициентов разделения log $\beta_{\text{Sb/Pb}} = 1,5-2,59$; log $\beta_{\text{Pb/Sn}} = 4,87-6,75$; log $\beta_{\text{Sb/Sn}} = 6,26-9,44$ создают предпосылки для селективного выделения вначале сурьмы, а затем и свинца.

2. В интервалах температур 823–1073 *К* рассчитаны коэффициенты активности с отрицательными ($\gamma_{Me} \le 1$) и положительными ($\gamma_{Me} \ge 1$) отклонениями от идеальности при содержании компонентов $x_{Me} = 0,01-0,99$ мол. доля в бинарных сплавах.

3. Анализ «*T*–*х*» диаграмм бинарных сплавов показывает, что содержание менее летучего компонента в газовой фазе (y_{Me} , мол. доля) возрастает при увеличении его количества в сплаве ($x_{Me} = 0,99-0,9999$ мол. доля) и росте равновесной температуры «расплав–газ» (T_{liq}) при повышении давления (1,33/13,3/133 Па), например: в системе Pb–Sb y_{Pb} ·10⁻³ = 50,8–940/126,6–970/271,9–982 при T_{liq} = 1034–1196/1216–1369/1464–1601 *K*.

4. Анализ «*P*–*x*» диаграмм показывает, что содержание менее летучего компонента в газовой фазе (y_{Me} , мол. доля) возрастает при увеличении его содержания в сплаве ($x_{Me} = 0,99-0,9999$ мол. доля) и снижении давления газовой фазы (P_g) при фиксированной температуре 873/973/1073 *К*.

5. Определены термодинамические параметры систем Pb-Sb/Pb–Sn/Sb-Sn в диапазонах исследованных температур 873–1073 *K*, для поверхностного слоя при фазовом переходе «жидкость–газ», зависящие от состава сплавов и температуры процесса: молярная избыточная энергия Гиббса $-G_m^E = 145,3-424,2/-(179,6-714,9)/743,7-2096$ Дж/моль. Невысокие значения энергии Гиббса $-G_m^E \leq 2,1$ кДж/моль в расплаве обусловлены низкими величинами межатомного взаимодействия компонентов сплавов.

134

6. Анализ диаграмм тройного сплава Sb-Pb-Sn переменного состава показывает, что содержание трудно возгоняемых свинца и олова в составе конденсата сурьмы ($y_{\text{Sb}} > 0,9999$ мол. доля) снижается с уменьшением исходного содержания металлов (x_{Me} , мол. доля) в сплаве ($x_{\text{Pb}} = 0,15-0,05$, $x_{\text{Sn}} = 0,75-0,15$) и равновесной температуры при падении давления (133/13,3/1,33 Па).

7. Рассчитаны термодинамические параметры процесса испарения компонентов сплава Pb-Sb-Sn состава, например 0,125-0,125-0,75 при $T = 873-1673 \ K$: $-\Delta G_{Pb}$, кДж/моль = 15,1–29,0; $-\Delta G_{Sb} = 15,1–29,0$; $-\Delta G_{Sn} = 2,1–4,0$.

8. Процесс испарения металлов из Sb-Pb-Sn сплава в диапазоне температур 823–1073 *К* соответствует реакции первого порядка, например, для $x_{Sb/Pb/Sn} = 0,125/0,125/0,75$ при T = 973 *К* и P = 13,3 Па $\ln w_{Sb} = -7,221 \cdot 10^{-7}$ (S/V)t - 2,092; $\ln w_{Pb} = -2,561 \cdot 10^{-7}$ (S/V)t - 2,082; $\ln w_{Sn} = -1,442 \cdot 10^{-9}$ (S/V)t - 0,2877.

9. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава зависят от температуры, давления и химического состава сплава, например, в диапазоне 823–1073 *К* (*P* = 13,3 Па; $x_{Sb/Pb/Sn} = 0,125/0,125/0,75$) значения k_{Me} , м сек⁻¹ возрастают для Sb, Pb, Sn: (2,85–13,83)·10⁻⁷, (0,95–4,83)·10⁻⁷, (5,32–27,77)·10⁻¹⁰, соответственно.

10. Линейные зависимости $\ln k_{Me}$ -1/Т показывают, что влияние температуры на величину коэффициента скорости испарения металлов усиливается от Sb к Sn: $tg\alpha_{Sb/Pb/Sn} = -0,5482/-0,5675/-0,5758$. Величина кажущейся энергии активации испарения (*E*, кДж/моль) металлов составила: 46,39 Sb; 47,80 Pb; 48,56 Sn.

11. В зависимости от необходимой производительности технологического оборудования, а также заданного состава продуктов возгонки могут быть подобраны значения температуры и давления процесса вакуумной дистилляции полиметаллических сплавов.

Глава 5. Опыт укрупненно-лабораторной переработки

вакуумной дистилляцией свинецсодержащих промпродуктов

5.1. Zn-Pb-Аg серебристая пена (СП)

Для отгонки цинка образец СП (табл. 5.1, № 1) засыпали в кварцевую кювету и включали нагрев. Налет возгонов на стенках пробирки появился при $t \approx 550$ °C и P = 0,1 мм рт. ст. После чего через 0,5 час температура возросла до t = 750 °C. Давление в интервале t = 700-750 °C увеличилось до P = 2 мм рт. ст., что связано с окончанием возгона цинка и началом выделения в газовую фазу элементов

Таблица 5.1

		1 ' '			1			
N⁰	Материал, среда	т, г	Продукт	т, г / %	t, °C	Р, мм рт. ст	τ, час	Извлечено из материала, %
1	СП	388,2	Возгоны Остаток	35,9/9,3 352,3/90,7	805	0,1	2	57,9 Zn; 0,007 Pb; 0,0004 Ag
2	СП	81,7	Возгоны Остаток	29,3/35,9 52,4/64,1	1000	0,008	3,5	99,59 Zn; 25,3 Pb; 0,35 Ag
3	СП	90,7	Σ возгоны Остаток	89,7/98,9 1,0/1,1	1050	0,009	12	> 99,99 Zn, Pb; 99,14 Ag
4	СП	65,8	Σ возгоны Остаток	65,5/99,6 0,3/0,4	1200	0,006	8	> 99,99 Zn, Pb, Ag
5	СП	264,5	Возгоны Остаток	254,2/96,1 10,3/3,9	1000	0,009	42	> 99,99 Zn, Pb; 27,7 Ag
6	СП + Ni-фольга	311,5	Zn-возг. Рb-возг. Ni-сплав Остаток	35,2/11,3 260,3/83,5 3,0/1,0 13,0/4,2	1050	1,5	11	99,97 Zn; 98,4 Pb; 38,49 Ag
7	C∏ + Ar	1134	Рb-сплав СПЛ	479/42,2 655/57,8	700	760	2	42,2 Pb
8	СПЛ	272,4	Возгоны Остаток	256,8/94,3 15,6/5,7	1000	0,010	24	99,96 Zn; 99,9 Pb; 39,74 Ag
9	СП	250,3	Zn-возг. Рb-возг. Остаток	32,0/12,8 214,3/85,6 4,0/1,6	1050	1,0	12	99,99 Zn; 99,98 Pb; 21,9 Ag

Параметры процессов разделения компонентов интерметаллидов

примесей, а затем в течении $\tau = 5-10$ мин вернулось к прежним значениям P = 0,1 мм рт. ст. Через час температура увеличилась до 805 °С при неизменном давлении. Общая продолжительность процесса при $t \ge 550$ °С составила 2 час. За это время

получены кубовый остаток и возгоны: 352,36 г (90,76 %) и 35,88 г (9,24 %) (табл.

5.2).

Таблица 5.2

	Состав продуктов (%) разделения компонентов интерметаллидов							
No	Продукт	Zn	Pb	Ag	Au	Cu	Bi	Fe
1	Возгоны	99,85	0,14	<0,0002	<0,0001	<0,0002	<0,003	0,002
1	Остаток	7,39	86,57	4,75	<0,0001	0,243	0,52	0,4
C	Возгоны	44,27	55,41	0,042	<0,0001	<0,0002	<0,003	<0,002
Z	Остаток	0,1	91,537	6,72	0,000156	0,344	0,733	0,566
	Σ возгоны	16,12	79,45	4,31	<0,0001	<0,0001	0,33	<0,0001
	Остаток	0,034	0,2	3,345	2,516	19,977	0,017	59.423
	Zn-возгоны	15,694	83,61	0,019	<0,0002	0,002	0,331	0,218
3	Рb-возг.(1)	2,84	86,16	0,045	<0,0002	0,031	0,334	6,979
	Рb-возг.(2)	0,428	87,51	0,124	<0,0002	0,023	0,692	7,344
	Ад-возг.(1)	0,17	5,32	50,48	0,0238	0,105	0,006	29,058
	Ag-возг. (2)	0,042	0,15	67,443	0,0185	0,1493	<0,003	21,193
	Σ возгоны	16,02	78,92	4,327	<0,0001	0,219	0,47	0,0005
	Остаток	0,023	0,17	0,0325	1,15	0,467	0,01	84,503
4	Рb-возг.(1)	1,717	97,67	0,0085	<0,0001	0,003	0,48	0,036
	Рb-возг.(2)	0,589	90,99	1,259	<0,0001	0,027	0,53	4,451
	Ag-возгоны	0,135	1,43	92,1351	<0,0001	1,175	<0,03	0,471
5	Возгоны	11,3	87,32	0,128	<0,0001	0,004	0,49	0,005
3	Остаток	0,014	0,188	79,76	0,4582	6,75	0,047	9,93
	Zn-возгоны	99,825	0,026	0,0121	<0,0008	0,0004	<0,04	0,003
6	Рb-возгоны	<0,0002	99,33	0,1046	0,00011	0,005	0,44	0,007
0	Ni-сплав	0,267	4,96	26,6883	0,04404	1,086	0,124	4,41
	Остаток	0,025	28,889	57,1594	0,2615	4,53	0,493	6,494
7	Рb-сплав	0,68	98,63	0,056	<0,0001	<0,0002	0,52	0,002
/	СПЛ	16,56	76,39	6,254	<0,0002	0,404	0,44	0,577
	Σ возгоны	12,97	84,31	2,72	0,0149	<0,0001	0,43	0,04
	Остаток	0,0915	1,4541	67,968	0,052	7,27	0,432	15,605
	Zn-возг.(1)	83,94	13,99	0,1957	0,00046	0,014	0,117	<0,002
8	Zn-возг.(2)	28,56	65,797	0,0536	0,00015	0,009	0,091	<0,002
	Рb-возг.(1)	5,819	82,969	0,0552	0,00014	0,036	0,091	6,859
	Рb-возг.(2)	1,286	80,69	0,6582	0,00021	0,136	0,365	9,114
	Ag-возгоны	0,487	4,645	35,1875	0,0026	0,244	<0,03	46,03
	Zn-возгоны	99,8	0,14	0,006	<0,0001	0,0006	<0,0004	<0,0001
9	Рb-возгоны	0,163	99,071	0,069	0,0005	<0,0001	0,477	< 0,0001
	Остаток	0,007	0,4655	79,681	0,037	6,34	0,01	10,78

Coorer moore (0/)

Количество металлов, перешедшее из исходного образца СП в состав возгонов, составило, %: 57,89 Zn; 0,007 Pb; 0,0004 Ag. Установлено, что возгоны по составу являются цинковым продуктом, поскольку температура не превышала 805 °С, однако степень извлечения металла из состава СП низкая, вследствие недостаточной продолжительности процесса.

Для выявления оптимальной температуры и времени отгонки цинка взяли образец СП (табл. 5.1, № 2) г в кварцевой пробирке, который выдерживали при t = 1000 °C и $P = 8 \cdot 10^{-3}$ мм рт. ст. в течении $\tau = 3,5$ час. Получены кубовый остаток и возгоны: 52,41 г (64,12 %) и 29,33 г (35,88 %). Количество металлов, перешедшее из исходного образца СП в состав возгонов, составило, %: 99,59 Zn; 25,3 Pb; 0,35 Ag. Остальные металлы практически не возгоняются. Показано, что цинк количественно перешел в возгоны, свинец – частично, вместе с небольшим (менее 1 %) количеством серебра. На поверхности плава образовались дроссы в виде корочки в количестве ~2 % от массы плава, содержащие ~15 % железа. Вероятно, что для увеличения степени отгонки свинца необходимо поднять температуру и продолжительность процесса вакуумной дистилляции СП.

В следующем опыте с образцом (табл. 5.1, № 3) в кварцевой пробирке при *t* = 1050 °C и $P = 9 \cdot 10^{-3}$ мм рт. ст. увеличили продолжительность процесса до 12 час. Получены кубовый остаток и возгоны: 1,0 г (1,1 %) и 89,72 г (98,9 %). Количество металлов, перешедшее из исходного образца СП в состав возгонов, составило, %: > 99,99 Zn, Pb; 99,14 Ag. Полученные возгоны металлов по мере остывания локально конденсировались на разных участках внутренней и внешней трубок автоклава, что дало возможность идентифицировать их как металлические конденсаты с индексом (1) и (2), соответственно. Установлено, что за 12 час при t = 1050 °Cисходный СП на ~99 % перешел в состав возгонов вместе с цинком, свинцом и серебром. Кубовый остаток, в основном, составили, %: 59,4 Fe; 19,98 Cu; 2,52 Au. Индивидуальный Zn-конденсат не был получен, поскольку цинк возгонялся и конденсировался совместно со свинцом в соотношении Zn/Pb = 15,7/83,6, близком к исходному в СП (15,9/78,6). По мере возгонки свинца при переходе от Рьконденсата(1) к Pb-конденсату(2) при стабильно высоком количестве свинца (86,2-87,5 % Pb) снизилось содержание цинка (2,8–0,4 % Zn) и увеличилось содержание серебра (0,045-0,124 % Ag), поскольку при уменьшении концентрации Pb < 30 масс. % давление паров свинца и серебра становится соизмеримым и возрастает отгонка последнего.

Пробу СП (табл. 5.1, № 4) в кварцевой пробирке подвергли дистилляции при более высокой температуре ($t = 1200 \,^{\circ}\text{C}$, $P = 6.5 \,^{\circ}10^{-3}$ мм рт. ст.), но с меньшей продолжительностью ($\tau = 8$ час). Получены кубовый остаток и возгоны: 0,283 г (0,43 %) и 65,487 г (99,57 %). Количество металлов, перешедшее из исходного образца СП в состав возгонов, составило, %: > 99,99 Zn, Pb, Ag. Итак, за 8 час при t = 1200^оС исходный СП на ~99,6 % перешел в состав возгонов вместе с цинком, свинцом и серебром. Кубовый остаток, в основном, составили, %: 84,4 Fe; 1,15 Au; 6,0 Cu; 2,4 Ni. Возгоны цинка рассеялись по внутреннему объему контейнера (поз. 2, рис. 2.2), вследствие чего не был локализован Zn-конденсат в качестве самостоятельного продукта. Выделены два свинцовых конденсата, более богатых по металлу (91–97,7 % Pb), чем при температуре 1050 °С (86,2–87,5 % Pb); в Phконденсате (2) отмечено достаточно высокое содержание серебра (1,26 % Ag), по сравнению с предыдущим опытом (0,12 % Ag). Более высокая температура и количественная возгонка серебра позволили получить Ад-конденсат, по составу соответствующий черновому серебру (~ 92 % Ag).

Для образца СП (табл. 5.1, № 5) вновь вернулись к температуре 1000 °С и давлению $P = 9 \cdot 10^{-3}$ мм рт. ст., но продолжительность процесса увеличили до 42 час. Получены кубовый остаток и возгоны: 10,33 г (3,9 %) и 253,55 г (95,87 %). Состав полученных продуктов представлен в табл. 6.2. Количество металлов, перешедшее из исходного образца СП в состав возгонов, составило, %: > 99,99 Zn, Pb; 27,7 Ag. В кубовом остатке присутствуют серебро, золото, медь, железо, содержание которых значительно возросло, по сравнению с СП. На внутренней поверхности контейнера (поз. 2, рис. 2.2) обнаружены участки с конденсированным серебром, где концентрация металла составляет 71,53–79,04 % Аg. Несмотря на увеличение продолжительности процесса до 42 час, по сравнению с 12 час (табл. 6.1, № 4), нежелательная возгонка серебра уменьшилась с 99,14 до 27,7 %, очевидно за счет снижения температуры процесса до 1000 °С.

На экспериментальной установке с тремя конденсаторами провели процесс дистилляции пробы СП (табл. 5.1, № 6) в графитовом тигле ($S = 12 \text{ см}^2$; $V = 108 \text{ см}^3$) для предотвращения образования оксидов в кубовом остатке, при низком вакууме

139

200 Па (1,5 мм рт. ст.) и температуре 1050 °С в течение 11 час. Графитовый тигель по верхней наружной кромке был проклеен никелевой фольгой для предотвращения контакта со стенкой металлического стакана, в который он был установлен. Получены кубовый остаток 13,02 г (4,18 %); Zn-конденсат 35,16 г (11,29 %); Рьконденсат 263,32 г (84,53 %) и Ni-сплав 3,05 г (0,38 %), образованный фольгой. Состав полученных продуктов представлен в табл. 5.2. Цинковый продукт сконцентрировался в конденсаторе (3), свинцовый – в конденсаторе (1), никелевый сплав – в нижней части металлического стакана для графитового тигля, кубовый остаток – в графитовом тигле. Количество металлов, перешедшее из исходного образца СП в состав возгонов, составило, %: 99,97 Zn; 98,4 Pb; 38,49 Ag. Использование в конструкции автоклава конденсаторов, расположенных в температурной зоне возгонки соответствующих металлов, позволило не только локализовать и сконцентрировать цинк и свинец, но и моделировать непрерывный процесс вакуумной дистилляции серебристой пены.

Условия (табл. 5.1, № 7) и результаты (табл. 6.2) опыта по ликвации свинца из состава СП позволили выявить элементный состав полученных продуктов. Свинцовый сплав содержит ~99 % Pb, немного цинка (0,68 % Zn) и серебра (0,056 % Ag). Уменьшение абсолютной массы свинца в серебристой пене ликвированной (СПЛ) снижает продолжительность вакуумной дистилляции металла, а значит и количество возгоняемого с ним серебра.

Навеску СПЛ (табл. 5.1, № 8) выдерживали при температуре 1000 °С и вакууме 0,01 мм рт. ст. в течение 24 час. Получены кубовый остаток и возгоны: 15,58 г (5,72 %) и 256,85 г (94,28 %). Состав полученных продуктов представлен в табл. 6.2. Количество металлов, перешедшее из СПЛ в состав возгонов, составило, %: 99,96 Zn; 99,9 Pb; 39,74 Ag. Выявлено несколько локальных участков конденсации возгоняемых металлов – цинка, свинца и серебра. Установлено, что за 24 час при t= 1000 °С исходный СПЛ на ~94 % перешел в состав возгонов вместе с цинком, свинцом и частью серебра. Кубовый остаток, в основном, составили, %: 67,97 Ag; 15,61 Fe; 7,27 Cu. По мере возгонки цинка (83,94–28,56 % Zn) в составе

140

конденсатов (1) и (2) увеличивается количество свинца (14–65,8 % Pb), а при отгонке последнего – растет содержание серебра (0,055–0,66 % Ag) в Pb-конденсатах (1) и (2). Индивидуальный Ag-конденсат получен в небольшом количестве (~ 1 г) с содержанием Ag > 35 %. Уменьшение соотношения Pb/Ag = 18,2–12,3 для ликвированной серебристой пены, по сравнению с исходной СП, снизило количество возгоняемого серебра (99,14–39,74 % Ag), при неизменно высокой степени дистилляции свинца (свыше 99,9 % Pb) и увеличении продолжительности процесса в два раза.

Расчет материального баланса процесса вакуумной дистилляции СП (табл. 5.1, № 9) при t = 1050 °С, P = 1 мм рт. ст., $\tau = 12$ час, осуществлен по результатам опыта на второй установке с горизонтально расположенным кварцевым стаканом. При обработке образца в графитовом тигле получены следующие продукты, %: 208,07 г (83,12 %) свинцовый конденсат; 31,64 г (12,64 %) цинковый конденсат; кубовый остаток 3,851 г (1,54 %) (табл. 5.2). Количество металлов, перешедшее из исходного образца СП в состав возгонов и рассчитанное по анализу кубового остатка, %: 99,99 Zn; 99,98 Pb; 21,9 Ag. Полученные данные удовлетворительно коррелируются с результатами опыта на установке с тремя конденсаторами (табл. 5.1, № 6) по составу цинкового и свинцового продуктов; различаются только величины степени возгонки серебра – в опыте № 9 она, практически, в два раза меньше. Итак, аппаратурное оформление процесса вакуумной дистилляции существенным образом влияет на состав получаемых продуктов и показатели процесса возгонки металлов из СП.

Для оценки скорости отгонки металлов из СП по формуле:

$$v = \Delta m / (\tau S), \, \Gamma / c M^2 c \qquad (2.35)$$

где $_{\Delta}m$ – изменение массы металла, г; τ – продолжительность отгонки, с; *S* – площадь диафрагмы (1,5 см²), использовали данные опыта № 2 с учетом следующих допущений:

площадь диафрагмы равняется площади зазора между тиглем и стенкой прибора;

– цинк отгоняется при разогреве системы до 800 °C в течение часа;

 поскольку скорость отгонки металлов зависит от давления их паров, которое уменьшается в ходе процесса, можно получить только среднюю величину скорости за данный промежуток времени.

Полученные по формуле (2.35) данные сравнили (табл. 5.3) с расчетными значениями скорости испарения вещества в вакууме с открытой поверхности в молекулярном режиме (уравнение Ленгмюра):

$$v = 7,75p_s(M_g/T)^{0.5}, \qquad (2.36)$$

где *p*_s – давление насыщенного пара металла при данной температуре, Па; *M*_g – молекулярная масса металла в паровой фазе; *T* – температура, К.

Таблица 5..3

Металл	<i>Т</i> , К	<i>p</i> _s ·10 ⁴ , Па	τ 10 ⁻³ , c	M_g	<i>v</i> ·10 ⁴ , г/см ² ·с	
					расчет	опыт
Цинк	1073	10	3,6	65,37	19,13	24,05
Свинец	1273	2	12,6	207,19	6,25	8,6
Серебро	1273	0,003	12,6	107,87	0,0068	0,0065

Скорость испарения металлов (*v*, г/см².с) из состава СП

Величины давления насыщенного пара компонентов, возгоняемых из состава серебристой пены, ниже показателей для чистых металлов. В итоге предложена принципиальная схема возможной переработки серебристой пены (рис. 5.1). Свинцовый конденсат, отогнанный вакуумной дистилляцией из ликвированной пены, очищают от ДМ по технологии получения серебристой пены. Итак:

– увеличение глубины вакуума в системе более 0,1 мм рт. ст. не приводит к существенным изменениям показателей процесса вакуумной дистилляции СП;

– ликвация серебристой пены с получением чернового свинца (~42 % от исходного количества Pb) и Pb-Zn-Ag-сплава (2) возможна в течение 2 час в атмосфере инертного газа (Ar) или азота, при атмосферном давлении и температуре 700 ± 10 °C; температура процесса слива свинца 380 ± 10 °C;

– количественная возгонка цинка с получением Pb-Ag-сплава происходит при температуре не более 800 °C в течение 1 часа;

– количественная возгонка свинца из Pb-Ag-сплава оптимальна при температуре не более 1000 °C;

Рис. 5.1. Принципиальная схема переработки серебристой пены

 выявленные значения скорости возгона металлов могут быть использованы при проектировании оборудования для вакуумной дистилляции серебристой.
 пены.

Однако, реализация технологии вакуумной дистилляции ликвированного свинца в промышленном масштабе на предприятиях УГМК нецелесообразна, ввиду наличия медного передела и возможности загрузки пены на конвертирование, что не приводит к снижению извлечения драгметаллов (99,37 % Ag; 99,77 % Au) и обусловливает отсутствие необходимости капитальных затрат в оборудование и технологию ликвации и вакуумной дистилляции. Перспективным является использование вакуумной отгонки применительно к получению олова.

143

5.1.1. Математическое моделирование вакуумной дистилляции

Теория математического моделирования и оптимизации представляет собой совокупность фундаментальных математических результатов и численных методов, ориентированных на нахождение и идентификацию наилучших вариантов из множества альтернатив и позволяющих избежать полного перебора и оценки возможных вариантов. Процесс оптимизации лежит в основе всей инженерной деятельности, направленной, с одной стороны, на проектирование новых более эффективных и менее дорогостоящих технических систем и, с другой стороны, на разработку методов повышения качества функционирования существующих систем [113].

Методом многомерного регрессионного анализа и компьютерным моделированием с использованием стандартных программных пакетов выведены регрессионные уравнения – полиномы второй степени, отражающие зависимость основных показателей (Y_i) от величины параметров (X_j) процессов селективной вакуумной дистилляции компонентов Pb-Zn-Ag сплава с целью их оптимизации и последующего использования при разработке систем для эффективного управления и автоматизации разработанной технологии извлечения цинка и свинца из состава серебристой пены (СП).

<u>Возгонка цинка</u>

Цель операции – достижение минимально возможного остаточного содержания цинка в остатке и свинца в конденсате, что соответствует максимальному значению коэффициента разделения цинка β_{Zn} (3.2).

Ранее проведенными исследованиями установлено, что на величину Y_1 = log β_{Zn} существенно влияют следующие технологические параметры: $X_1 = x_{Zn}/x_{Pb} = 0,111-2,333$ – отношение исходного содержания цинка и свинца в СП; $X_2 \cdot 10^{-3} = 0,873-1,573$ *K* – температура; $X_3 \cdot 10^{-1} = 0,133-13,3$ Па – давление; $X_4 \cdot 10^{-2} = 0,1-1,2$ мин продолжительность возгонки (табл. 5.4).

144
Таблица 5.4

X1	$X_2 \cdot 10^{-3}, K$	Х ₃ 10 ⁻¹ , Па	Х ₄ 10 ⁻² , мин	Y1
0,111				3,515
0,25				3,545
0,429	1.072			3,575
0,667	1,075			3,603
1,0				3,632
2,333				3,689
	0,873	1		4,331
	0,973			3,9
	1,073		0,6	3,575
	1,173			3,3
	1,273			3,051
	1,573			2,509
		0,133		1,012
		0,287		1,368
0,429		0,618		1,711
		1,33		2,048
		4,43		2,573
	1,073	13,3		3,052
			0,1	1,054
			0,2	2,187
		1	0,3	2,812
		1	0,4	3,217
			0,5	3,516
			0,7	3,821

Влияние параметров Х1-Х4 на коэффициент разделения цинка У1

Выразили полученные экспериментальные данные в виде полиномиальных функций (2D) в координатах " $Y_{1(i)}$ -(X_i)" (рис. 5.2). Критерием оценки адекватности полученных полиномиальных функций является величина достоверности аппроксимации $R_{1(i)}^2$.

$$\begin{split} Y_{1(1)} &= -\ 0,0441 X_1{}^2 + 0,1834 X_1 + 3,5005; \ R_{1(1)}{}^2 = 0,992 \\ Y_{1(2)} &= 2,0759 X_2{}^2 - 7,6416 X_2 + 9,3983; \ R_{1(2)}{}^2 = 0,999 \\ Y_{1(3)} &= -0,0214 X_3{}^2 + 0,4175 X_3 + 1,2706; \ R_{1(3)}{}^2 = 0,924 \\ Y_{1(4)} &= -8,9012 X_4{}^2 + 11,478 X_4 + 0,1021; \ R_{1(4)}{}^2 = 0,990. \end{split}$$

Затем, в режиме "Multivariate Regression" (пакет "Mathcad") последовательно представили в аналитической форме зависимость переменной Y_{1(i,j)}, как функции 3D двух одновременно изменяющихся параметров X_i, X_j:

$$Y_{1(i,j)} = Y_{3D} = f(X_i, X_j) = a_{oo} + a_{io}X_i + a_{oj}X_j + a_{ij}X_iX_j + b_{io}X_i^2 + b_{oj}X_j^2.$$

Для переменной $Y_{1(i,j)}$, в зависимости от параметров X_1 - X_4 существуют следующие функциональные зависимости 3D (рис. 6.3):

Рис. 5.2. Зависимость коэффициента разделения цинка от параметров процесса: x_{Zn}/x_{Pb} (*a*); температура (*б*); давление (*в*); продолжительность возгонки (*г*)

$$\begin{split} Y_{1(1,2)} &= f(X_1, X_2) = 11,196 - 8,033X_2 + 0,146X_1X_2 - 0,041X_1{}^2 + \\ &\quad + 2,270X_2{}^2; \ R_{1(1,2)}{}^2 = 0,9996; \\ Y_{1(1,3)} &= f(X_1, X_3) = 1,262 + 7,089X_1 + 0,345X_3 - 2,908X_1{}^2 - \\ &\quad - 0,023X_3{}^2; \ R_{1(1,3)}{}^2 = 0,4519; \\ Y_{1(1,4)} &= f(X_1, X_4) = 1,607 + 0,068X_1 + 11,390X_4 - 0,00435X_1{}^2 - \\ &\quad - 8,901X_4{}^2; \ R_{1(1,4)}{}^2 = 0,9928; \end{split}$$

Рис. 5.3. Зависимость величины функций 3D: $Y_{1(i,j)} = f(X_i, X_j)$, от значений параметров X_i, X_j : 1,2

$$\begin{split} Y_{1(2,3)} &= f(X_2, X_3) = 45,563 - 73,771X_2 + 0,317X_2X_3 + 31,410X_2{}^2 - \\ &\quad -0,023X_3{}^2; \ R_{1(2,3)}{}^2 = 0,3511; \\ Y_{1(2,4)} &= f(X_2, X_4) = 13,860 - 13,356X_2 + 10,628X_2X_4 + 1,813X_2{}^2 - \\ &\quad -8,901X_4{}^2; \ R_{1(2,4)}{}^2 = 0,9935; \\ Y_{1(3,4)} &= f(X_3, X_4) = 5,796 - 2,982 \ X_3 + 5,536X_3X_4 - 0,023X_3{}^2 - \\ &\quad -8,901X_4{}^2; \ R_{1(3,4)}{}^2 = 0,0930. \end{split}$$

Графики поверхностей в координатах " $Y_{1(i,j)}$ — $f(X_i,X_j)$ " по форме представляют собой гиперболические параболоиды, полученные перемещением параболы в трехмерном пространстве, описываемой функцией $Y_{1(i)} = f(X_i)$, по направляющей, соответствующей зависимости $Y_{1(j)} = f(X_j)$ (рис. 5.3).

Установлено, что максимумы $Y_{1(i)}$ для функций 2D зафиксированы при следующих значениях X_i: 1,782 (1); 1,789 (2); 9,755 (3); 0,564 (4), в соответствие с которыми по уравнениям $Y_{1(1-3,2-4)}$ рассчитаны максимумы сечений $Y_{1(i,j)}$ для функций 3D (табл. 5.5).

Таблица 5.5

$\Gamma(\mathbf{I},\mathbf{J}) = \Gamma(\mathbf{I},\mathbf{I},\mathbf{J}) \oplus \Gamma(\mathbf{I},\mathbf{I},\mathbf{J})$					
X_1	$X_2 \cdot 10^{-3}, K$	X ₃ ·10 ⁻¹ , Па	X4 ⁻ 10 ⁻² , мин	Y_1	
	1,789	-		2,425	
1,782		9,755	-	3,837	
	-	-	0,564	3,307	
	1 780	9,755	-	10,46	
-	1,709	-	0.564	3,661	
	-	9,755	0,304	12,90	

Координаты точек максимумов сечений (X_i, X_j) и соответствующие им значения $X_{1(i)} = f(X_i, X_j)$ функций 3D

Выявленные при анализе трехмерных графиков поверхностей $Y_{3D} = f(X_i, X_j)$ закономерности вполне соответствуют физической модели процесса возгонки металлов из сплава, а именно: при уменьшении исходного содержания трудно возгоняемого компонента (свинца) и температуры, при возрастании давления и продолжительности процесса увеличивается коэффициент разделения цинка.

Зависимость величины переменной $Y_{1(i,j,p)}$ от значений трех параметров X_i , X_j , X_p , приведенных в табл. 5.4, можно представить в виде полиномиальных уравнений 4D:

$$\begin{split} Y_{1(i,j,p)} &= Y_{4D} = f(X_i, X_j, X_p) = a_{000} + a_{i00} X_i + a_{0j0} X_j + a_{00p} X_p + \\ &\quad + a_{ij0} X_i X_j + a_{i0p} X_i X_p + a_{0jp} X_i X_p + b_{i00} X_i^2 + b_{0j0} X_j^2 + b_{00p} X_p^2 \end{split}$$

Для значений $Y_{1(i,j,p)} = Y_{4D} = f(X_i,X_j,X_p)$ получили следующие полиномиальные уравнения (4D):

$$\begin{split} Y_{1(1,2,3)} &= 37,501 - 59,147X_2 + 4,913X_1X_2 + 0,284X_2X_3 - 2,157X_1{}^2 + \\ &+ 24,505X_2{}^2 - 0,024X_3{}^2; R_{1(1,2,3)}{}^2 = 0,3292; \\ Y_{1(1,2,4)} &= 14,065 - 13,742X_2 + 0,086X_1X_2 + 10,596X_2X_4 - 0,014X_1{}^2 + \\ &+ 1,986X_2{}^2 - 8,901X_4{}^2; R_{1(1,2,4)}{}^2 = 0,9942; \\ Y_{1(1,3,4)} &= 14,065 - 13,742X_3 + 0,086X_1X_3 + 10,596X_3X_4 - 0,014X_1{}^2 + \\ &+ 1,986X_3{}^2 - 8,901X_4{}^2; R_{1(1,3,4)}{}^2 = 0,9942; \\ Y_{1(2,3,4)} &= 7,307 - 29,954X_2X_3 - 43,853X_2X_4 + 54,070X_3X_4 + 23,757X_2{}^2 - \\ &- 0,024X_3{}^2 - 8,901X_4{}^2; R_{1(2,3,4)}{}^2 = 0,2070 \end{split}$$

Величины коэффициентов a_{i,j,p} уравнений 4D находили, решая линейные уравнения Y_{1(i,j,p)} в пакете "Maple":

a ₀₀₀		$x_i^{(1)} x_j^{(1)} x_p^{(1)} x_i x_j^{(1)} x_i x_p^{(1)} x_j x_p^{(1)} x_j^{2(1)} x_i^{2(1)} x_p^{2(1)} x_p^{2(1)}$		y ⁽¹⁾
a_{i00}		$x_i^{(2)} x_j^{(2)} x_p^{(2)} x_i x_j^{(2)} x_i x_p^{(2)} x_j x_p^{(2)} x_i^{2(2)} x_i^{2(2)} x_p^{2(2)}$		y ⁽²⁾
a_{0j0}		$x_i^{(3)} x_j^{(3)} x_p^{(3)} x_i x_j^{(3)} x_i x_p^{(3)} x_j x_p^{(3)} x_j^{(2)} x_i^{2(3)} x_j^{2(3)} x_p^{2(3)}$		y ⁽³⁾
a _{00p}		$x_i^{(4)} x_j^{(4)} x_p^{(4)} x_i x_j^{(4)} x_i x_p^{(4)} x_j x_p^{(4)} x_j^{2(4)} x_i^{2(4)} x_p^{2(4)} x_p^{2(4)}$		y ⁽⁴⁾
a _{ij0}		$x_i^{(5)} x_j^{(5)} x_p^{(5)} x_i x_j^{(5)} x_i x_p^{(5)} x_j x_p^{(5)} x_i^{2(5)} x_j^{2(5)} x_p^{2(5)}$	=	y ⁽⁵⁾
a_{i0p}	*	$x_i^{(6)} x_j^{(6)} x_p^{(6)} x_i x_j^{(6)} x_i x_p^{(6)} x_j x_p^{(6)} x_i^{2(6)} x_j^{2(6)} x_p^{2(6)}$		y ⁽⁶⁾
a _{0jp}		$x_i^{(7)} x_j^{(7)} x_p^{(7)} x_i x_j^{(7)} x_i x_p^{(7)} x_j x_p^{(7)} x_j^{2(7)} x_i^{2(7)} x_p^{2(7)} x_p^{2(7)}$		y ⁽⁷⁾
b_{i00}		$x_i^{(8)} x_j^{(8)} x_p^{(8)} x_i x_j^{(8)} x_i x_p^{(8)} x_j x_p^{(8)} x_j^{2(8)} x_i^{2(8)} x_j^{2(8)} x_p^{2(8)}$		y ⁽⁸⁾
b _{0j0}		$x_i^{(9)} x_j^{(9)} x_p^{(9)} x_i x_j^{(9)} x_i x_p^{(9)} x_j x_p^{(9)} x_j^{2(9)} x_i^{2(9)} x_j^{2(9)} x_p^{2(9)}$		y ⁽⁹⁾
b_{00p}		$x_i^{(10)} x_j^{(10)} x_p^{(10)} x_i x_j^{(10)} x_i x_p^{(10)} x_j x_p^{(10)} x_i^{2(10)} x_j^{2(10)} x_p^{2(10)}$		y ⁽¹⁰⁾

Зависимость величины переменной $Y_{1(i,j,p,q)}$ от значений четырех параметров X_i, X_j, X_p, X_q (табл. 5.4) можно представить в виде полиномиального уравнения 5D:

$$\begin{split} Y_{1(i,j,p,q)} &= Y_{5D} = f(X_i,X_j,X_p,X_q) = a_{0000} + a_{i000}X_i + a_{0j00}X_j + a_{00p0}X_p + \\ &\quad + a_{000q}X_q + a_{ij00}X_iX_j + a_{i0p0}X_iX_p + a_{i00q}X_iX_q + a_{0jp0}X_jX_p + a_{0j0q}X_jX_q + \\ &\quad + a_{00pq}X_pX_q + b_{i000}X_i^2 + b_{0j00}X_j^2 + b_{00p0}X_p^2 + b_{000q}X_q^2. \end{split}$$

В пакете "Excel" с помощью функции "Регрессия" получено следующее полиномиальное уравнение 5D для Y_{1(1,2,3,4)}:

$$Y_{1(1,2,3,4)} = Y_{5D} = f(X_1, X_2, X_3, X_4) = 6,852 + 3,888X_1X_2 - 6,852 + 3,88X_1X_2 - 6,852 + 3,8$$

$$-26,025X_{2}X_{3} - 36,521X_{2}X_{4} + 47,009X_{3}X_{4} - 1,702X_{1}^{2} + 19,725X_{2}^{2} - 0,025X_{3}^{2} - 8,901X_{4}^{2}; R_{1(1,2,3,4)}^{2} = 0,2654.$$

Для проверки адекватности полиномиального уравнения 5D для функции $Y_{1(1,2,3,4)}$ провели дополнительные эксперименты по возгонке цинка из Pb-Zn-Ag сплава с не использованными ранее значениями исследованных технологических параметров процесса. Полученные экспериментальные значения коэффициента разделения цинка сравнили с величинами, рассчитанными по уравнению $Y_{1(1,2,3,4)} = f(X_1, X_2, X_3, X_4)$ (табл. 5.6).

Таблица 5.6

остаточных концентраций элементов-примесей						
V	$X_2 \cdot 10^{-3}$,	$X_3 \cdot 10^{-1}$,	$X_4 \cdot 10^{-2}$,	Y	$\mathbf{V}_{\mathbf{v}}/\mathbf{V}_{\mathbf{v}}$	
Λ1	K	Па	МИН	Опытные	Расчётные	$\Delta \mathbf{I} = 1 / \mathbf{I} = 1 (3KC), \ \%$
0,221	1.073			4,213	3,940	14,4
1,513	1,075	1		4,325	4,517	3,6
	0,923	1	0,6	4,251	4,397	13,1
	1,423			4,409	4,530	2,7
0.187	1.072	0,216		2,194	2,625	13,6
0,187		11,97		2,873	3,342	16,3
	1,075	1	0,15	3,126	3,306	5,8
		1	0,45	4,807	4,050	15,7

Экспериментальные и расчётные значения статочных концентраций элементов-примесе

Выявленные средние расхождения между экспериментальными и рассчитанными значениями логарифма коэффициента разделения цинка и свинца не превышают13–16 %. Наибольшие расхождения 13–16 % от величины опытных значений переменной $Y_{1(1,2,3,4)} = f(X_1, X_2, X_3, X_4)$ выявлены для граничных значений в интервалах параметров X_1 и X_3 .

<u>Возгонка свинца</u>

После селективной возгонки цинка из Pb-Zn-Ag сплава производят отгонку свинца, отделяя его от серебра, остающегося в остатке. Цель операции – достижение максимальных значений коэффициента разделения свинца и серебра β_{Pb} (3.2) при оптимальных технологических параметрах..

Ранее проведенными исследованиями установлено, что на величину Y_2 = log β_{Pb} существенно влияют следующие технологические параметры: $X_1 \cdot 10^{-1} = x_{Ag}/x_{Pb} = 0,125-2,5$ – отношение исходного содержания серебра и свинца в серебристой пене (СП); $X_2 \cdot 10^{-3} = 1,273 - 1,673 \ K$ – температура; $X_3 \cdot 10^{-1} = 0,9 - 13,3$ Па – давление; $X_4 \cdot 10^{-1} = 0,3 - 1,2$ час продолжительность возгонки (табл. 5.7).

Таблица 5.7

$X_1 \cdot 10^1$	$X_2 \cdot 10^{-3}, K$	X ₃ ·10 ⁻¹ , Па	Х ₄ ·10 ⁻¹ , час	Y ₁
2,5				3,013
2,125	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3,030	
1,75	1 072			3,046
1,25	1,273			3,066
0,375				3,094
0,125		0		3,100
	1,073	9		3,820
	1,173			3,376
	1,373		0,8	2,708
	1,473			2,457
	1,573			2,240
	1,673			2,050
		0,9		3,61377
		1,33		3,61449
0.625		4		3,61738
0,625		7		3,61895
		10		3,6175
	1 273	13,3		3,6067
	1,275		0,3	2,175
			0,4	2,772
		Q	0,5	3,298
		,	0,6	3,584
			1,0	3,771
			1,2	3,212

Влияние параметров X₁-X₄ на коэффициент разделения цинка Y₂

Выразили полученные экспериментальные данные в виде полиномиальных функций (2D) в координатах " $Y_{2(i)}$ —(X_i)" (рис. 5.4). Критерием оценки адекватности полученных полиномиальных функций является величина достоверности аппроксимации $R_{2(i)}^2$, которая для исследованной системы превышает значения $R_{2(i)}^2 > 0,92$.

$$\begin{split} Y_{2(1)} &= -0,004885X_1{}^2 - 0,0240X_1 + 3,1034; \ R_{2(1)}{}^2 = 0,9958 \\ Y_{2(2)} &= 2,4520X_2{}^2 - 9,6454X_2 + 11,09; \ R_{2(2)}{}^2 = 0,9997 \\ Y_{2(3)} &= -0,000233X_3{}^2 + 0,00282X_3 + 3,6110; \ R_{2(3)}{}^2 = 0,9529 \\ Y_{2(4)} &= -5,4087X_4{}^2 + 9,1839X_4 - 0,0192; \ R_{2(4)}{}^2 = 0,9984. \end{split}$$

Затем, в режиме "Multivariate Regression" (пакет "Mathcad") последовательно представили в аналитической форме зависимость переменной Y_{2(i,j)}, как функции 3D двух одновременно изменяющихся параметров X_i, X_i:

 $Y_{2(i,j)} = Y_{3D} = f(X_i, X_j) = a_{oo} + a_{io}X_i + a_{oj}X_j + a_{ij}X_iX_j + b_{io}X_i^2 + b_{oj}X_j^2.$

Для переменной $Y_{2(i,j)}$, в зависимости от параметров X_1 - X_4 существуют следующие функциональные зависимости 3D (рис. 5.5):

Рис. 5.4. Зависимость коэффициента разделения цинка от параметров процесса: $x_{\text{Zn}}/x_{\text{Pb}}(a)$; температура (δ); давление (s); продолжительность возгонки (z)

Рис. 5.5. Зависимость величины функций 3D: $Y_{2(i,j)} = f(X_i, X_j)$, от значений параметров X_i, X_j : 1,2

$$\begin{split} Y_{2(1,2)} &= f(X_1, X_2) = 10,696 - 8,615X_2 - 0,0399X_1X_2 + 0,0105X_1{}^2 + \\ &+ 2,0719X_2{}^2; R_{2(1,2)}{}^2 = 0,9980; \\ Y_{2(1,3)} &= f(X_1, X_3) = 3,8495 - 0,1336X_3 + 0,0243X_1X_3 - 0,144X_1{}^2 + \\ &+ 0,0074X_3{}^2; R_{2(1,3)}{}^2 = 0,6086; \\ Y_{2(1,4)} &= f(X_1, X_4) = 3,072 + 0,273X_1 + 0,548X_4 - 0,175X_1{}^2 - \\ &- 0,3558X_4{}^2; R_{2(1,4)}{}^2 = 0,6427; \\ Y_{2(2,3)} &= f(X_2, X_3) = 5,6724 - 0,1094X_3 - 0,0114X_2X_3 - 1,1545X_2{}^2 + \\ &+ 0,0078X_3{}^2; R_{2(2,3)}{}^2 = 0,9052; \\ Y_{2(2,4)} &= f(X_2, X_4) = 4,3319 + 1,4827X_2 + 0,4182X_2X_4 - 1,88X_2{}^2 - \\ &- 0,3484X_4{}^2; R_{2(2,4)}{}^2 = 0,8476; \\ Y_{2(3,4)} &= f(X_3, X_4) = 3,9463 - 0,0652X_3 + 0,1143X_3X_4 - 0,00172X_3{}^2 - \\ &- 0,5791X_4{}^2; R_{2(3,4)}{}^2 = 0,7993. \end{split}$$

Графики поверхностей в координатах " $Y_{2(i,j)}$ — $f(X_i,X_j)$ " по форме представляют собой гиперболические параболоиды, полученные перемещением параболы в трехмерном пространстве, описываемой функцией $Y_{2(i)} = f(X_i)$, по направляющей, соответствующей зависимости $Y_{2(j)} = f(X_i)$ (рис. 5.5).

Установлено, что максимумы $Y_{2(i)}$ для функций 2D зафиксированы при следующих значениях X_i : 0,1 (1); 1,0 (2); 6,05 (3); 0,85 (4), в соответствие с которыми по уравнениям $Y_{2(1-3,2-4)}$ рассчитаны максимумы сечений $Y_{2(i,j)}$ для функций 3D (табл. 5.8).

Таблица 5.8

соответствующие им значения $Y_{2(i,j)} = I(X_i, X_j) \phi$ ункции 3D					
$X_1 \cdot 10^1$	$X_2 \cdot 10^{-3}, K$	X ₃ ·10 ⁻¹ , Па	X4 [·] 10 ⁻¹ , час	Y_2	
	1,0	-		4,149	
0,1		6,05	-	3,325	
	-	-	0,85	3,306	
	1.0	6,05	-	4,073	
-	1,0	-	0.85	4,038	
	-	6,05	0,85	3,658	

Координаты точек максимумов сечений (X_i,X_j) и

Выявленные при анализе трехмерных графиков поверхностей Y_{3D} = f(X_i,X_j) закономерности вполне соответствуют физической модели процесса возгонки

металлов из сплава, а именно: при уменьшении исходного содержания трудно возгоняемого компонента (серебра) и температуры, при возрастании давления и продолжительности процесса до определенного предела увеличивается коэффициент разделения свинца.

Зависимость величины переменной $Y_{2(i,j,p)}$ от значений трех параметров X_i , X_j , X_p , приведенных в табл. 5.7, можно представить в виде полиномиальных уравнений 4D:

$$\begin{split} Y_{2(i,j,p)} &= Y_{4D} = f(X_i, X_j, X_p) = a_{000} + a_{i00}X_i + a_{0j0}X_j + a_{00p}X_p + \\ &\quad + a_{ij0}X_iX_j + a_{i0p}X_iX_p + a_{0jp}X_iX_p + b_{i00}X_i^2 + b_{0j0}X_j^2 + b_{00p}X_p^2 \end{split}$$

Для значений $Y_{2(i,j,p)} = Y_{4D} = f(X_i,X_j,X_p)$ получили следующие полиномиальные уравнения (4D):

$$\begin{split} Y_{2(1,2,3)} &= 4,0504 + 0,2414X_3 + 0,0135X_1X_3 - 0,322X_2X_3 - 0,0886X_1^2 - \\ &\quad - 0,0991X_2^2 + 0,01006X_3^2; R_{2(1,2,3)}^2 = 0,5510; \\ Y_{2(1,2,4)} &= 6,508 - 1,9523X_2 + 0,1252X_1X_2 + 0,2809X_2X_4 - 0,1101X_1^2 - \\ &\quad - 0,5699X_2^2 - 0,2671X_4^2; R_{2(1,2,4)}^2 = 0,8158; \\ Y_{2(1,3,4)} &= 4,0609 - 0,1482X_3 + 0,0384X_1X_3 + 0,0744X_3X_4 - 0,217X_1^2 + \\ &\quad + 0,00404X_3^2 - 0,4121X_4^2; R_{2(1,3,4)}^2 = 0,7482; \\ Y_{2(2,3,4)} &= 8,622 - 0,751X_3 + 0,492X_2X_3 + 0,0738X_3X_4 - 2,8666X_2^2 + \\ &\quad + 0,00413X_3^2 - 0,4096X_4^2; R_{2(2,3,4)}^2 = 0,8751 \end{split}$$

Величины коэффициентов a_{i,j,p} уравнений 4D находили, решая линейные уравнения Y_{2(i,j,p)} в пакете "Maple":

Зависимость величины переменной $Y_{2(i,j,p,q)}$ от значений четырех

параметров X_i, X_j, X_p, X_q (табл. 5.4) можно представить в виде полиномиального уравнения 5D:

$$\begin{split} Y_{2(i,j,p,q)} &= Y_{5D} = f(X_i, X_j, X_p, X_q) = a_{0000} + a_{i000} X_i + a_{0j00} X_j + a_{00p0} X_p + \\ &\quad + a_{000q} X_q + a_{ij00} X_i X_j + a_{i0p0} X_i X_p + a_{i00q} X_i X_q + a_{0jp0} X_j X_p + a_{0j0q} X_j X_q + \\ &\quad + a_{00pq} X_p X_q + b_{i000} X_i^2 + b_{0j00} X_j^2 + b_{00p0} X_p^2 + b_{000q} X_q^2. \end{split}$$

В пакете "Excel" с помощью функции "Регрессия" получено следующее полиномиальное уравнение 5D для Y_{2(1,2,3,4)}:

$$\begin{split} Y_{2(1,2,3,4)} &= Y_{5D} = f(X_1, X_2, X_3, X_4) = \ 6,6326 - 0,31916X_3 + \\ &\quad + 0,02675X_1X_3 + 0,11735X_2X_3 + 0,0549X_3X_4 - 0,1567X_1^2 - \\ &\quad - 1,5924X_2^2 + 0,00686X_3^2 - 0,3306X_4^2; \ R_{2(1,2,3,4)}^2 = 0,8323. \end{split}$$

Для проверки адекватности полиномиального уравнения 5D для функции $Y_{2(1,2,3,4)}$ провели дополнительные эксперименты по возгонке свинца из Pb-Ag сплава с не использованными ранее значениями исследованных технологических параметров процесса. Полученные экспериментальные значения коэффициента разделения цинка сравнили с величинами, рассчитанными по уравнению $Y_{2(1,2,3,4)} = f(X_1, X_2, X_3, X_4)$ (табл. 5.9).

Таблица 5.9

V 10 ¹	$X_2 \cdot 10^{-3}$,	$X_3 \cdot 10^{-1}$,	$X_4 \cdot 10^{-1}$,	Y	$\mathbf{V}_{\mathbf{v}}/\mathbf{V}_{\mathbf{v}}$	
$\Lambda_1 10$	К	Па	час	Опытные	Расчётные	$\Delta 1 2 / 1 2 (3 \text{ Kc}), \ \%$
2,4	1 272			3,020	2,939	2,7
0,2	1,275	0		3,097	3,305	6,7
	1,123	9	0.8	3,511	3,767	7,3
	1,623		0,0	2,100	2,108	0,4
0.625		2		3,615	3,588	0,7
0,025	1 272	12		3,612	3,457	4,3
	1,275	2/3	0,35	2,475	3,301	33,4
		9	0,9	3,715	3,346	9,9

Экспериментальные и расчётные значения остаточных концентраций элементов-примесей

Выявленные средние расхождения между экспериментальными и рассчитанными значениями логарифма коэффициента разделения свинца и серебра не превышают7–10 %. Наибольшие расхождения (~33 %) от величины опытных значений переменной $Y_{1(1,2,3,4)} = f(X_1, X_2, X_3, X_4)$ выявлены для малых значений параметра $X_4 \cdot 10^{-1} \le 0.35$.

5.2. Извлечение Sn из Pb-содержащего сырья в филиале ПСЦМ АО «Уралэлектромедь»

5.2.1. Получение Pb-Sn сплава

В филиале «Производство сплавов цветных металлов (ПСЦМ) АО «Уралэлектромедь» вывод олова и сурьмы из технологии получения свинца осуществляют, на первом этапе, через окислительное рафинирование обезмеженного свинца (~130 т) (рис. 5.6).

Для этого расплав разогревают в рафинировочном котле до ~560 °C, в ходе процесса температура изменяется в пределах 540-860 °C. Затем на котел устанавливают устройство OX-800 продувки расплава смесью кислорода и сжатого воздуха в соотношении 30/50 м³/час, называемое «ланцета» или кислородно-воздушное копье. Продувку осуществляют в течение 1 часа с интервалом 2–2,5 часа. Цель окислительного рафинирования – получение богатых окислов с содержанием сурьмы и олова не менее 20 %. В начале окисления на поверхности ванны свинца накапливается Sn-плав от желтого до светло-коричневого цвета, далее As-плав, имеющий цвет от лимонно-желтого до светло-коричневого, затем образуется Sbплав, цвет которого изменяется от темно-коричневого до черного в зависимости от концентрации сурьмы. Все оксиды (плавы) получаются в виде порошка, гранул или тестообразной массы состава, %: 45–70 Pb; 15–30 Σ (Sb, Sn, As). Перед снятием образовавшихся оксидов проводят их вымешивание в течение 30-40 мин для удаления с оксидов механически налипшего при продувке ванны свинца, а также для перехода глета в металлический свинец. Образовавшиеся оксиды снимают с поверхности ванны крановой шумовкой или скребковым конвейером, давая стечь увлеченному свинцу.

Рис. 5.6. Концептуальная схема производства олова и сплавов на его основе

При остаточном содержании олова 0,1–0,05 % в расплаве свинца оксиды идентифицируют, как оловянистые, и производят съем в отдельный контейнер. Разделить олово, мышьяк и сурьму в ходе окислительного рафинирования удается лишь частично: выход оловянных окислов в 1,2–1,4 раза больше, чем сурьмянистых. При исходном содержании в свинце сурьмы и олова 3,54–3,85 % получают богатые оловянные окислы с содержанием олова 20–30 %; переход олова в окислы составляет 76–80 % от их общего количества.

На втором этапе, выведенные из процесса переработки чернового свинца Snокислы (свыше 30 т) после охлаждения плавят в коротко-барабанных печах для получения чернового свинца с минимальным содержанием примесей и шлако-штейнового продукта, богатого по олову и пригодного для дальнейшей переработки (или реализации), в составе шихты (%) для Sn-окислов: 60 Sn-окислы; 24 кальцинированная сода; 14,8 песок; 1,2 коксик. В результате плавки получен черновой свинец высокого качества (96,4 % Pb) в количестве 99,3 % от исходного содержания металла и промпродукт шлако-штейновый (ППШШ), содержащий ~21 % Sn, и пригодный для реализации. После окончания процесса из печи выпускают расплав: сливают черновой свинец и ППШШ, который в дальнейшем охлаждают и измельчают. Технологии рафинирования свинца и плавки окислов отработаны в промышленном масштабе и реализованы в филиале ПСЦМ АО «Уралэлектромедь».

До недавнего времени ППШШ успешно реализовывался в качестве Snсодержащего материала, однако представлялось целесообразным увеличить прибыль за счет повышения содержания олова в более чистых по металлу товарных продуктах.

С этой целью, на третьем этапе провели промышленные испытания по плавке 74 т шихты состава, %: 85 ППШШ; 15 коксовая мелочь, в руднотермической печи в течение 3 суток при наличии жидкой шлаковой ванны состава, кг/%: 1400/40 SiO₂; 1050/30 CaO; 1050/30 Na₂CO₃. Наибольшую температуру имеет участок ванны, прилегающий к поверхности электродов, здесь в зоне контакта «электрод– шлак» температура достигает 1500 °C. Выпуск продуктов плавки производили с уровня расплава 800–1100 мм, вскрытие леток вели техническим кислородом при помощи стальной трубки. Из печи последовательно сливали:

~ 24 т шлака РТП состава, % 0,28, Pb; 6,8 Sn; 0,8 Sb; 1,3 As

~ 19,2 т Sn-Pb сплава состава, %: 18,2 Pb; 56,1 Sn; 14,6 Sb; 6,9 As.

Фактический расход электроэнергии составил ~ 62,5 тыс. кВт час; расход электродов ~890 кг (5 шт.). В результате, среднее содержание олова в Sn-Pb-сплаве (39,2–61,6 % Sn) составило 56,1 % при максимальном содержании (61,6 %) в середине операции. Получены шлаки РТП (6,8 % Sn), которые можно реализовать потребителю или вести работы по снижению содержания олова до 0,5–1 % с дальнейшей отправкой в отвал. Проведенные испытания по производству

Sn-Pb сплава в последующем были освоены в промышленном масштабе.

На четвертом этапе, для получения готового продукта с более высокими потребительскими свойствами, чем у Sn-Pb сплава (55-60 % Sn), а именно с повышенным содержанием (не менее 90 %) олова, были проведены опытно-промышленные испытания по вакуумной дистилляции. Подтверждена принципиальная возможность и целесообразность проведения окислительной плавки Sn-шлаков на Sn-Рь сплав. В настоящее время производство чернового олова осуществляют посредством вакуумной дистилляции.

5.2.2. Испытания по вакуумной дистилляции Pb-Sn сплава

Проведены опытно-промышленные испытания по вакуумной дистилляции 81,2 кг оловянного сплава состава, % : 30,6 Pb; 50,4 Sn; 11,1 Sb; 4,3 As; 1,05 Cu в АО «Екатеринбургский завод ОЦМ» с целью определения возможности получения чернового олова с извлечением в отдельные продукты (возгоны) на первой стадии мышьяка, а затем сурьмы и свинца.

Испытания проводили на установке компании «IECO Keeps on improving» (Италия). Основные характеристики установки:

мощность индукционной печи ~ 50 кВт;

максимальный объем сплава в тигле - ~ 30 кг;

- максимальная рабочая температура - 1300 °C;

– максимальный уровень вакуума в вакуумной камере 0,01 Па.

Таблица 5.10

Режимы дистилляции на ЕЗ ОЦМ							
Стадия	Температура, °С	Длительность, сек	Давление, Па				
1-я	600-800	900-7200	80-60000				
2-я	1100-1300	1800-5400	0,2-20				

DOMENNUL THOTHER HUNDER DO E2 OUM

Получено:

- 50,2 кг олово черновое (извлечение Sn > 99 %) состава, %: 96,8–97,1 Sn;
0,024–0,3 Pb; ~1 Sb; 0,01–0,03 As; 1,5–1,7 Cu;

- 1,4 кг 1-й дистиллят, содержание/извлечение, %: 40,5/35,1 As

- 28,2 кг 2-й дистиллят (сурьмяно-свинцовой), содержание/извлечение, %:

5,4-8,0/43 -87 As; 57 -79/78 -99 Pb; 8,5 -26,5/25 -99 Sb; 1,2 -9,1/0,9 -8,5 Sn.

На основании проведенных исследований составлена балансовая схема (табл.

5.11) и предложена технологическая схема с использованием вакуумной дистилля-

ции Pb-Sn сплавов с получением чернового олова (рис.5.7).

Содержание и распределение элементов по промпродуктам при окислительном рафинировании

	Содержание, % / Распределение, %							
Сырье, промпродукт / Операция	Sn	Sb	As	Pb				
Плавка	Плавка на Рь-черновой							
Поступило (т/год):								
Окислы оловянистые (1577,2)	21,3/100	4,5/100	2,6/100	60/100				
Получено (т/год):								
Свинец черновой (797)	2,78/5,77	4,31/41,93	0,45/7,53	89/75				
Концентрат оловянный (1279)	20,71/78,98	3,45/61,72	2,88/88,52	20/10,51				
Пыль (112,6)	2,8/0,95	0,9/1,41	3,6/9,82	36/5,38				
Переработка к	Переработка концентрата оловянного							
Поступило (т/год):								
Концентрат оловянный (1279)	20,71/100	3,45/100	2,88/100	20/100				
Получено (т/год):								
Сплав Sn-содержащий (404,2)	55,7/85	10,0/91,47	5,1/56,12	19,2/97,07				
Промпродукт шлако-штейновый (769)	5,17/15	0,49/8,49	2,1/43,88	0,3/2,88				
Вакуумная дистилл	яция сплава	Sn-содержаш	его					
Поступило (т/год):								
Сплав Sn-содержащий (404,2)	55,7/100	10,0/100	5,1/100	19,2/100				
Получено (т/год):								
Дистиллят As (21,3)	0,6/0,1	3,4/1,5	31,7/35,1	37,6/10,3				
Дистиллят Sb-Pb (153,2)	3,1/2,1	24,6/81,9	5,41/43,0	44,9/88,6				
Sn черновое (237,4)	94,5/99,6	0,8/3,9	0,03/0,3	0,4/1,1				

В результате переработки Pb-содержащего сырья по схеме окислительного рафинирования от сурьмы и олова с использованием вакуумной дистилляции получен товарный продукт с высокими потребительскими свойствами – олово черновое, которое можно использовать для приготовления марочных припоев.

Таблица 5.11

Рис. 5.7. Технологическая схема окислительного рафинирования чернового свинца от сурьмы и олова с вакуумной дистилляцией

Для переработки Pb-Sn сплава предложена возможная схема вакуумной дистилляции, которая может корректироваться по значениям температуры и давления в системе, в зависимости от требований, предъявляемых к составу продуктов возгонки (рис. 5.8).

В качестве возможного варианта ведения технологического процесса рассматривается применение индукционной электропечи СКБ-6087 (рис. 5.9):

- мощность 300 кВт;
- рабочая частота 2400 Гц;
- напряжение, В: генераторной цепи 400; питающей цепи 380;
- максимальная температура 1773 К;
- рабочий вакуум в камере 13,3 Па (0,1 мм рт. ст.)

В рабочей камере печи 1 4500х2400 мм установлены три индуктора 5, каждый из которых включен в самостоятельный колебательный контур, что позволяет изменять вводимую энергию по высоте графитовой дистилляционной колонны 6 внутри индуктора. Дистилляционная колонна составлена из 36 тарелей с диаметром 500 мм: верхние – для нагрева олова до рабочей температуры, выполнены без внутреннего отверстия; испарительные тарели с общей площадью расплава 1,82 м² имеют отверстия диаметром 300 мм и образуют цилиндрический вертикальный паропровод.

Рис. 5.9. Схема вакуумной индукционной дистилляционной электропечи СКБ-6087: *1* - рабочая камера; 2 - крышка; 3 - барометрическая труба; 4 - электропечь для подогрева чернового олова; 5 - индуктор; 6 - дистилляционная колонна; 7 - конденсатор;
8 - вакуумная система; 9 - приемная емкость для конденсата; 10 - приемная емкость для чистого олова; 11 - холодильник

Парогазовая фаза через отверстие 8 в цилиндре 7 поступает в паропровод 9 и далее в конденсатор 15. Жидкий конденсат по трубе 16 сливается в сборник 17. Чистый металл через отверстия 13 в диафрагме 12 поступает в сборную тарель 14, из которой по трубе 18 через холодильник 19 сливается в сборник 20 чистого металла.

Для сравнения со схемой окислительного рафинирования рассчитан сквозной баланс по щелочному рафинированию свинца (процесс Гарриса) (табл.5.12),

Таблица 5.12

Содержание и распределение элементов по промпродуктам при щелочном рафинировании

Сырье, промпродукт / Операция Sn Sb As Pb Рb-содержащее сырье (24819,75 т/год) 4,18/100 1,82/100 5,53/100 88,47/100 1 2 3 4 5 Рафинирование свинца Поступило, (т/год):		Содержание, % / Распределение, %						
Рb-содержащее сырье (24819,75 т/год) 4,18/100 1,82/100 5,53/100 88,47/100 Рафинирование свинца Поступило, (т/год): NaOH per.+ свеж. (7227,7 + 333,7) NaCl per.+ свеж. (1297,2 + 126,0) </td <td>Сырье, промпродукт / Операция</td> <td>Sn</td> <td>Sb</td> <td>As</td> <td>Pb</td>	Сырье, промпродукт / Операция	Sn	Sb	As	Pb			
1 2 3 4 5 Рафинирование свинца Поступило, (т/год): NaOH per.+ свеж. (7227,7 + 333,7) NaCl per.+ свеж. (1297,2 + 126,0) NaNO ₃ (2192,9)	Рb-содержащее сырье (24819,75 т/год)	4,18/100	1,82/100	5,53/100	88,47/100			
Рафинирование свинца Поступило, (т/год): Image: Colspan="2">Image: Colspan="2" Image: Colspan="	1	2	3	4	5			
Поступило, (т/год): Image: mail of the sector	Рафини	рование сви	нца	·				
NaOH per.+ свеж. (7227,7 + 333,7) Image: mail of the system of the	Поступило, (т/год):							
NaCl per.+ свеж. (1297,2 + 126,0) NaNO ₃ (2192,9) O ₂ воздуха (124,9) As (1373,2) Sn (1037,7) Sb (451,7) Pb-капли (703,3) Получено (т/год): Щелочной плав (13616,3) 7,38/96,8 Корки и всплески (450,1) 7,38/3,2 Рb-черновой (21254,7) Рануляция щелочного плава	NaOH рег.+ свеж. (7227,7 + 333,7)							
NaNO3 (2192,9)	NaCl рег.+ свеж. (1297,2 + 126,0)							
О2 воздуха (124,9)	NaNO ₃ (2192,9)							
As (1373,2)	О2 воздуха (124,9)							
Sn (1037,7) Image: Sn (1037,7) Sb (451,7) Image: Sn (1037,7) Pb-капли (703,3) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Pb-капли (703,3) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (1037,7) Image: Sn (103,6) Image: Sn (103,6) Image: Sn (103,6) Image: Sn (103,6) Image: Sn (103,6) Image: Sn (103,7) Image: Sn (103,6) Image: Sn (103,6) Image: Sn (103,6) <	As (1373,2)							
Sb (451,7)	Sn (1037,7)							
Рb-капли (703,3) Improvementation Improvementation III слочной плав (13616,3) 7,38/96,8 3,21/96,8 9,76/96,8 5,0/3,1 III слочной плав (13616,3) 7,38/3,2 3,21/96,8 9,76/96,8 5,0/3,1 Корки и всплески (450,1) 7,38/3,2 3,21/3,2 9,76/3,2 5,0/0,1 Pb-черновой (21254,7) Improvementation 96,8/96,8 96,8/96,8 Газы и пары воды (866,2) Improvementation Improvementation	Sb (451,7)							
Получено (т/год): Голучено (т/год): Голучено (т/год): Щелочной плав (13616,3) 7,38/96,8 3,21/96,8 9,76/96,8 5,0/3,1 Корки и всплески (450,1) 7,38/3,2 3,21/3,2 9,76/3,2 5,0/0,1 Рb-черновой (21254,7) 96,8/96,8 96,8/96,8 1000000000000000000000000000000000000	Рb-капли (703,3)							
Щелочной плав (13616,3) 7,38/96,8 3,21/96,8 9,76/96,8 5,0/3,1 Корки и всплески (450,1) 7,38/3,2 3,21/3,2 9,76/3,2 5,0/0,1 Рb-черновой (21254,7) 96,8/96,8 96,8/96,8 96,8/96,8 Газы и пары воды (866,2) Грануляция щелочного плава 1000000000000000000000000000000000000	Получено (т/год):							
Корки и всплески (450,1) 7,38/3,2 3,21/3,2 9,76/3,2 5,0/0,1 Рb-черновой (21254,7) 96,8/96,8 96,8/96,8 Газы и пары воды (866,2) Грануляция щелочного плава 1	Щелочной плав (13616,3)	7,38/96,8	3,21/96,8	9,76/96,8	5,0/3,1			
Рb-черновой (21254,7) 96,8/96,8 Газы и пары воды (866,2) Грануляция щелочного плава	Корки и всплески (450,1)	7,38/3,2	3,21/3,2	9,76/3,2	5,0/0,1			
Газы и пары воды (866,2) Грануляция щелочного плава	Рь-черновой (21254,7)				96,8/96,8			
Грануляция щелочного плава	Газы и пары воды (866,2)							
	Грануляция щелочного плава							
Поступило, (т/год):	Поступило, (т/год):							
Щелочной плав (13616,3) 7,38/100 3,21/100 9,76/100 5,0/100	Щелочной плав (13616,3)	7,38/100	3,21/100	9,76/100	5,0/100			
Оборотный щелочной раствор (20663,9)	Оборотный щелочной раствор (20663,9)							
Вода промывная (1923,0)	Вода промывная (1923,0)							
Получено (т/год):	Получено (т/год):							
Рb-корольки (680,9) – – – 96,8/>99	Рь-корольки (680,9)	_	_	_	96,8/>99			
Sn-As-Sb-кек (сухой) (11048,7) 11,4/> 99 5,1/> 99 24,5/> 99 < 0,01/ < 1	Sn-As-Sb-кек (сухой) (11048,7)	11,4/>99	5,1/>99	24,5/>99	< 0,01/ < 1			
Фильтрат (39346,0) < 0,01/< 1	Фильтрат (39346,0)		< 0,0	1/< 1				
Репульпация коллективного кека	Репульпация	і коллективн	ого кека					
Поступило, (т/год):	Поступило, (т/год):							
Sn-As-Sb-кек (сухой) (11048,7) 11,4/> 99 5,1/> 99 24,5/> 99 < 0,01/<1	Sn-As-Sb-кек (сухой) (11048,7)	11,4/>99	5,1/>99	24,5/>99	< 0,01/ < 1			
Вода (30386,6)	Вода (30386,6)							
Получено (т/год):	Получено (т/год):							
Раствор (41503,5) 2,42/>99 < 0,01/<1 6,53/>99 < 0,01/<1	Раствор (41503,5)	2,42/>99	< 0,01/ < 1	6,53/>99	< 0,01/ < 1			
Sb-кек (сухой) (1187,9) < 0,01/ < 1 49,3/ > 99 < 0,01/ < 1 < 0,01/ < 1	Sb-кек (сухой) (1187,9)	< 0,01/<1	49,3/>99	< 0,01/ < 1	< 0,01/ < 1			
Осаждение олова	Ocaz	кдение олова		•				
Поступило, (т/год):	Поступило, (т/год):							
Раствор (41503,5) 2,42/100 – 6,53100 –	Раствор (41503,5)	2,42/100	_	6,53100	_			
Мел (90 % СаСО ₃) (1674,2)	Мел (90 % СаСО ₃) (1674,2)							
Получено (т/год):	Получено (т/год):							
Раствор (40181,7) < 0,01 / <1 6,75 / >99	Раствор (40181,7)	< 0,01 / < 1		6,75 / > 99				
Sn-кек (сухой) (3076,9) 33 / > 99 < 0,01 / < 1	Sn-кек (сухой) (3076,9)	33 / > 99		< 0,01 / < 1				
Каустификация раствора	Каустиф	икация расти	вора					
Поступило, (т/год):	Поступило, (т/год):	•						
Раствор (40181,7) 6,75 / 100 -	Раствор (40181,7)	-	-	6,75 / 100	-			
Ca(OH) ₂ (577,9)	Ca(OH) ₂ (577,9)							
Получено (т/год):	Получено (т/год):							
Раствор каустифицированный (39782,1) 6,81 / 100	Раствор каустифицированный (39782,1)			6,81 / 100				

Таблицв 5.12 (окончание)

1	2	3	4	5			
Осаждение мышьяка							
Поступило, (т/год):							
Раствор каустифицированный (39782,1)			6,81 / 100				
Ca(OH) ₂ (2525,5)							
Получено, (т/год):							
Раствор (42001,3)			< 0,01/<1				
Аѕ-кек (сухой) (5092,98)			26,1 / > 99				
Выпаривание крепкого щелочного раствора (2 стадии)							
	NaOH	NaCl	Na ₂ CO ₃	Вода			
Поступило на 1 стадию, (т/год):							
Крепкий щелочной раствор (37772,1)	25,9/100	6,11/100	0,92/100	67,07/100			
Получено на 1 стадии, (т/год):							
Раствор 1 стадии (22751,2)	47,7/100	1,3/11,8	0,67/39,29	50,3/38,5			
Осадок 1 стадии (сухой) (2245,8)		90,6/88,2	9,4/60,71				
Влага осадка 1 стадии (449,16)				20/2,2			
Конденсат 1 стадии (15020,9)				100/59,3			
Поступило на 2 стадию, (т/год):							
Раствор 1 стадии (22751,2)	48,78/100	1,36/100	0,68/100	49,18/100			
Получено на 2 стадии, (т/год):							
Осадок 2 стадии (сухой) (10190)	95,98/100	2,68/100	1,34/100				
Влага осадка 2 стадии (2039)				20/20,7			
Конденсат 2 стадии (7825)				100/79,3			

получившему довольно широкое распространение [114]. Способ основан на окислении примесей, но если при огневом рафинировании образующиеся оксиды примесей соединяются с оксидом свинца, то при щелочном рафинировании эти оксиды под действием расплавленного едкого натра образуют арсенаты, станнаты и антимонаты натрия. Рафинируемый свинец, нагретый до 430–450 °C, пропускают через расплавленную смесь едкого натра и хлорида натрия. Примеси, содержащиеся в свинце, окисляются кислородом воздуха, но это окисление значительно ускоряется при введении в расплав азотнокислого натрия, который при нагревании разлагается на NaNO₂ и свободный кислород. Выделяющийся кислород энергично взаимодействует с мышьяком, оловом и сурьмой (в той последовательности, как они перечислены). Такой способ применим только при условии многократного использования щелочи.

Достоинства щелочного рафинирования (невысокая температура; простое оборудование; свинец практически не переходит в щелочные плавы, что способствует высокому его выходу; глубокая очистка от примесей и возможность извлечения их в виде чистых солей или металлов) во многом перекрываются его недостатками, а именно: громоздкость и сложность гидрометаллургической переработки плавов, требующей организации отдельного производства с грануляцией оборотными щелочными растворами; выделением антимоната натрия, станната и арсената кальция; упариванием NaOH и его возвращением на рафинирование.

Выбранная для внедрения в филиале ПСЦМ АО «Уралэлектромедь» технология окислительного рафинирования чернового свинца от сурьмы и олова с вакуумной дистилляцией (рис. 5.7) обладает компактностью высокопроизводительной схемы, отсутствием громоздкой и сложной ветки гидрометаллургической переработки плавов, малым составом дополнительного оборудования, меньшим объемом строительно-монтажных работ. Применение вакуумной дистилляции позволяет получить олово черновое (90–99 % Sn) и коллективный возгон примесей (90–99 % Σ (As, Sb, Pb) различного состава в зависимости от температуры возгонки (1343– 1873 *K*) при фиксированных давлении (~1 Па) и продолжительности (1,5–2 час) процесса (рис.5.8).

Экономическая эффективность переработки Pb-содержащего сырья с использованием вакуумной дистилляции Pb-Sn-сплава состава, мас.%: 50,4 Sn; 30,6 Pb; 11,1 Sb;4,3 As; обусловлена получением более чистого и, следовательно, более дорогого продукта – олово черновое (~94,5 % Sn), несмотря на дополнительные затраты (~70 млн. руб) на комплекс оборудования вакуумной дистилляции по возгонке примесей. Детальный расчет выявленной экономической эффективности переработки Pb-Sn-сплава с получением олова чернового представлен в Приложении 1. К основным расходам передела следует отнести млн. руб/год:

- 276,491 вспомогательные материалы;

- 101,46 топливо технологическое;

– 63,183 энергетические затраты;

– 398,03 общепроизводственные расходы;

- 30,3 коммерческие расходы

Прирост дополнительной прибыли в варианте с получением олова чернового в количестве ~310 т/год, в сравнении с вариантом реализации Sn-концентрата (шлака), составляет около ~87 млн. руб / год, что обеспечит окупаемость капитальных затрат в течение года. Таким образом, выполненные расчеты показывают экономическую привлекательность предложенной технологии получения чернового олова методом вакуумной дистилляции.

5.3. Выводы

1. Разработана технология переработки серебристой пены, включающая ликвацию Ag-пены в течение 2 час в атмосфере инертного газа (Ar), при нормальном давлении и температуре 700 ± 10 °C с получением чернового свинца (~42 % от исходного количества Pb) и Pb-Zn-Ag сплава с последующей его вакуумной дистилляцией. В настоящее время реализация технологии вакуумной дистилляции ликвированного свинца в промышленном масштабе на предприятиях УГМК нецелесообразна, ввиду наличия медного передела и возможности загрузки пены на конвертирование, что не приводит к снижению извлечения драгметаллов (99,37 % Ag; 99,77 % Au) и обусловливает отсутствие необходимости капитальных затрат в оборудование и технологию ликвации и вакуумной дистилляции.

2. Выход металлов в готовые продукты составил: возгоны Zn > 90 % при $T = 1073 \ K$; возгоны Pb > 99 % при $T = 1273 \ K$; кубовый остаток Ag > 99 %. Выявленные значения скорости возгона металлов с единичной площади расплава в укрупненно-лабораторных опытах, $v \cdot 10^4$, $r/cm^2 \cdot c$: 19–24 Zn; 6,5–8,5 Pb; 0,006–0,007 Ag и аналогичные показатели для сплава Zn-Pb-Ag состава, мол. % / мас. %: 77,0/53,0-20,0/43,6-3,0/3,4, определенные из зависимостей «lnw_{Me} – (*S/V*)*t*» при $T = 1073-1473 \ K$ с учетом глубины расплава ($h \approx 0,67 \ cm$), равняются $v \cdot 10^4$, $r/cm^2 \cdot c$: 13,6–15,2 Zn; 3,8–8,0 Pb; 0,0012–0,0127 Ag, могут быть использованы при проектировании оборудования для вакуумной дистилляции серебристой пены.

3. Разработана адекватная математическая модель процесса последовательной возгонки цинка и свинца из состава серебристой пены. 4. Отработана в промышленном масштабе схема окислительного рафинирования Pb-содержащих материалов от сурьмы и олова с получением товарного продукта свинцово-оловянного сплава (50–70 % Sn; 10–30 % Pb; ост As,Sb, примеси).

5. При проведении опытно-промышленных испытаний получены исходные данные для расчета экономической эффективности переработки Pb-Sn сплава с использованием вакуумной дистилляции до олова чернового (95–98% Sn), по сравнению с реализацией сплава. Показано, что дополнительная прибыль при получении ~310 т/год олова чернового составит ~87 млн. руб / год.

Заключение

1. Для бинарных сплавов Pb-Zn, Pb-Ag, Zn-Ag, Sb-Sn, Sb-Pb, Sn-Pb в интервалах температур 823–1773*K* рассчитаны давления насыщенного пара (p^* , Па) для Zn (1,55[·]10³–1,76[·]10⁶); Pb (6[·]10⁻²–4,91[·]10³); Ag (6,74[·]10⁻³–8,75[·]10²), Sb (3,95–2,74[·]10²); Sn (3,32[·]10⁻⁹–8,12[·]10⁻⁵). Высокие значения коэффициентов разделения log $\beta_{Zn/Pb}$ = 2,47–4,55; log $\beta_{Pb/Ag}$ = 1,37–3,5; log $\beta_{Zn/Ag}$ = 6,2–10,1; log $\beta_{Sb/Sn}$ = 6,26–9,44; log $\beta_{Sb/Pb}$ = 1,5–2,59; log $\beta_{Pb/Sn}$ = 4,87–6,75 создают теоретические предпосылки для селективного выделения вначале цинка и сурьмы, а затем свинца, вакуумной дистилляцией, когда цинк, сурьма и свинец последовательно обогащаются в газовой фазе ($\beta_{Zn,Sb,Pb}$ > 1), а серебро и олово – в жидкой($\beta_{Ag,Sn} < 1$).

2. На основе объемной модели молекулярного взаимодействия *MIVM* (*molecular interaction volume model*) в интервалах температур 823–1773 *К* рассчитаны коэффициенты активности меньше ($\gamma_{Me} = 0,06-0,999$) и больше единицы ($\gamma_{Me} = 1,002-1,474$), что соответствует отрицательному и положительному отклонению от идеальности при содержании компонентов $x_{Me} = 0,01-0,99$ мол. доля в бинарных сплавах.

3. Анализ «*T*–*x*» диаграмм бинарных сплавов показывает, что содержание менее летучего компонента в газовой фазе (y_{Me2}) возрастает при увеличении его содержания в сплаве ($x_{Me2} = 0,99-0,9999$ мол. доля) и росте равновесной температуры «расплав–газ» (T_{liq}) при повышении давления (1,33–133 Па), например, y_{Sn} ·10⁻³: 550–998,9 при $T_{liq} = 1478-1883 K$ для Pb–Sn.

4. По диаграммам «*P*–*x*» бинарных сплавов, дополняющих «*T*–*x*» диаграммы, можно определить содержание менее летучего компонента в газовой фазе (y_{Me2}), которое возрастает при увеличении его содержания в сплаве ($x_{Me2} = 0,99-0,9999$ мол. доля) и снижении давления газовой фазы (P_g) при фиксированной температуре (1273 *K*), например, y_{Sn} ·10⁻³ = 33,68–776,15 при P_g ·10⁻⁵ = 238,7–10,46 Па для Pb–Sn.

5. Из диаграмм тройного сплава Sb-Pb-Sn переменного состава следует, что содержание трудно возгоняемых свинца и олова в составе конденсата сурьмы ($y_{Sb} > 0,9999$ мол. доля) снижается с уменьшением исходного содержания металлов (x_{Me} , мол. доля) в сплаве ($x_{Pb} = 0,15-0,05$, $x_{Sn} = 0,75-0,15$) и равновесной температуры при падении давления (133–1,33 Па), например, в системе $x_{Sb/Pb/Sn} = 0,7/0,15/0,15$: $y_{Pb} = (9,7-0,98) \cdot 10^{-5}$, $y_{Sn} = (38-0,07) \cdot 10^{-9}$ при $T_{liq} = 1046-791$ K.

6. Процесс испарения металлов из Pb-Zn-Ag и Sb-Pb-Sn сплавов в диапазоне исследованных температур соответствует реакции первого порядка, например, для $x_{Pb/Zn/Ag} = 0,75/0,16/0,09$ мол. доля при T = 1073 *K* и P = 13,3 Па $\ln w_{Zn} = -5,36\cdot10^{-7}(S/V)t - 0,26$; $\ln w_{Pb} = -1,46\cdot10^{-7}(S/V)t - 1,61$; $\ln w_{Ag} = -3,51\cdot10^{-10}(S/V)t - 3,51$.

7. Значения кажущейся константы скорости первого порядка при возгонке металлов из расплава Zn-Pb-Ag зависят от температуры, давления и химического состава сплава: в диапазоне 1073–1473 *К* (*P* = 13,3 Па; $x_{Pb/Zn/Ag} = 0,20/0,77/0,03$ мол. доля) значения k_{Me} , м сек⁻¹ практически постоянны для Zn (~5·10⁻⁷), но возрастают для Pb (1,46–2,15)·10⁻⁷ и Ag (0,35–3,63)·10⁻⁹; в интервале *P* = 133–1,33 Па (*T* = 1073 *K*) значения k_{Me} , м сек⁻¹ не изменяются для Zn (~5·10⁻⁷) и возрастают для Pb(1,34–1,58)·10⁻⁷ и Ag (0,43–0,81)·10⁻⁹.

8. Для системы Sb-Pb-Sn значения кажущейся константы скорости первого порядка при возгонке металлов из расплава (k_{Me} , м·сек⁻¹) возрастают для Sb, Pb, Sn: 5,32·10⁻¹⁰–1,38·10⁻⁶; в интервале 133–1,33 Па (T = 1073 K); (1,86–39,67)·10⁻⁷ при увеличении доли металлов 0,125–0,7 Sb; 0,05–0,15 Pb; 0,15–0,75 Sn (T = 1073 K; P = 13,3 Па).

9. Разработана технология переработки серебристой пены, включающая ликвацию Ag-пены в течение 2 час в атмосфере инертного газа (Ar), при нормальном давлении и температуре 700 ± 10 ^oC с получением чернового свинца (~42 % от исходного количества Pb) и Pb-Zn-Ag сплава с последующей его вакуумной дистилляцией. Рассчитана адекватная математическая модель процесса последовательной возгонки цинка и свинца из состава серебристой пены. В настоящее время реализация технологии вакуумной дистилляции ликвированного свинца в промыш-

ленном масштабе на предприятиях УГМК нецелесообразна, ввиду наличия медного передела и возможности загрузки пены на конвертирование, что не приводит к снижению извлечения драгметаллов (99,37 % Ag; 99,77 % Au) и обусловливает отсутствие необходимости капитальных затрат в оборудование и технологию ликвации и вакуумной дистилляции.

10. Отработана в промышленном масштабе схема окислительного рафинирования Pb-содержащих материалов от сурьмы и олова с получением товарного продукта свинцово-оловянного сплава (50–70 % Sn; 10–30 % Pb; ост As,Sb, примеси). При проведении опытно-промышленных испытаний получены исходные данные для расчета экономической эффективности переработки Pb-Sn сплава с использованием вакуумной дистилляции до олова чернового (95–98% Sn), по сравнению с реализацией Sn-сплава (шлака). Показано, что дополнительная прибыль при получении ~310 т/год олова чернового составит ~87 млн. руб / год. Имеются акты промышленных испытаний и расчеты, подтверждающие экономическую эффективность получения чернового олова в результате вакуумной дистилляции металловпримесей.

11. Направления дальнейшей разработки темы исследования

Исследование влияния металлов-примесей (Fe, Cu, Bi, As) на химический состав продуктов вакуумной дистилляции сплавов.

Влияние аппаратурного оформления на показатели процесса вакуумной дистилляции металлических сплавов.

Список литературы

1. Набойченко С. С., Агеев Н. Г., Дорошкевич А.П. и др. Процессы и аппараты цветной металлургии: учебник для вузов. Екатеринбург: Уральский государственный технический университет УГТУ-УПИ, 2005. 700 с.

2. Лаверов Н. Г., Абдульманов И. Г., Бловин К. Г. и др. Подземное выщелачивание полиэлементных руд. М.: Изд-во Академии горных наук, 1998. 446 с.

3. Вольдман Г. М. Основы экстракционных и ионообменных процессов гидрометаллургии. М.: Металлургия, 1982. 376 с.

4. Набойченко С. С., Ни Л. П., Шнеерсон Я.М. и др. Автоклавная гидрометаллургия цветных металлов. Екатеринбург: УГТУ-УПИ, 2002. 940 с.

5. Лебедев В. А. Теория электрометаллургии цветных металлов. Екатеринбург: УПИ, 1991. 107 с.

6. Veit H. M., Bernardes A. M., Ferreira J. Z. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy // Journal of Hazardous Materials. 2006. Vol. 137. Iss. 3. P. 1704–1709.

7. Tsapakh S. L., Volkov L. V. Fluidized-bed electrodeposition of heavy non-ferrous metals // The Metallurgical Society of CIM Hydrometallurgy Section. A volume in Proceedings of Metallurgical Society of Canadian Institute of Mining and Metallurgy/ Edited by: P. L. Claessens. 1990. P. 163–174.

8. Матвеев Ю. Н., Стрижко В. С. Технология металлургического производства цветных металлов: (Теория и практика) : Учеб. для вузов по спец. «Автоматизация металлург. пр-ва». М.: Металлургия, 1986. 367 с.

9. Иванов В.Е., Папиров И.И., Тихинский Г.Ф., Амоненко В.М. Чистые и сверхчистые металлы. М.: Металлургия, 1965. 263 с.

10. Delalio A., Bajger Z., Baláz P. Production of magnetite powder and recovery of non-ferrous metals from steel making residues // Developments in Mineral Processing. 2000. Vol. 13. P. C12a–19.

11. Печь для окисления свинца в глет: пат. 1685 Рос. Федерация: F27B19 / Н.
 А. Плотников. № 1398; заявл. 17.01.1925; опубл. 30.09.1926.

12. Зайцев В. Я. Маргулис Е. В. Металлургия свинца и цинка. Учебное пособие для вузов. М.: Металлургия, 1985. 263 с.

13. Гудима Н. В., Шеин Я. П. Краткий справочник по металлургии цветных металлов. М.: Металлургия, 1975. 536 с.

14. Уткин Н. И. Производство цветных металлов. 2 изд. М.: Интермет Инжиниринг, 2004. 442 с.

 Шиврин Г. Н. Металлургия свинца и цинка. М.: Металлургия, 1982.
 Колмаков А. А. Расчеты технологических процессов в металлургии свинца. Красноярск: Практикум, 2005. 90 с.

17. Аппарат для непрерывной очистки расплавленного свинца кристаллизацией: пат. 1565908 Рос. Федерация: C22B13/06 / В. С. Есютин, С. Г. Василец, В. И. Близнюк; заявитель и патентообладатель Институт металлургии и обогащения АН КазССР. № 4476702/31-02; заявл. 23.08.1988; опубл. 23.05.1990. Бюл. № 19.

18. Способ обессеребрения свинца: пат 1555386 Рос. Федерация: C22B13/06 / Н. И. Копылов, ІЈ. И. Летягин, А. Е. Семенов, И. С. Багаев, Ю. А. Маценко, В. В. Богданов, И. А. Пурбаев, Н. К. Кишибеков; заявитель и патентообладатель Государственный научно-исследовательский и проектно-конструкторский институт гидрометаллургии цветных металлов и Усть-Каменогорский свинцово-цинковый комбинат им. В. И. Ленина. № 4393913/23-02; заявл. 13.01.1983; опубл. 07.04.1990. Бюл. № 13.

19. Способ обессеребрения расплавленного свинца: пат. 1369675 Рос. Федерация: C22B13/06 / Томас Рональд Альберт Дейви (AU); заявитель и патентообладатель Томас Рональд Альберт Дейви (AU). № 3295002/23-02; заявл. 09.06.1981; опубл. 23.01.1988. Бюл. № 3.

20. Пискунов И. Н., Орлов А. К. Металлургия свинца. Универсальный процесс. Л.: ЛГИ, 1978. 94 с.

21. Пискунов И. Н., Орлов А. К. Выплавка свинца реакционным способом, рафинирование чернового свинца и переработка полупродуктов. Л.: ЛГИ, 1979.

22. Спектор О. В., Марченко Н. В. Рафинирование чернового свинца: учеб. пособие. Красноярск: ГУЦМиЗ, 2006. 104 с.

23. Марченко Н. В., Вершинина Е. П., Гильдебрандт Э. М. Металлургия тяжелых цветных металлов [Электронный ресурс]: электрон. учеб. пособие / Электрон. дан. (6 Мб). Красноярск : ИПК СФУ, 2009. 394 с.

24. Kroll W.J. Vacuum metallurgy: its characteristics and its scope // Vacuum. 1951. Vol. 1. Iss. 3. P. 163–184.

25. Gutierrez-Perez V.H., Cruz-Ramirez A., Vargas-Ramirez M. Silver removal from molten lead through zinc powder injection // Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. Iss. 2. P. 544–552.

26. Kong X., Yang B., Xiong H. Thermodynamics of removing impurities from crude lead by vacuum distillation refining // Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. Iss. 6. P. 1946–1950.

27. Wang Z., Harris R. Prediction of the thermodynamic properties of Pb-Zn-Ag from binary data / Proceedings of the International Symposium on Primary and Secondary Lead Processing. Halifax. Nova Scotia. August 20–24, 1989. A volume in Proceedings of Metallurgical Society of Canadian Institute of Mining and Metallurgy, 1989. P. 239–251.

28. Roth A. Vacuum Technology (Third, Updated and Enlarged Edition). CHAPTER 4 – Physico–chemical phenomena in vacuum techniques. 1990. P. 149–199.

29. He Z. Dai Y. The Behavior of Parkes' Process of Zinc Crusts in VacuumDistillation // Journal of Kunming institute of Technology. 1989. Vol. 14. No. 1.P. 35–40. (in Chinese).

30. Девятых Г. Г., Еллиев Ю. Е. Введение в теорию глубокой очистки веществ. М.: Наука, 1981. 320 с.

31. Пазухин В. А., Фишер А. Я. Разделение и рафинирование металлов в вакууме. М.: Металлургия, 1969. 204 с.

32. Иванов В. Е., Папиров И. И., Тихинский Г. Ф., Амоненко В. М. Чистые и сверхчистые металлы (получение методом дистилляции в вакууме). М.: Металлургия, 1965. 263 с.

33. Ивановский М. Н., Сорокин В. П., Ягодкин И. В. Физические основы тепловых труб. М.: Атомиздат, 1978. 256 с. 34. Дешман С. Научные основы вакуумной техники. М.: Мир, 1964. 716 с.

35. Розанов Л. Н. Вакуумная техника: Учебник для вузов. М.: Высш. школа, 1982. 207 с.

36. Ding K., Dai Y. Vacuum distillation of silver zinc housing when the lead and zinc Evaporation rate // Nonferrous smelting. 1989. No.1. P. 36–39. (in Chinese).

37. Гаврилин И.В. Плавление и кристаллизация металлов и сплавов. Владимир: Владимирский государственный университет, 2000. 260 с.

38. Chapter 5. Elements of alloying behaviour systematics // Pergamon Materials Series. Intermetallic Chemistry / Edited by R. Ferro and A. Saccone. 2008. Vol. 13. P. 319–529.

39. Singh B.P., Kumar J., Jha I. S. Selected values of the thermodynamic properties of binary alloys // World Journal of Condensed Matter Physics. 2011. Vol. 1. No. 3. P. 97–100.

40. Hultgren R., Desai P. D., Hawkins D. T. Selected Values of the Thermodynamic Properties of Binary Alloys. 1973. ASM. Metal Park. OH, USA. P. 1333–1336.

41. Adhikari D., Jha I. S., Singh B. P. Thermodynamic and Microscopic Structure of Liquid Cu-Sn Alloys // Physica B: Condensed Matter. 2010. Vol. 405. No. 7. P. 1861–1865.

42. Bhatia A. B., Thornton D. E. Structural Aspects of the Electrical Resistivity of Binary Alloys // Physical Review B. 1970. Vol. 8. No. 2. P. 3004–3012.

43. Bhatia A. B., March N. H. Size Effects, Peaks in Concentration Fluctuations and Liquidus Curves of Na-Cs // Journal of Physics F: Metal Physics. 1975. Vol. 5. No.
6. P. 1100–1106.

44. Xie Y., Li L., Wang B. Genesis of the *Zhaxikang* epithermal Pb-Zn-Sb deposit in southern Tibet, China: Evidence for a magmatic link // Ore Geology Reviews. 2017. Vol. 80. P. 891–909.

45. Dong Z. W., Xiong H., Deng Y. Separation and enrichment of PbS and Sb₂S₃ from jamesonite by vacuum distillation // Vacuum. 2015. Vol. 121. P. 48–55.

46. Madavali B., Kim H.-S., Lee K.-H. Large scale production of high efficient and robust p-type Bi-Sb-Te based thermoelectric materials by powder metallurgy //

Materials & Design. 2016. Vol. 112. P. 485-494.

47. Kong X.-f., Yang B., Xiong H. Thermodynamics of removing impurities from crude lead by vacuum distillation refining // Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. Iss. 6. P. 1946–1950.

48. Liu D.C., Yang B., Wang F. Research on the Removal of Impurities from Crude Nickel by Vacuum Distillation // Physics Procedia. 2012. Vol. 32. P. 363–371.

49. Xiong L., He Z, Liu W. Preparation of high-purity bismuth by sulphur deleadization in vacuum distillation // Transactions of Nonferrous Metals Society of China. 2004. Vol. 14. Iss. 6. P. 1210–1214.

50. Wei K., Ma W., Dai Y. Vacuum distillation refining of metallurgical grade silicon (I) – Thermodynamics on removal of phosphorus from metallurgical grade silicon // Transactions of Nonferrous Metals Society of China. 2007. Vol. 17. Iss. A02. P. 1022–1025.

51. Wang Y. Metallic Materials and Thermal Treatment. Beijing: Machinery Industry Press, 2004. P. 288–289.

52. Dai Y. Volume of Binary Alloy Phase Diagram. Science Press. 2009. P. 57, 88, 351, 776, 865.

53. Xu J., Kong L., Xu B. (Vapor + Liquid) Equilibrium (VLE) for Binary Lead-Antimony System in Vacuum Distillation: New Data and Modeling Using Nonrandom Two-Liquid (NRTL) Model // Metallurgical and Materials Transactions A. 2016. Vol. 47. Iss. 9. P. 4494–4501.

54. Lapsa J., Onderka B., Schmetterer C. Liquidus determination in the Cu–Sb–Sn ternary system // Thermochimica Acta. 2011. Vol. 519. Iss. 1–2. P. 55–58.

55. Prausnitz J. M., Lichtenthaler R. N., Azevedo E. G. D. Molecular thermodynamics of fluid-phase equilibria. 2nd ed. N.-J.: Prentice-Hall, Englewood Cliffs, 1986. P. 117–123.

56. Howell W. J., Lira C. T., Eckert C. A. A linear chemical-physical theory model for liquid metal solution thermodynamics // AIChE Journal. 1988. Vol. 34. P. 1477–1485. 57. Wilson G. M. Vapor-liquid equilibrium XI. A new expression for the excess free energy of mixing // Journal of the American Chemical Society. 1964. Vol. 86.

58. Kubaschewski O., Alcock C. B. Metallurgical thermochemistry. Beijing: Metallurgical Industry Press, 1985. P. 486–513. (in Chinese).

59. Dai Y.-n., Zhao Z. Vacuum metallurgy. Beijing: Metallurgical Industry Press, 1988. P. 114–115. (in Chinese).

60. Wei K. X., Ma W. H., Dai Y. N. Vacuum distillation refining of metallurgical grade silicon (I)–Thermodynamics on removal of phosphorus from metallurgical grade silicon // Transactions of Nonferrous Metals Society of China. 2007. Vol. 17. Iss.10. P. 1022–1025.

61. Ma W. H., Wei K. X., Yang B. Vacuum distillation refining of metallurgical grade silicon (II) – Kinetics on removal of phosphorus from metallurgical grade silicon // Transactions of Nonferrous Metals Society of China. 2007. Vol. 17. P. 1026-1029.

62. Jia G., Yang B., Liu D. Deeply removing lead from Pb–Sn alloy with vacuum distillation // Trans. Nonferrous Met. Soc. China. 2013. Vol. 23. Iss. 6. P. 1822–1831.

63. Kong L.X., Xu J.J., Xu B.Q. Vapor-liquid phase equilibria of binary tin-antimony system in vacuum distillation: Experimental investigation and calculation // Fluid Phase Equilibria. 2016 Vol. 415. P. 176–183.

64. Saatçi B., Meydaneri F., Özdemir M. Experimental determination of interfacial energy for solid Sn in the Sn–Ag alloy by using radial heat flow type solidification apparatus // Surface Science. 2011. Vol. 605. Iss. 5–6. P. 623–631.

65. Углев Н. П. Влияние состава на характер межатомного взаимодействия в расплавах «свинец–олово» // Вестник ПНИПУ. Химическая технология и биотехнология. 2015. № 2. С. 64–72.

66. Павлов В. В. О «кризисе» кинетической теории жидкости и затвердевания. Екатеринбург: Уральский государственный горный университет УГГУ, 1997. 392 с.

67. Полухин В. А., Ватолин Н. А. Моделирование разупорядоченных и наноструктурированных фаз. Екатеринбург: Уральское отделение Российской Академии Наук УрО РАН, 2011. 461 с. 68. Срывалин И. Т., Есин О. А., Ватолин Н. А. К термодинамике жидких металлических сплавов // Физическая химия металлургических расплавов. Вып. 18. Свердловск: Уральский филиал Академии наук СССР, 1969. С.3–43.

69. Taylor J.W. The surface tension of liquid metal solutions // Acta Met. 1956. Vol. 4. No. 5. P. 460–468.

70. Стремоусов В. И., Рубцов А..С., Школьников В..А. Скорость ультразвука и сжимаемость некоторых жидкометаллических бинарных систем // ЖФХ. 1968. Т.
42. № 1. С. 69-72.

71. Вилсон Д. Р. Структура жидких металлических сплавов. М.: Металлургия, 1972. 247 с.

72. Savaramakrishman C.S., Misra G., Kumar R. Thermodynamic properties of liquid lead-tin alloys // Irans. Indian Inst. Metals. 1973. Vol. 26. No. 4. P. 9–13.

73. Камболов Д. А. Поверхностные свойства расплавов на основе свинца, цинка, олова и образование микро(нано)фаз при их взаимодействии с медью, алюминием и специальными сталями: дис... канд. техн. наук. 01.04.15. Нальчик, 2014. 138 с.

74. Fisher H. J., Phillips A. Viscosity and density of liquid lead-tin and antimonycadmium alloys // Transaction of AIME. 1954. Vol. 200.P. 1060–1071.

75. Adachi A., Morita Z., Ogino Y. The viscosity of liquid Pb–Sn Alloys // The properties of Liquid metals. London; New-York, 1973. P. 585.

76. Евсеев А.М., Воронин Г.Ф. Термодинамика и структура жидких металлических сплавов. М.: Металлургия, 1972. 247 с.

77. Saatçi B., Meydaneri F., Özdemir M. Experimental determination of interfacial energy for solid Sn in the Sn–Ag alloy by using radial heat flow type solidification apparatus // Surface Science. 2011. Vol. 605. Iss. 5–6. P. 623–631.

78. Chen S., Wu H., Huang Y., Gierlotka W. Phase equilibria and solidification of ternary Sn–Bi–Ag alloys // Journal of Alloys and Compounds. 2010. Vol. 497. Iss. 1–2. P. 110–117.

79. Huang Y., Chen S., Chou C., Gierlotka W. Liquidus projection and thermodynamic modeling of Sn–Zn–Cu ternary system // Journal of Alloys and Compounds. 2009. Vol. 477. Iss. 1–2. P. 283–290.

80. Chapter 5. Elements of alloying behaviour systematics // Pergamon Materials Series. Intermetallic Chemistry / Edited by R. Ferro and A. Saccone. 2008. Vol. 13. P. 319–529.

81. Sohn H. Y. Nonferrous metals: Production and history // Encyclopedia of Materials: Science and Technology. Elsevier Science Ltd, 2001. P. 6191–6197.

82. Timothy W. E., Abbas H. M. The refining of secondary lead for use in advanced lead-acid batteries // Journal of Power Sources. 2010. Vol. 195. Iss. 14.
P. 4525–4529.

83. Kircher J. Lead recycling technology // Journal of Power Sources. 1989. Vol.28. Iss. 1–2. P. 85–91.

84. Legarth J. B. Environmental decision making for recycling options // Resources, Conservation and Recycling. 1997. Vol. 19. Iss. 2. P. 109–135.

85. Liu B.-l., Wang B.-j., Li L.-d. Production practice of removing tin in crude lead in refining process of lead electrolysis // Nonferrous Mining and Metallurgy. 2013. Vol. 29. Iss. 2. P. 35–37. (in Chinese).

86. Smith J.M. Introduction to Chemical Engineering Thermodynamics / J.M. Smith, H.C. Van Ness, M.M. Abbott. – New York: McGraw-Hill, 2001. – 749 p.

87. Tao D.P. A new model of thermodynamics of liquid mixtures and its application to liquid alloys // Thermochim. Acta. 2000. Vol. 363. P. 105–113.

88. Poizeau S., Kim H.J., Newhouse J.M., Spatocco B.L., Sadoway D.R. Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys // Electrochim. Acta. 2012. Vol. 76. P. 8–15.

89. Newhouse J. M., Poizeau S., Kim H., Spatocco B.L., Sadoway D.R. Thermodynamic properties of calcium–magnesium alloys determined by emf measurements // Electrochim. Acta. 2013. Vol. 91. P. 293–301.

90. Miyazaki N., Adachi N., Todaka Y., Miyazaki H., Nishino Y. Thermoelectric property of bulk CaMgSi intermetallic compound // Journal of Alloys and Compounds. 2017. Vol. 691. P. 914–918.

91. Cahn R.W., Haasen P., Kramer E. J. Materials Science and Technology,
vol. 1. Structure of Solids. Weinheim: VCH, 1993. 621 p.

92. Hultgren R., Desai P. D., Hawkins D. T., Geiser M., Kelley K.K. Selected Values of the Thermodynamic Properties of Binary Alloys. ASM. OH: Metals Park, 1973. 847 p.

93. Wilson G.M. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing // J. Am. Chem. Soc. 1964. Vol.86. P. 127–130.

94. Winkler O., R. Bakish. Vacuum metallurgy. Amsterdam: Elsevier, 1971.

95. Upadhyay S.K. Chemical Kinetics and Reaction Dynamics. New Delhy: Anamaya Publishers, 2006. 256 p.

96. Yang B. Study on basic regularity of the vacuum distillation of pure lead.

Kunming: Kunming University of Science and Technology, 1990. 92 p.

97. Savov L., Janke D. Evaporation of Cu and Sn from Induction-stirred Iron-based Melts Treated at Reduced Pressure // ISIJ International 2000. Vol. 40. P. 95–104.

98. Iida T., Guthrie R.I.L. The physical properties of liquid metals. Oxford UK: Clarendon Press, 1988. 288 p.

99. Dai Y., Yang B. Vacuum Metallurgy for Non-Ferrous Metals and Materials. Beijing: Metallurgical industry Press, 2000. 124 p (in Chinese).

100. Yang H. W., Yang B., Xu B. Q., Liu D. C., Tao D. P. Application of molecular interaction volume model in vacuum distillation of Pb-based alloys // Vacuum. 2012. Vol. 86. Iss. 9. P. 1296–1299.

101. Nan C. B., Xiong H., Xu B.-q., Yang B., Liu D. C., Yang H. W. Measurement and modeling of phase equilibria for Sb-Sn and Bi-Sb-Sn alloys in vacuum distillation // Fluid Phase Equilibria. 2017. Vol. 442. P. 62–67.

102. Zhao J. Y, Yang H. W., Nan C. B., Yang B., Liu D. C., Xu B.-q. Kinetics of Pb evaporation from Pb-Sn liquid alloy in vacuum distillation // Vacuum. 2017. Vol. 141. P. 10–14. 08103. Seith W., Johnen H. State diagram of the system Pb-Zn // Z. El-ektrochem. 1952. Vol. 56. P. 140–143.

104. Kong L.-x., Yang B., Xu B.-q., Li Y.-f., Li L. Application of molecular interaction volume model in separation of Pb–Sn–Sb ternary alloy by vacuum distillation // Transactions of Nonferrous Metals Society of China. 2013. Vol. 23. Iss. 8. P. 2408 105. Dong Z. W., Xiong H., Deng Y., Yang B. Separation and enrichment of PbS and Sb₂S₃ from jamesonite by vacuum distillation // Vacuum. 2015. Vol. 121. P. 48-55.

106. Баранов М. А. Сферическая симметрия электронных оболочек атомов и стабильность кристаллов // Электронный физико-технический журнал. 2006. Т. 1. С. 34–48.

107. Jiang W. L., Zhang C., Xu N., Yang B., Xu B. Q., Liu D. C., Yang H. W. Experimental investigation and modelling of phase equilibria for the Ag–Cu–Pb system in vacuum distillation // Fluid Phase Equilibria. 2016. Vol. 417. P. 19–24.

108. Vol A.E. Structure and Properties of Binary Metallic Systems. A Reference Book. Vol. 2. Moscow: Fizmatgiz, 1962. 982 p. (in Russian).

109. Диаграммы состояния двойных металлических систем. Справочник: В 3 т. / Ред. Лякишева Н.П. М.: Машиностроение, 1996–2000. Т.1. 992 с. Т.2.1024 с. Т.3. Кн.2 448 с.

110. Yang, B. Study on basic regularity of the vacuum distillation of pure lead. Kunming: Kunming University of Science and Technology, 1990. 92 p.

111. Зайцев И.Д., Зозуля А.Ф., Асеев Г.Г. Машинный расчет физико-химических параметров неорганических веществ. М.: Химия, 1983. 256 с.

112. Wilson G.M. Vapor-Liquid Equilibrium. XI: A New Expression for the Excess Free Energy of Mixing // J. Am. Chem. Soc. 1964. Vol. 86. P. 127–130.

113. Моделирование элементов и технологических процессов / Под ред. П. Антонетти, Д. Антониадиса, Р. Даттона, У. Оулдхема: Пер. с англ. М.: Радио и связь, 1988. 496 с.

114. Ловчиков В.С. Щелочное рафинирование свинца. М.: Металлургия, 1961. 150 с.

115. Шиврин Г.Н. Металлургия свинца и цинка. М.: Металлургия, 1982. 352с.

ПРИЛОЖЕНИЕ 1

УТВЕРЖДАЮ

Директор филиала

"Производство сплавов цветных металлов"

Т.М. Хафизов 2019 r

Сравнительный экономический расчет

Технология переработки сплавов оловянных методом ваккумной дистилляции до чернового олова

ст.	Наименование	Ед. изм.	Получение	сплава оловянного	Переработка сдлава оловянного до чернового олова		
			Кол-во	Сумма	Кол-во	Сумма	
	Свинец рафинированный	TH	18 500,00	x	18 500,00	x	
1	в т.ч. Свинец	111	18 497,06		18 497,06		
	ЗАДАТЬ В ПРОИЗВОДСТВО	111	19 895,55	1 254 537 925	19 895,55	1 133 767 633	
	Сырые						
	Итого сырья	TH	21.956,69	1 457 055 335,43	21 956,69	1 457 055 335,43	
	Услуги по заготовке сырья		0	1 925 400	0	1 925 400	
	Снятие попутной продукции	руб		-195 257 320		-325 691 470	
	Цинк в окися цинка технической (-)	TH	-1 202,09	-3 606 270	-1 202,09	-3 606 270	
	Медь в штейне медном (-)	TH	-22,18	-2 661 600	-22,18	-2 661 600	
	Олово в сплаве оловосодержащем (-)	78	-311,35	-188 989 450			
	Олово в олове черновом (-)	TB			-310,12	-319 423 600	
	Потери	TH	-2 061,14		-2 061,14		
	Изменение НЗП		0	-9 185 490	0	478 367	
	Получево	TH	19 895,55	1 254 537 925	19 895,55	1 133 767 633	
	Сплав свинцово-висмутистый(свинец)	TH	1 398,49	174 811 250	1 398,49	174 811 250	
	Свинец рафинированный	TH	18 497,06	1 079 726 675,22	18 497,06	958 956 382,88	
-	РАСХОЛЫ ПЕРЕЛЕЛА						
2	Амортизация	ρν6.		110 454 400		117 424 400	
-	Арения			6 882 000		6 882 000	
3	Вспомогательные материалы	ρνő.	x	276 491 043,91	x	276 488 475,24	
	T3P	pv6.		14 343 282,13		14 343 136,73	
4	Топливо технологическое	руб.	×	101 460 330,05	x	101 460 330,05	
	T3P	pyő.		3 775 297,81		3 775 297,81	
	Газ природный	т.м3	6 686,40	34 763 402,03	6 686,40	34 763 402,03	
5	Энергетические затраты	руб.	x	63 183 360,89	x	64 379 624,36	
6	ЗП основного производства	руб.	x	88 525 800,00	x	89 024 160,00	
7	Отчисления на соцстрах	руб.	x	32 103 881,37	x	32 284 611,62	
9	Общепрозводствен, расходы	руб.	x	398 031 000,00	x	400 807 500,00	
10	Всего расходов передела	руб.		1 077 131 816,22		1 088 751 101,27	
11	Цеховая себестоямость	руб.		2 156 858 491,43		2 047 707 484,15	
12	Общезаводские расходы	руб.		158 293 000,00		158 293 000,00	
13	Производствен. себест-ть	руб.		2 315 151 491,43		2 206 000 484,15	
14	Коммерческие расходы	руб.		30 300 000,00		30 300 000,00	
15	Полная себестоимость	руб.		2 345 451 491,43		2 236 300 484,15	
16	Средняя цена реализации	pyő.		2 561 939 200		2 561 939 200	
	62 py6	долл					
17	Прибыль(+)/убыток (-)	руб.		216 487 709		325 638 716	
18	Прибыль чистая	млн. руб.		173,19		260,0	
19	Прибыль дополнительная	мли. руб.		0		87,0	

Начальник ПЭО ПСЦМ

Начальник ПТО ПСЦМ

AG OPP.

Д.А. Цокур

А.Е. Тимацюв

ПРИЛОЖЕНИЕ 2

УТВЕРЖДАЮ: Директор по производству главный инженер AO «E3 OLIM» К.Б.Ржаной 2019 r. AKT

опытно-промышленных испытаний по вакуумной дистилляции оловянного сплава

В ноябре-декабре 2018 года были проведены опытно-промышленные испытания по вакуумной дистилляции оловянного сплава в АО «Екатеринбургский завод ОЦМ».

Цель работы - определить возможность получения чернового олова с извлечением в отдельные продукты (возгоны) на первой стадии мышьяка, а затем сурьмы и свинца.

Состав исходного оловянного сплава представлен в таблице 1 (приложение 1).

Испытания проводили на установке компании «IECO Keeps on improving» (Италия). Основные характеристики установки:

мощность индукционной печи ~ 50 кВт;

максимальный объем сплава в тигле ~ 30 кг;

максимальная рабочая температура – 1300 °C;

максимальный уровень вакуума в вакуумной камере 0,01 Па.

Переработано – 81,2 кг оловянного сплава.

Получено:

1-й дистиллят (мышьяковый) – 1,4 кг;

- 2-й дистиллят (сурьмяно-свинцовой) – 28,2 кг;

олово черновое – 50,2 кг.

Режимы дистилляции изменяли в следующих пределах:

	Температура, °С	Длительность, сек	Давление, Па
1-я стадия	600-800	900-7200	80-60000
2-я стадия	1100-1300	1800-5400	0,2-20

Результаты испытаний представлены в таблице 2 (приложение 1).

Испытания показали:

1. Извлечение олова в кубовый остаток (олово черновое) для лучших опытов составляет более 99 %. При этом состав полученного олова чернового следующий: Sn – 96,8 \div 97,1 %; Pb – 0,024 \div 0,3 %; Sb ~ 1,0 %; As – 0,01 \div 0,032 %; Cu – 1,5 \div 1,7 %; Fe - 0,08 \div 0,19 %; Bi – 0,005 \div 0,01 %; S ~ 0,008 %.

 Выделить полно мышьяк в 1-й дистиллят не удалость, что, вероятно, связано с формой его нахождения в оловянном сплаве - SnAs. Максимальное содержание и извлечение мышьяка в него составило, соответственно, 40,5 % и 35,1 %.

 Основное количество мышьяка (65-80 %), свинца (до 90-99 %) и сурьмы (до 92-95 % и более) концентрируется во 2-м дистилляте.

Заключение:

В результате испытаний наработано олово черновое в количестве ~ 50 кг (содержание Sn ~ 97 %), которое может являться товарной продукцией.

Полученное черновое олово не соответствует марочному по трем элементам – медь, железо и сурьма (приложение 1, таблица 3). Довести его до марочного возможно путем минимизации заражения исходного оловянного сплава железом и медью на стадии его производства, и проведением дополнительной стандартной операции пирометаллургического (котлового) рафинирования от сурьмы.

А. А. Королев Гл. инженер АО «Уралэлектромедь» К. Л. Тимофеев Начальник ИЦ, к. т. н. СОГЛАСОВАНО А. А. Фомин Начальник ОИР АО «ЕЗ ОЦМ», к. т. н.

Таблица 1 - Химический состав исходного оловянного сплава

п				Содер	эжани	ie, %			
Продукт	Pb	Sn	As	Sb	Cu	Fe	S	Au	Ag
Sn сплав	30,60	50,40	4,31	11,10	1,05	0,10	0,20	0,001	0,021

OIIIbiri 1 100 0,1 32,7 66,1 1,1	OIIbrr 2 100	Ottkr 3	OIIbIT 4	Ombrr 5	Опыт 6*	Ombry 7	Опыт 8
100 0,1 32,7 66,1 1,1	100						
0,1 32,7 66,1 1,1	1.0	100	001	100	100	100	100
32,7 66,1 1,1	1,0	4,3	4,8	2,9	0,4	0,8	0,01
66,1 1,1	37,8	37,7	34,3	44,0	0'0	44,7	46,9
1,1	60,5	56,2	53,1	53,1	0,0	53,8	52,5
	0,7	1,9	7,8	0'0	0,0	0,7	0,5
700	700	850	850	850	4	850	600
1800	1800	900	1800	1500	1S	3600	7200
1100	1100	1150	1300	1280		1280	1300
2700	2700	5400	4000	1800		1800	5400
20	20	20	20	20	40000	10000	60000
2500	2500	80	80	80	E	10000-20000	50000
3500	3500	120	120	120	4	10000-20000	60000
5	5	0,5	0,5	0,5		0,5	0,2
20	20	20	20	20		20	20
,	40,5/9,6	28,8/28,8	31,7/35,1	30/20,1	57,4/5,2	34/5,9	
e	6,5/0,6	4,8/1,9	3,4/1,5	7,5/1,9	9,5/0,3	8,6/0,6	
а	47,9/1,6	54,5/7,7	54/8,4	55,3/5,2	29,1/0,4	51,1/1,3	1
r.	5,5/0,1	0,9/0,1	0,55/0,1	2,4/0,1	3,5/0,03	3,6/0,1	1
8,83/67	5,74/50	6,59/57,6	5,41/43	6,15/62,8		7,07/73,3	8,04/87,5
8,52/25,1	9,8/33,4	22,13/75,1	26,51/81,9	22,2/88	3	26,2/~100	26,8/~100
72,9/78	79,1/98	66,9/82,4	64,4/72,2	57,3/82,4		63,6/92,9	71,22/~100
2,47/1,6	3,8/2,8	1,23/0,9	3,09/2,1	5,97/5,2	,	5,94/5,3	9,1/8,5
0,3/4,3	0,09/1,3	0,076/1	0,025/0,3	0,01/0,2		0,01/0,2	0,032/0,39
9,1/54,2	7,7/42	2,1/10,6	0,81/3,9	1/4,8		1,5/7,1	1,0/4,7
5,5/12	0,2/0,4	2,4/4,4	0,52/0,9	0,024/0,04	9	0,004/0,01	0,3/0,52
77,1/~100	87,2/~100	93,4/~100	94,5/99,6	97,1/~100	,	96,1/~100	96,8/~100
2,2,4 2,1,2,5,5,8 2,4,1,2,2,4 2,4,1,2,4,1,2,4 2,4,1,2,1,2	20 500 500 500 20 20 20 20 20 20 5/1 5/1 5/1,6 5/12 5/12 5/12	20 20 200 2500 500 3500 5 5 20 3500 50 3500 5 5 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 9,8/9,6 20 47,9/1,6 20 5,5/0,1 20 5,5/0,1 20 5,7/1,6 20,1/9 7,7/42 5/1,6 3,8/2,8 7/1,6 3,8/2,8 5/1,2 0,2/0,4 1/~100 87,2/-100	20 20<	20 <t< td=""><td>20 20<</td><td>20 20 20 20 20 4000 50 4000 50 4000 50 4000 50 5 5 5 0.5 0.5 0.5 0.5 0.5 50 3500 120 120 120 120 50 20 20 20 20 20 50 20 $47,91,16$ $54,57,7$ $54,84$ $55,35,2$ $29,10,4$ $47,91,15$ $54,84$ $55,35,2$ $29,10,4$ $5,50,1$ $0,90,1$ $0,50,20,1$ $2,4,0,1$ $3,5/0,3$ </td></t<> <td>20 20 20 20 20 20 1000 10000 500 2500 80 80 80 $10000-20000$ 50 3500 120 120 120 $10000-20000$ 5 5 0.5 0.5 0.5 0.5 0.5 5 5 0.5 0.5 0.5 0.5 20 20 20 20 20 20 20 $40.5/9.6$ $4.8/1.9$ $3.4/1.5$ $7.5/1.9$ $9.5/0.3$ $8.6/0.6$ $40.5/9.6$ $4.8/1.9$ $3.4/1.5$ $7.5/1.9$ $9.5/0.3$ $8.6/0.6$ $40.5/9.6$ $4.8/1.9$ $3.4/1.5$ $7.5/1.9$ $9.5/0.3$ $8.6/0.6$ $40.5/9.6$ $28.8/0.6$ $5.4/1.4$ $5.3/3.5.2$ $29.1/0.4$ $51.1/1.3$ $5.5/0.1$ $0.9/0.1$ $0.5/0.1$</td>	20 20<	20 20 20 20 20 4000 50 4000 50 4000 50 4000 50 5 5 5 0.5 0.5 0.5 0.5 0.5 $ 50$ 3500 120 120 120 120 $ 50$ 20 20 20 20 20 $ 50$ 20 20 20 20 20 $ 20$ 20 20 20 20 20 $ 20$ 20 20 20 20 20 $ 20$ 20 20 20 20 20 $ 47,91,16$ $54,57,7$ $54,84$ $55,35,2$ $29,10,4$ $ 47,91,15$ $54,84$ $55,35,2$ $29,10,4$ $ 5,50,1$ $0,90,1$ $0,50,20,1$ $2,4,0,1$ $3,5/0,3$	20 20 20 20 20 20 1000 10000 500 2500 80 80 80 $ 10000-20000$ 50 3500 120 120 120 $ 10000-20000$ 5 5 0.5 0.5 0.5 0.5 $ 0.5$ 5 5 0.5 0.5 0.5 $ 0.5$ 20 20 20 20 20 20 $ 20$ $40.5/9.6$ $4.8/1.9$ $3.4/1.5$ $7.5/1.9$ $9.5/0.3$ $8.6/0.6$ $ 40.5/9.6$ $4.8/1.9$ $3.4/1.5$ $7.5/1.9$ $9.5/0.3$ $8.6/0.6$ $ 40.5/9.6$ $4.8/1.9$ $3.4/1.5$ $7.5/1.9$ $9.5/0.3$ $8.6/0.6$ $ 40.5/9.6$ $28.8/0.6$ $5.4/1.4$ $5.3/3.5.2$ $29.1/0.4$ $51.1/1.3$ $ 5.5/0.1$ $0.9/0.1$ $0.5/0.1$

иной листиплянии Sn сплава t ć c

* - проведение только процесса дегазации

ſ	Ι		Сумма определяемых брамение собрание с трание брамение с трание с т с трание с тр	0,085	0,1	0,435	1,51	3,51		•	ŝ
			видиди	ł	•	1		,			£.
И 8)			никель					•			
eNe 5			кобальт	ł.	3		1				
IT51 N			οτοποε	8	,			,		,	,
0 (011	Химический состав, %		odgədəə	ĸ	,		,	,		,	
HOBOL		8	พื้หนูแต _้ ร	1	1			4	и 8)		
ва чер		не боле	йинимощь	0,002	0,002	0,002	1		NeNe 5	,	
юпо и		тмеси, 1	линк	0,002	0,002	0,002	•		OILBITEI		
0-75)		При	repa	0,007	0,008	0,016	0,02	0,02	- MIIC	0,008	0,008
CT 86			сурьма	0,015	0,015	0,05	0,3	0,3	IOBOE (1,0	1,0
o (ГО			висмут	0,01	0,015	0,05	0,06	0,10	so yeph	0,005	0,01
TOHPO			свинец	0,025	0,04	0,25	1,0	3,0	Оло	0,024	0,30
a Map			медь	0,01	0,01	0,03	0,10	0,10	2=62	1,5	1,70
B OIJOE			жепезо	0,009	0,009	0,02	0,02	0,02		0,19	0,08
COCTAI			жашым	0,01	0,01	0,015	0,03	0,05		0,01	0,03
3 - XMM		Основной	Олово, не менее	99,915	006.66	99,565	98,490	96,430		97,1	96,8
Таблица		-	01 пч	01	02	03	04		045	048	