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ABSTRACT 

An algorithm for choosing the number of quadrature nodes before calculation of a view factor is 

proposed. Simple criterion is introduced that allows one to estimate the error in the computed view 

factor. The algorithm allows one to save much computation time by always using the minimum 

number of nodes for each pair of surface zones and insures a desired accuracy. The algorithm is 

applied for model of a continuous furnace and is compared with a standard method which uses 

predefined number of nodes at each surface. The proposed algorithm is many times faster and also 

more accurate than the standard one.  
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NOMENCLATURE 

A – area of surface 

ED – Effective distance between two quadrilaterals 

Fij – view (angle, configuration) factor 

M – number of boundary surfaces  
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n – number of quadrature nodes in single integration 

N – total number of quadrature nodes 

n  – surface normal vector 

O – center of sphere 

r – distance between two points 

R – radius of a sphere 

v – visibility of surface patches 

 

Greek: 

  – angle between surface normal and a vector connecting two points 

 

INTRODUCTION 

 

The basic formula for view factor 12F  is defined by double area integral:  
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where 1A  and 2A  are areas of surfaces, 1  and  2  are the angles between the unit normals 1n  and 

2n  to surface differential elements 1Ad  and 2Ad and the vector, r, between those differential 

elements, and r is the length of that vector. This factor represents the ratio of radiant energy leaving 

a diffuse surface i that is directly incident on a diffuse surface j [1]. In large scale metallurgical 

reheating furnaces one may require evaluation of tens or even hundreds of thousands of view 

factors ijF  [2]. This then may represent a major computational effort in calculating the radiation 

heat transfer rates and temperatures at a large number of surface zones in a furnace. Under these 

circumstances accurate evaluation of a very large number (of the order of 10
4
 to 10

6
) view factors 

may become a major computational effort. The purpose of this paper is to asses a priori the 

accuracy of the view factor calculation and to develop an algorithm for choosing the integration 

method and number of nodes before the calculation. 
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CRITERIA OF ERROR ESTIMATION – EFFECTIVE DISTANCE FOR TWO 

POLYGONS (ED) 

 

In this section we propose a criterion of polygon arrangement. Let us calculate a bounding 

sphere for each polygon. Each polygon may be inscribed into its bounding sphere, but not all 

polygon vertices will lie at the spherical surface. A simple algorithm for a bounding sphere 

calculation is available [3]. The sphere calculated is about 5% bigger than the ideal minimum-radius 

sphere. The algorithm is executed in two passes. The first pass finds two points that are close to 

maximum spaced one. This pair describes the initial guess for the sphere. The second pass 

compares each point to the current sphere. If the point is outside the sphere then the sphere is 

enlarged to include this point. Let us introduce an effective distance between two figures (polygons) 

as a distance between their bounding sphere centers divided by the sum of sphere radii (Fig. 1): 
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Figure 1 Geometry and nomenclature for effective distances (ED) 

 

 

EXPERIMENTAL SCHEME 

 

View factors between a number of arbitrarily located quadrilaterals were computed, and one 

analyzes how the accuracy of the computation depends on introduced criterion ED.  

View factors between various polygons were computed using double area integration. 

Gaussian quadrature was used. In this section n is number of quadrature nodes used in single 

quadrature formula. So, the total number of nodes N is n
4
 in double area integration. 

Data base of quadrilaterals was generated as follows. Four basic quadrilaterals were used (Fig. 

2): unit rectangle (a), a long rectangles (b), and two parallelograms with different lengths with angle 

60
o
 (c, d).  These schemes  are often encountered  in combustion furnace surface zone  subdivision. 

View factors were calculated for pairs of two quadrilaterals of the same form. The first 

quadrilateral was located at the plane z = 0 and was not transformed. Its area is always unit and its 
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center is located in the origin. The second quadrilateral was generated by multiplying the size of the 

first quadrilateral by a «zoom factor», variation of its distance (offset) from the origin and its 

declination plane (Fig. 2e). 

A number of zoom factors was used: 0.1, 0.5, 1.0, 2.0, 10.0. Vertical offset values are: 0.1, 

0.13 … 8.7 – a geometrical progression with factor 1.3. Eighteen different values were used. The 

horizontal offset values are of the same progressions, but the first value is set to zero. Rotation of a 

polygon around the x and z axes was made. The rotation angle was varied from zero to 2  by step 

of 18 . The zoom factor, the vertical and the horizontal offsets and rotation angles were varied 

independently. The total number of various polygon arrangements was 5x10
5
. 
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Figure 2 Quadrilaterals: a-d) basic quadrilaterals; e) transformation of second quadrilateral. 

 

 

EXPERIMENTAL RESULTS 

 

Figure 3 shows the relative error in computed view factors by double contour integration for n 

= 3. It can be seen that the error decreases faster as ED increases. One can find values of ED: ED(10 

%), ED(5%), ED(2%) and ED(1%), such that if EDij is computed for a pair of quadrilaterals i, j is 

more than, for example, ED(5%) then the error may be estimated less than 5 %  before the view 

factor calculation (see Fig. 3). In other words, the following estimates are carried out:   
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and so on for any desired accuracy. 
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Values of ED(10 %), ED(5%), ED(2%) and ED(1%) are defined for various node numbers 

(Table 1). Reference values of view factors were calculated by single contour integration [4] for n = 

40 in double precision. All calculations were implemented in Fortran and executed on Pentium II 

1.83 GHz. 

Table 1 shows that the accuracy of the results strongly depends on the introduced criterion 

ED, and one can compute the view factors using only a few quadrature nodes. Using the estimates 

given in Eqs. (2) and Table 1, one can state that an algorithm of choosing the integration method 

and nodes number as follows:  

1) Before calculation a desired accuracy x % for all view factors is specified. It means that a 

column in this table is specified.  

2) For each quadrilateral its bounding sphere is calculated. View factor calculations is started 

next.  

3) For each pair of quadrilaterals  i, j criterion EDij is calculated. For each method a value n is 

found such that )1%,()%,(  nxED
ij

EDnxED . The left side of the inequality insures the 

desired accuracy. The right side of the inequality leads to the use of minimum number of 

quadrature nodes.  
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Figure 3 Dependence between relative error in computed view factors and ED. Each point 

represents one of 5*10
5
 view factors. Only view factors more than 10

-4
 were calculated 
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Table 1 Effective distances (ED) that define a relative error less than predefined value 

n, number of nodes in 

each single integral 

Nodes at each 

surface 

ED 

(10 %) 

ED 

(5%) 

ED 

(2%) 

ED 

(1%) 

1 1
2
=1 4.10 6.20 7.40 9.20 

2 2
2
 = 4 1.55 2.00 2.60 2.95 

3 3
2
 = 9 1.20 1.35 1.55 1.60 

4 4
2
 = 16 1.05 1.20 1.20 1.35 

5 5
2
 = 25 0.9 1.05 1.05 1.20 

6 6
2
 = 36 0.8 0.9 1.00 1.05 

 

 

APPLICATION EXAMPLE 

 

A model of continuous furnace is considered as an example of real industrial geometry with 

obstructions. The model is depicted in Fig. 4, and its features are the following: the number of 

emitting and irradiated (receiving) surfaces (walls of entire furnace and of cylindrical bars) is 3420, 

the number of view factors to be calculated (using the reciprocity rule) is 5.8x10
6
. 

 

x
z

y

Nodes: 46x7x21 

Faces: 45x6x20 (5400 cells)

 

Figure 4 Model of continuous furnace in Chelyabinsk, Russia 

 

The view factor calculation was performed using double area integration since application of 

this method for geometries with obstacles is straightforward. There are two schemes to take into 

account the obstructions: one-ray and multiple-rays scheme. In one-ray scheme [5] the view factor 

is multiplied by visibility term v.  One ray is traced from the center of the 1-st surface towards to 

the center of the 2-nd surface. If the ray missed all obstructions, v = 1, otherwise v = 0. Multiple-

rays scheme is more accurate, but it is also much more time-consuming. In the multiple-rays 
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scheme [6] rays are traced between each two quadrature nodes i, j at two surfaces, and for each i, j 

visibility term ijv is calculated. Volume-by-volume advancement algorithm was used for ray tracing 

[7]. 

 

 

RESULTS AND DISCUSSION 

 

The calculation of view factors is not analytic, therefore the enclosing rule is not satisfied. For 

each row i of the MxM view factor matrix the error of enclosing can be calculated as 

1
1

 
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iji Ferr . The maximal and average errors of enclosing rule can be calculated as 
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respectively. Maximum and average errors of enclosing 

are used in the present study as cumulative values of the accuracy. These errors and time required 

for the view factor calculations are summarized in Tables 3 and 4. All time estimate calculations 

were made for a personal computer with CPU Pentium II 1.83 GHz. 

Table 2 Errors and timing of calculation using a standard algorithm with predefined number of nodes 

at each surface 

Nodes at each 

surface 

One-ray scheme Multiple-rays scheme 

err_max err_average Time, sec err_max err_average Time, sec 

1 1.284 0.1744 48 1.284 0.1744 48 

4 0.974 0.1198 53 0.960 0.1127 402 

9 0.824 0.1042 67 0.800 0.0930 1929 

16 0.708 0.0925 101 0.683 0.0805 6021 

25 0.627 0.0835 171 0.595 0.0707 14693 

36 0.561 0.0764 293 0.528 0.0631 Several hours 

49 0.510 0.0706 491 0.475 0.0568 Several hours 

64 0.469 0.0659 799 0.432 0.0522 Several hours 

81 0.434 0.0620 1255 0.396 0.0481 Several hours 

100 0.406 0.0587 1872 0.367 0.0446 Several hours 

The maximum and average enclosing errors in one-ray scheme are grater respectively 5.6 % 

and 18 % than those in multiple-rays scheme. But time required in multiple-rays scheme is up to 

two orders greater. Either errors and time for calculations strongly depend on the number of nodes 

at each surface, but the time needed increases much more rapidly than the error decreases. For the 

proposed method maximum and average enclosing errors in one-ray scheme are respectively 10 % 
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and 21 % higher than those in multiple-rays scheme. Time required in the multiple-rays scheme is 

only 1.6 – 4 times greater. 

Table 3 Errors and timing of calculation using proposed algorithm for choosing of nodes number 

Average number of 

nodes at each surface 

One-ray scheme Multiple-rays scheme 

err_max err_average Time, sec err_max err_average Time, sec 

1.49       (10 % acc.) 0.404 0.0585 53 0.367 0.0492 88 

1.95       (5 % acc.) 0.407 0.0586 55 0.368 0.0485 132 

2.33       (2 % acc.) 0.407 0.0586 57 0.368 0.0483 175 

2.78       (1 % acc.) 0.406 0.0587 59 0.369 0.0479 227 

 

It can be seen that the proposed method uses an extremely small number of nodes at each 

surface, but it has as good accuracy as the standard method. If one-ray scheme is used, the proposed 

method is 32 times faster than the standard method for identical accuracy or 2 times more accurate 

for the identical time required (53 sec). If multiple-rays scheme is used, the proposed method is 

several orders of magnitude faster than the standard method for an identical accuracy or 2.3 times 

more accurate for approximate identical time costs. Moreover, the proposed method combined with 

multiple-rays scheme is faster and more accurate than the standard method combined with the one-

ray scheme. 

 

CONCLUSIONS 

 

The selection of many quadrature nodes for view factor calculation leads to an increase in 

execution time, and the minimum node selection decreases the accuracy. For each number of 

quadrature nodes more than 2x105 view factors were computed for various geometric 

arrangements. The results show that the accuracy of view factor calculation of two areas 

(quadrilaterals), for given number of quadrature nodes, may be estimated as function of a single 

parameter - effective distance ED. It allows one to select the minimum number of quadrature nodes 

for every pair of quadrilaterals and significantly accelerate the view factor matrix calculation with a 

prescribed accuracy. For two surfaces at the same ED, but at different angles (directly facing each 

other versus at an obtuse angle to each other), the sensitivity of the answer to the number of nodes 

will be quite different.  Our analysis shown that 60-90 % of view factors in continuous furnace can 

be calculated using only 1 integration node, i.e. only 1 integrand function evaluation. This criterion 

is quite simple and its evaluation is as fast as evaluation of integrand function once. This is 

important reason for using only this single criterion instead of several criteria, because in the second 

case calculation of such criteria may require much more time than calculation of view factors itself. 
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The results presented in this paper are dependent upon the surface data base that was 

developed for the specific surface configuration considered. A more general distribution of surfaces, 

including triangular surfaces, circular surfaces, surfaces with more complex circumferences, a 

greater range of surface orientations, and more complex obstructed views will require the 

development of a new database. The validity of the pre-processing method developed here will 

depend upon the enlarged data base. But the surface data base is not problem-dependent and has to 

be generated only once. 

  The proposed algorithm of node number selection is applied for model of continuous furnace 

and compared with standard method which uses predefined number of nodes at each surface. The 

proposed algorithm is many times faster and also more accurate than the standard one. The 

proposed algorithm is universal and is also applicable for other geometries.  
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Figure 4 Model of continuous furnace in Chelyabinsk, Russia 


