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Abstract—We consider a natural class of composite finite elements that provide the mth-
order smoothness of the resulting piecewise polynomial function on a triangulated domain
and do not require any information on neighboring elements. It is known that, to provide a
required convergence rate in the finite element method, the “smallest angle condition” must
be often imposed on the triangulation of the initial domain; i.e., the smallest possible values
of the smallest angles of the triangles must be lower bounded. On the other hand, the
negative role of the smallest angle can be weakened (but not eliminated completely) by choosing
appropriate interpolation conditions. As shown earlier, for a large number of methods of
choosing interpolation conditions in the construction of simple (noncomposite) finite elements,
including traditional conditions, the influence of the smallest angle of the triangle on the error
of approximation of derivatives of a function by derivatives of the interpolation polynomial is
essential for a number of derivatives of order 2 and higher for m ≥ 1. In the present paper, a
similar result is proved for some class of composite finite elements.
Keywords: multidimensional interpolation, finite element method, smallest angle condition,
splines on triangulations.
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INTRODUCTION

Let Ω be a domain in the plane R2, and let Wn+1M be the set of functions continuous on Ω

together with all their partial derivatives up to order n+ 1 such that all their derivatives of order

n+1 are bounded in absolute value by the constant M . Let a set of triangles ∆ = {T1, T2, . . . , TN}
be a triangulation of the domain Ω; i.e., Ω =

∪N
i=1 Ti and any two triangles Ti and Tj either have

no common points or have a common vertex or a common side. Two triangles sharing a side are

called neighboring triangles.

Consider an arbitrary triangle T = ⟨a1, a2, a3⟩ from the triangulation ∆. Let T be a composite

finite element; i.e., let T be divided into k triangles T1, T2, . . . , Tk. We assume that this partition

of T satisfies the following property: for any side [ai, aj ] (i, j ∈ {1, 2, 3}, i ̸= j), there exists a

triangle Ts (1 ≤ s ≤ k) with a side coinciding with [ai, aj ]. Let, on each of the triangles Ti, a
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polynomial Pn,i = Pi of total degree at most n be given (i.e., the sum of degrees of each monomial

is at most n). Thus, a piecewise polynomial function ST is given on T .

We will impose the following requirements on ST .

C1. ST interpolates values of a function f and, possibly, of its derivatives along specified

directions at some points of the triangle T , including the vertices and some points on the sides,

and is completely defined by interpolation conditions and the condition of belonging to the class

Cr(T ) (r ≥ 1), i.e., is given on T locally.

C2. The family of all ST forms a function from the class Cr(Ω) (r ≥ 1); i.e., if

S̃ =
∑
T∈∆

S̃T , where S̃T (u) =

{
ST (u) for u ∈ T,

0 for u ∈ Ω \ T,

then S̃ ∈ Cr(Ω).

We adopt the following convention: for any ψ1 and ψ2 (they can be functions of some variables

or constants), we write ψ1

(&)

. ψ2 if there exists a number C > 0 independent of the function f and

geometric characteristics of the triangle (we admit a dependence on k and n) such that ψ1

(≥)

≤ Cψ2.

It is known that, for a simple (noncomposite) finite element T ∗ ⊂ Rm (T ∗ is not necessarily a

triangle or an m-simplex) under sufficiently general constraints on the body T ∗ and on conditions

of interpolation of a function f ∈Wn+1M , there are upper estimates for the value of approximation

of the function and its derivatives [1], which, for the case of a triangle, take the form

||Dsf −DsPn||C(T ∗) .MHn+1−s (sinα)−s , 0 ≤ s ≤ n, (0.1)

where Pn is an interpolation polynomial of Lagrange, Hermite, or Birkhoff type of total degree at

most n and α is the smallest angle of the triangle (see also [2–4]). Estimates of type (0.1) are

the reason for introducing a constraint on the triangulation, i.e., for imposing the “smallest angle

condition,” which is the requirement on values of the smallest angles of the triangles to be separated

from zero. There have been successful attempts to weaken the negative influence of the smallest

angle due to an appropriate choice of interpolation conditions (see [5–16]). However, analyzing

these papers, we can observe that, in estimates for derivatives of the second and higher orders (if

we consider the set of all possible directions along which the derivatives are taken), the sine of

the smallest angle in their denominators is absent only in cases when the continuity of the global

piecewise polynomial function is provided on Ω but not its smoothness. This observation can be

proved: in [17], it was shown for a simple (noncomposite) finite element that, for a large number of

methods of choosing local interpolation conditions, including traditional methods, in constructing

a piecewise polynomial function of global smoothness 1 or higher, the negative effect of the smallest

angle of the triangle on the error of approximation of derivatives of a function by derivatives of the

interpolation polynomial is essential for derivatives of order 2 and higher. In the present paper, we

prove a similar result for some natural subclass of composite finite elements described above, which

provide smoothness of the spline S̃ on Ω without information on neighboring finite elements.

1. FORMULATION OF THE THEOREM AND BASIC NOTATION

Let T = ⟨a1, a2, a3⟩ be a triangular composite finite element divided into triangles T1, T2, . . . , Tk,
and let ST be a spline satisfying conditions C1 and C2. Denote by α, β, and θ the values of the

angles of T at the vertices a1, a2, and a3, respectively. We assume that 0 < α ≤ β ≤ θ. We will also
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use the following notation: H is the diameter of the triangle T ; ςij are the unit vectors directed

from ai to aj ; nij (i, j = 1, 2, 3; i ̸= j) are the unit normal vectors to the sides [ai, aj ]; dij is

the length of the side [ai, aj ]; and Ds
ξ1...ξs

are derivatives of order s along arbitrary unit vectors

ξ1, . . . , ξs. In what follows, the norm is understood as the L∞-norm.

Place T in a rectangular coordinate system Oxy (see figure) so that the vertices of T have the

following coordinates: a1 = (0, 0), a2 = (b + a, 0), and a3 = (b, h), where a, b, h > 0, a < b, and

h < b (the last two inequalities follow from our convention about relations between values of the

angles at the vertices a1, a2, and a3). Obviously, a+ b = H.

Let the restrictions of the spline ST (u) and its derivative ∂ST (u)/∂nij to every side [ai, aj ] of

the triangle be uniquely defined by interpolation conditions given at points of the side [ai, aj ]. Note

that, by conditions C1 and C2, the spline ST ∗(u) on a triangle T ∗ neighboring T must satisfy the

same conditions. In addition, assume that interpolation conditions at points of the sides of the

triangle T are specified so that the following equality holds for every side [ai, aj ] of T :

∂s (f(u)− ST (u))

∂nsij

∣∣∣∣
u∈[ai,aj ]

=
1

(n+ 1− s)!

∂n+1f(ϑsij)

∂nsij∂ς
n+1−s
ij

dn+1−s
ij ωij,n+1−s (t) , (1.1)

s = 0, . . . , r, i, j ∈ {1, 2, 3}, i ̸= j,

where ϑsij ∈ [ai, aj ], ωij,n+1−s(t) is a polynomial of degree n + 1 − s with leading coefficient equal

to 1, and t = |u− ai| /dij ∈ [0, 1] (|u− ai| denotes the distance between the points u and ai).

Equality (1.1) is a formula for the remainder term in the interpolation formula for the function

∂sf/∂nsij and its interpolation polynomial given on the line segment [ai, aj ], which is the restriction

of the spline ST to this segment. Since, to prove the theorem, it is sufficient that the function S̃

belong to the class C1(Ω), we can assume without loss of generality that r = 1.

Recall that conditions for constructing the spline ST on the triangle T include the requirement of

smoothness of the resulting spline S̃ on Ω with no information about finite elements neighboring T .

Usually, in this case, interpolation conditions of the same type are specified for all sides of the

triangle T ; i.e.,

ωij,n+1−s(x) = ωpq,n+1−s(x)

-
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Figure. A composite element T .
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for any i, j, p, and q and s = 0, 1 (or s = 0, . . . , r if r > 1). This means that

ωij,n+1−s(x) = (−1)n+1−sωij,n+1−s(1− x).

Then,

ω
(n−s)
ij,n+1−s(x) = −ω(n−s)

ij,n+1−s(1− x). (1.2)

Since ωij,n+1−s is a polynomial of degree n+1−s with leading coefficient 1, we see that ω
(n−s)
ij,n+1−s(x)

is a linear function and relation (1.2) implies that

ω
(n−s)
ij,n+1−s(x)

(n+ 1− s)!
= x− 1

2
(1.3)

for any s = 0, 1 and i, j ∈ {1, 2, 3}, i ̸= j.

Consider the function

f∗(x, y) = δ1M
xn+1

(n+ 1)!
+ δ2M

xny

n!
, (1.4)

where δ1 and δ2 are such that f∗ ∈Wn+1M and δ21 + δ22 ̸= 0 (a similar function was used in [8] for

n = 5 to prove that the estimates for the error of approximation of derivatives obtained there are

unimprovable). We set

e(x, y) = f∗(x, y)− ST (x, y),

ei(x, y) = (f∗(x, y)− ST (x, y))
∣∣
Ti

= f∗(x, y)− Pn,i(x, y).

Theorem. If conditions C1 and C2 hold for ST and relations (1.1) and (1.3) are satisfied,

then, for any s = 2, . . . , n, there exist α0 > 0 and unit vectors ξ1, . . . , ξs such that the following

estimates hold for any α < α0: ∥∥Ds
ξ1...ξs(f

∗ − ST )
∥∥ & MHn+1−s

sinα
. (1.5)

2. PROOF OF THE THEOREM

Recall that there is a finite number k of triangles Ti in the partition of T . Let Ti = ⟨a(i)1 , a
(i)
2 , a

(i)
3 ⟩

(i = 1, . . . , k). Then, there exists a nonempty intersection of a “vertical” strip of width H̃ & H

and the triangle T such that any straight line lying in this strip (and, hence, parallel to the y-axis)

intersects only those sides [a
(i)
r , a

(i)
s ] (1 ≤ s, r ≤ 3, s ̸= r) of triangles Ti from the set {T1, T2, . . . , Tk}

for which
∣∣a(i)s − a

(i)
r

∣∣ & H. More exactly, we can consider segments Q ⊂ [a1, a2] and Q̃ ⊂ [a1, a3]

on the sides [a1, a2] and [a1, a3] of the composite element T with the following properties:

1◦. |Q| = c(k)H, where |Q| is the length of the segment Q and c(k) is a positive number

depending only on k (i.e., |Q| & H).

2◦. Let straight lines p1 and p2 be parallel to the y-axis and pass through two different points

q1, q2 ∈ Q. Let p1 intersect the side [a
(i)
r , a

(i)
s ] of some triangle Ti at some point u1. Then, p2 also

intersects [a
(i)
r , a

(i)
s ] at some point u2.

3◦. Every straight line p parallel to the y-axis and passing through any point u ∈ Q intersects

the segment Q̃ at some point ũ (obviously,
∣∣∣Q̃∣∣∣ & H).
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The segments Q and Q̃ can be represented as follows:

Q = {u = a1 + t (a2 − a1) : t ∈ σ ⊆ [0, 1]} , Q̃ =
{
ũ = a1 + t̃ (a3 − a1) : t̃ ∈ σ̃ ⊆ [0, 1]

}
,

where |σ| & 1 and |σ̃| & 1.

It is sufficient to consider one straight line from this strip. Take some value t ∈ σ and the

corresponding point ut = a1 + t (a2 − a1). Draw a straight line p parallel to the y-axis through

the point ut. This line intersects the segment Q̃ at some point ũt = a1 + t̃ (a3 − a1) for the

corresponding t̃. Thus, we obtain points ut and ũt and a function ψ : σ → σ̃ such that t̃ = ψ(t).

Consider all triangles of the composite finite element T having common points with the line p

(without loss of generality, we can assume that p has empty intersection with the set of all vertices of

triangles that make up the triangulation of T ; we can also assume that the number of the triangles

is k) and enumerate them as follows: T1 is the triangle in which one of the sides intersected by

the line p coincides with [a1, a2], T2 is the triangle neighboring T1, . . . , and Tk is the triangle

neighboring Tk−1.

We use the following notation for the sides of these triangles: [c01, c
0
2] is the side of the triangle

T1 coinciding with [a1, a2], [c
1
1, c

1
2] is the common side of the triangles T1 and T2, . . . , [ck−1

1 , ck−1
2 ] is

the common side of the triangles Tk−1 and Tk, and [ck1, c
k
2] is the side of the triangle Tk coinciding

with [a1, a3]. By conditions 1◦–3◦, we can assert that the inequality∣∣cj2 − cj1
∣∣ & H (2.1)

holds for every j = 1, . . . , k. Further, let uj be the intersection points of the line p with the segments

[cj1, c
j
2] (j = 0, . . . , k). In particular, u0 = ut and uk = ũt.

Let (xji , y
j
i ) be the coordinates of the point cji , and let the inequalities xj1 < xj2 hold for all j.

Denote by τj the unit vectors directed from cj1 to cj2. Obviously, cj−1
1 = cj1 or cj−1

2 = cj2 (in what

follows, it does not matter), τ0 = ς12, and τk = ς13.

Denote by αj (j = 1, . . . , k) the angles between the vectors τj−1 and τj with regard to the

directions of these vectors: if, after drawing them from the same point, the minimum angle of

rotation from τj−1 to τj is counterclockwise, then αj > 0; otherwise, αj < 0. Note that

k∑
j=1

αj = α. (2.2)

Consider the functions ωij,n+1−k from (1.1).

Lemma 1. Assume that t̃ = ψ(t) and the condition a < b/(2n) holds. Define

W2(t) =
(n+ 1)d13 ω

(n)
13,n+1

(
t̃
)
cosα

(n+ 1)!
−
nd12 ω

(n−1)
12,n (t)

n!
− |uk − u0|

tanα
.

Then,

|W2(t)| & H. (2.3)

Proof. Since the line p passing through the points u0 and uk is parallel to the y-axis, |uk−a1| =
d13t̃, and |u0 − a1| = d12t, we have

d13t̃ cosα = d12t,
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which yields

t̃ =
d12
d13

t

cosα
=

b+ a

(b2 + h2)1/2
(b2 + h2)1/2

b
t =

b+ a

b
t.

Note that
|uk − u0|
tanα

= |u0 − a1| = (b+ a)t.

Then, in view of (1.3) and the relations d12 = b + a and d13 cosα =
(
b2 + h2

)1/2
cosα = b, we

obtain

W2(t) = (n+ 1)b
(
t̃− 1

2

)
− n(b+ a)

(
t− 1

2

)
− (b+ a)t

= (n+ 1)b
(b+ a

b
t− 1

2

)
− n(b+ a)

(
t− 1

2

)
− (b+ a)t = − b

2
+
na

2
.

Thus,

|W2(t)| ≥
b

2
− nb

4n
≥ b

4
& H. �

Lemma 2. Assume that t̃ = ψ(t) and the condition a ≥ b/(2n) holds. Define

W1(t) =
d13 ω

(n)
13,n+1

(
t̃
)
cosα

(n+ 1)!
−
d12 ω

(n)
12,n+1 ( t )

(n+ 1)!
.

Then,

|W1(t)| & H. (2.4)

Proof. The proof is similar to the proof of Lemma 1:

W1(t) = b
(
t̃− 1

2

)
− (b+ a)

(
t− 1

2

)
= b

(b+ a

b
t− 1

2

)
− (b+ a)

(
t− 1

2

)
=
a

2
,

which implies the estimate |W1(t)| ≥ b/(4n) & H. �
Lemma 3. Let τ = (cosφ, sinφ). Then, the following equality holds for any function g:

∂g

∂x
=
∂g

∂τ

1

cosφ
− ∂g

∂y
tanφ. (2.5)

Proof. The proof follows from the relation ∂g/∂τ = (∂g/∂x) cosφ+ (∂g/∂x) sinφ. �
Let us introduce the notation

γj =

j∑
s=1

αs, (2.6)

where j = 1, . . . , k, and set γ0 = 0.

Lemma 4. The following equality holds:

k−1∑
s=0

sinαk−s

cos γk−s cos γk−s−1
= tanα. (2.7)

Proof. Consider the sum of the last two terms:

sinα2

cos γ2 cos γ1
+

sinα1

cos γ1
=

sinα2 + sinα1 cos(α1 + α2)

cos(α1 + α2) cosα1
=

sinα2 + (− sinα2 + sin(2α1 + α2)) /2

cos(α1 + α2) cosα1
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=
sinα2 + sin(2α1 + α2)

2 cos(α1 + α2) cosα1
=

2 sin(α1 + α2) cosα1

2 cos(α1 + α2) cosα1
=

sin(α1 + α2)

cos(α1 + α2)
. (2.8)

Then, setting α∗ = α1 + α2 and using (2.8), we can represent the sum of the last three terms as

sinα3

cos γ3 cos γ2
+

sinα2

cos γ2 cos γ1
+

sinα1

cos γ1
=

sinα3

cos γ3 cos γ2
+

sin(α1 + α2)

cos(α1 + α2)

=
sinα3

cos(α∗ + α3) cosα∗ +
sinα∗

cosα∗ =
sin(α∗ + α3)

cos(α∗ + α3)
=

sin(α1 + α2 + α3)

cos(α1 + α2 + α3)
.

Further, acting by induction, we obtain (2.7). �
Lemma 5. For any function g defined on the triangle T and numbers i = 1, . . . , k and

s = n− 1, n, the following representation holds with |Ci,j | . 1:

∂sg

∂τ si
=

∂sg

∂τ si−1

coss γi
coss γi−1

+
∂sg

∂τ s−1
i−1 ∂y

s coss−1 γi sinαi

coss γi−1
+

s∑
j=2

Ci,j
∂sg

∂τ s−j
i−1 ∂y

j
sinj αi. (2.9)

Proof. Since τi = (cos γi, sin γi) (see (2.6)), taking into account (2.5), we obtain

∂sg

∂τ si
=

( ∂

∂x
cos γi +

∂

∂y
sin γi

)s
g =

(( ∂

∂τi−1

1

cos γi−1
− ∂

∂y

sin γi−1

cos γi−1

)
cos γi +

∂

∂y
sin γi

)s
g

=
( ∂

∂τi−1

cos γi
cos γi−1

+
∂

∂y

(
sin γi −

cos γi
cos γi−1

sin γi−1

))s
g.

Since

sin γi −
cos γi
cos γi−1

sin γi−1 = sin(γi−1 + αi)−
cos(γi−1 + αi)

cos γi−1
sin γi−1

= sin γi−1 cosαi + cos γi−1 sinαi −
cos γi−1 cosαi

cos γi−1
sin γi−1 +

sin γi−1 sinαi

cos γi−1
sin γi−1

= cos γi−1 sinαi + tan γi−1 sin γi−1 sinαi = sinαi

(
cos γi−1 +

sin2 γi−1

cos γi−1

)
=

sinαi

cos γi−1
,

we have
∂sg

∂τ si
=

( ∂

∂τi−1

cos γi
cos γi−1

+
∂

∂y

sinαi

cos γi−1

)s
g.

Removing the parentheses, we obtain (2.9). �
Let hi be the altitude of the triangle Ti drawn to the side [cs1, c

s
2] (s = i − 1 or i). Since

µ(Ti) < µ(T ) (where µ denotes the area of the corresponding triangle) and |cs2 − cs1| & H, we can

assert that hi . h. In particular,

|sinαi| . sinα, i = 1, . . . , k. (2.10)

Lemma 6. The following expansion is valid :

∂nek(uk)

∂τnk
=
∂ne1(u0)

∂xn
cosn α+

∂ne1(u0)

∂xn−1∂y
n cosn α tanα
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+

k∑
r=1

n∑
j=2

Dr,j
∂ner(ur)

∂τn−j
r−1 ∂y

j
sinj−1 αr sinα+ δ2M |uk − u0| cosn α, (2.11)

where the quantities Dr,j satisfy the inequality |Dr,j | . 1.

Proof. Setting g = ek, i = k, and s = n in (2.9), we obtain the equality

∂nek(uk)

∂τnk
=
∂nek(uk)

∂τnk−1

cosn γk
cosn γk−1

+ n
∂nek(uk)

∂τn−1
k−1 ∂y

cosn−1 γk sinαk

cosn γk−1
+

n∑
j=2

Dk,j
∂nek(uk)

∂τn−j
k−1 ∂y

j
sinj αk.

Let us expand ∂nek(uk)/∂τ
n
k−1 and ∂nek(uk)/

(
∂τn−1

k−1 ∂y
)
by the Lagrange formula of finite incre-

ments at the point uk−1 (recall that the line p passing through uk and uk−1 is parallel to the y-axis).

Then,

∂nek(uk)

∂τnk
=
∂nek(uk−1)

∂τnk−1

cosn γk
cosn γk−1

+ n
∂nek(uk−1)

∂τn−1
k−1 ∂y

cosn−1 γk sinαk

cosn γk−1

+

n∑
j=2

Dk,j
∂nek(uk)

∂τn−j
k−1 ∂y

j
sinj αk +

∂n+1f∗

∂τnk−1∂y
|uk − uk−1|

cosn γk
cosn γk−1

+ n
∂n+1f∗

∂τn−1
k−1 ∂y

2
|uk − uk−1|

cosn−1 γk sinαk

cosn γk−1
.

Since f∗ has form (1.4), the last term is zero. Further, since τk−1 = (cos γk−1, sin γk−1), for-

mula (1.4) implies the equality

∂n+1f∗

∂τnk−1∂y
= δ2M cosn γk−1.

In view of the smoothness of the function e(x, y) on the triangle T , we obtain

∂nek(uk)

∂τnk
=
∂nek−1(uk−1)

∂τnk−1

cosn γk
cosn γk−1

+ n
∂nek−1(uk−1)

∂τn−1
k−1 ∂y

cosn−1 γk sinαk

cosn γk−1

+
n∑

j=2

Dk,j
∂nek(uk)

∂τn−j
k−1 ∂y

j
sinj αk + δ2M |uk − uk−1| cosn γk.

Taking into account (2.10), we apply (2.9) to the cases g = ek−1, i = k − 1, and s = n and

g = ∂ek/∂y, i = k − 1, and s = n− 1:

∂nek(uk)

∂τnk
=
∂nek−1(uk−1)

∂τnk−2

cosn γk
cosn γk−2

+
∂nek−1(uk−1)

∂τn−1
k−2 ∂y

n cosn γk
cosn−1 γk−2

(
sinαk−1

cos γk−1 cos γk−2
+

sinαk

cos γk cos γk−1

)

+
k∑

r=k−1

n∑
j=2

Dr,j
∂ner(ur)

∂τn−j
r−1 ∂y

j
sinj−1 αr sinα+ δ2M |uk − uk−1| cosn γk.
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As earlier, we expand ∂nek−1(uk−1)/∂τ
n
k−2 and ∂nek−1(uk−1)/

(
∂τn−1

k−2 ∂y
)
by the Lagrange

formula of finite increments at the point uk−2 and use the smoothness of the function e(x, y)

and the fact that ∂n+1f∗/
(
∂τnk−2∂y

)
= δ2M cosn γk−2. We obtain

∂nek(uk)

∂τnk
=
∂nek−2(uk−2)

∂τnk−2

cosn γk
cosn γk−2

+
∂nek−2(uk−2)

∂τn−1
k−2 ∂y

n cosn γk
cosn−1 γk−2

( sinαk−1

cos γk−1 cos γk−2
+

sinαk

cos γk cos γk−1

)

+

k∑
r=k−1

n∑
j=2

Dr,j
∂ner(ur)

∂τn−j
r−1 ∂y

j
sinj−1 αr sinα+ δ2M (|uk − uk−1|+ |uk−1 − uk−2|) cosn γk.

Continuing this process, we come to the equality

∂nek(uk)

∂τnk
=
∂ne1(u0)

∂τn0

cosn γk
cosn γ0

+
∂ne1(u0)

∂τn−1
0 ∂y

n cosn γk
cosn−1 γ0

k−1∑
s=0

sinαk−s

cos γk−s cos γk−s−1

+

k∑
r=1

n∑
j=2

Dr,j
∂ner(ur)

∂τn−j
r−1 ∂y

j
sinj−1 αr sinα+ δ2M cosn γk

k∑
i=1

|ui − ui−1| .

Taking into account (2.7) and the relations
∑k

i=1 |ui − ui−1| = |uk − u0| , ∂/∂τ0 = ∂/∂x, γk = α,

and γ0 = 0, we come to (2.11). �
Lemma 7. There exist r ∈ {1, . . . , k} and j ∈ {2, . . . , n} such that∣∣∣∣ ∂ner(ur)

∂τn−j
r−1 ∂y

j

∣∣∣∣ & MH∣∣sinj−1 αr

∣∣ . (2.12)

Proof. Using (1.1), the form of the function f∗, and the relation τk = ς13 = (cosα, sinα), we

obtain
∂nek(uk)

∂τnk
=

1

(n+ 1)!

∂n+1f∗

∂τn+1
k

d13ω
(n)
13,n+1

(
t̃
)

=
1

(n+ 1)!

(
δ1M cosn+1 α+ δ2(n+ 1)M cosn α sinα

)
d13ω

(n)
13,n+1

(
t̃
)
;

∂ne1(u0)

∂xn
=

1

(n+ 1)!

∂n+1f∗

∂xn+1
d12ω

(n)
12,n+1(t) =

1

(n+ 1)!
δ1Md12ω12,n+1(t);

∂ne1(u0)

∂xn−1∂y
=

1

n!

∂n+1f∗

∂xn∂y
d12ω

(n−1)
12,n =

1

n!
δ2Md12ω

(n−1)
12,n .

Then, (2.11) can be rewritten as

k∑
r=1

n∑
j=2

Dr,j
∂ner(ur)

∂τn−j
r−1 ∂y

j
sinj−1 αr sinα = δ1M cosn α

(
d13 ω

(n)
13,n+1

(
t̃
)
cosα

(n+ 1)!
−
d12 ω

(n)
12,n+1 ( t )

(n+ 1)!

)

+ δ2M cosn−1 α sinα

(
(n+ 1)d13 ω

(n)
13,n+1

(
t̃
)
cosα

(n+ 1)!
−
nd12 ω

(n−1)
12,n (t)

n!
− |uk − u0|

tanα

)
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= δ1MW1(t) cos
n α+ δ2MW2(t) cos

n−1 α sinα, (2.13)

where W1(t) and W2(t) are defined in Lemmas 1 and 2.

Choosing the values of δ1 and δ2 so that both terms on the right-hand side of (2.13) have

identical signs and applying (2.3) and (2.4), we obtain

∣∣∣∣ k∑
r=1

n∑
j=2

Dr,j
∂ner(ur)

∂τn−j
r−1 ∂y

j
sinj−1 αr sinα

∣∣∣∣ & H sinα,

which implies (2.12). Lemma 7 is proved. �
Let us complete the proof of the theorem. Let r and j be such that (2.12) holds. Consider the

triangle Tr, and let q0 be its center of mass. Since j ≥ 2 and f∗ has form (1.4), the value on the

left-hand side of (2.12) is constant on Tr and, then,∣∣∣∣ ∂ner(q0)
∂τn−j

r−1 ∂y
j

∣∣∣∣ & MH∣∣sinj−1 αr

∣∣ .
Note also that the function er = (f∗ − ST )

∣∣∣
Tr

considered on Tr is a polynomial.

Let the line p1 be parallel to the vector τr−1 and pass through the point q0. Consider the

segment Q1 = p1 ∩ Tr. Since p1 is parallel to the side [cr−1
1 , cr−1

2 ] of the triangle Tr and passes

through its center of mass, we have in view of (2.1) the inequality |Q1| & H. Applying Markov’s

inequality [18, Sect. 3.5] n − j times on the segment Q1, we come to the existence of points

qj , qj+1, . . . , qn−1 ∈ Q1 satisfying the inequalities∣∣∣∣∂n−ser(qn−s)

∂τn−j−s
r−1 ∂yj

∣∣∣∣ & MHs+1∣∣sinj−1 αr

∣∣ , s = 1, . . . , n− j. (2.14)

Consider (2.14) for s = n − j. Let the line p2 pass through the point qj parallel to the y-axis.

Consider the segment Q2 = p2 ∩ Tr. In view of the position of the point qj (qj ∈ Q1, where Q1 is

the segment passing through the center of mass of Tr parallel to the side [cr−1
1 , cr−1

2 ], for which (2.1)

holds), we can assert that

|Q2| & hr,

where hr is the smallest altitude of the triangle Tr (in view of the definition of the sign “&” and (2.1),

we can assume that hr is the altitude drawn to [cr−1
1 , cr−1

2 ]). Applying Markov’s inequality j − 2

times on the segment Q2, we come to the existence of points q2, q3, . . . , qj−1 ∈ Q2 such that∣∣∣∣∂ser(qs)∂ys

∣∣∣∣ & MHn+1−s∣∣sins−1 αr

∣∣ , s = 2, . . . , j. (2.15)

Combining (2.14), (2.15), and (2.10), we obtain (1.5). The theorem is proved. �
Remark. Condition (1.3) in the formulation of the theorem can be replaced by more illustrative

condition (1.2) or more general conditions (2.3) and (2.4).

Proof. It was shown above that (1.3) is a consequence of (1.2). On the other hand, condi-

tion (1.3) was used only for the proof of (2.3) and (2.4). �
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