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2 Lehrstuhl für Informatik I, Universität Würzburg, Germany.

3 Department of Computer Science, University of Arizona, USA.

Abstract. We study the following geometric representation problem: Given a
graph whose vertices correspond to axis-aligned rectangles with fixed dimensions,
arrange the rectangles without overlaps in the plane such that two rectangles touch
if the graph contains an edge between them. This problem is called CONTACT

REPRESENTATION OF WORD NETWORKS (CROWN) since it formalizes the
geometric problem behind drawing word clouds in which semantically related
words are close to each other. CROWN is known to be NP-hard, and there are
approximation algorithms for certain graph classes for the optimization version,
MAX-CROWN, in which realizing each desired adjacency yields a certain profit.
We present the first O(1)-approximation algorithm for the general case, when the
input is a complete weighted graph, and for the bipartite case. Since the subgraph
of realized adjacencies is necessarily planar, we also consider several planar graph
classes (namely stars, trees, outerplanar, and planar graphs), improving upon the
known results. For some graph classes, we also describe improvements in the
unweighted case, where each adjacency yields the same profit. Finally, we show
that the problem is APX-hard on bipartite graphs of bounded maximum degree.

1 Introduction

In the last few years, word clouds have become a standard tool for abstracting, visualizing,
and comparing text documents. For example, word clouds were used in 2008 to contrast
the speeches of the US presidential candidates Obama and McCain. More recently,
the German media used them to visualize the newly signed coalition agreement and
to compare it to a similar agreement from 2009; see Fig. 7 in Appendix E. A word
cloud of a given document consists of the most important (or most frequent) words
in that document. Each word is printed in a given font and scaled by a factor roughly
proportional to its importance (the same is done with the names of towns and cities on
geographic maps, for example). The printed words are arranged without overlap and
tightly packed into some shape (usually a rectangle). Tag clouds look similar; they consist
of keyword metadata (tags) that have been attributed to resources in some collection
such as web pages or photos.

? Slides are available at www1.informatik.uni-wuerzburg.de/pub/wolff/slides/wordle.pdf.
?? Ph. Kindermann and A. Wolff acknowledge support by the ESF EuroGIGA project GraDR.
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Wordle [24] is a popular tool for drawing word or tag clouds. The Wordle website
allows users to upload a list of words and, for each word, its relative importance. The
user can further select font, color scheme, and decide whether all words must be placed
horizontally or whether words can also be placed vertically. The tool then computes a
placement of the words, each scaled according to its importance, such that no two words
overlap. Generally, the drawings are very compact and aesthetically appealing.

In the automated analysis of text one is usually not just interested in the most
important words and their frequencies, but also in the connections between these words.
For example, if a pair of words often appears together in a sentence, then this is often
seen as evidence that this pair of words is linked semantically [18]. In this case, it makes
sense to place the two words close to each other in the word cloud that visualizes the
given text. This is captured by an input graph G = (V,E) of desired contacts. We are
also given, for each vertex v ∈V , the dimensions (but not the position) of a box Bv, that
is, an axis-aligned rectangle. We denote the height and width of Bv by h(Bv) and w(Bv),
respectively, or, more briefly, by h(v) and w(v). For each edge e = (u,v) of G, we are
given a positive number p(e) = p(u,v), that corresponds to the profit of e. For ease of
notation, we set p(u,v) = 0 for any non-edge (u,v) ∈V 2 \E of G.

Given a box B and a point q in the plane, let B(q) be a placement of B with lower left
corner q. A representation of G is a map λ : V →R2 such that for any two vertices u 6= v,
it holds that Bu(λ (u)) and Bv(λ (v)) are interior-disjoint. Boxes may touch, that is, their
boundaries may intersect. If the intersection is non-degenerate, that is, a line segment
of positive length, we say that the boxes are in contact. We say that a representation λ

realizes an edge (u,v) of G if boxes Bu(λ (u)) and Bv(λ (v)) are in contact.
This yields the problem Contact Representation of Word Networks (CROWN): Given

an edge-weighted graph G whose vertices correspond to boxes, find a representation
of G with the vertex boxes such that every edge of G is realized. In this paper, we study
the optimization version of CROWN, MAX-CROWN, where the aim is to maximize the

Fig. 1: Semantics-preserving word cloud for the 35 most “important” words in this paper. Fol-
lowing the text processing pipeline of Barth et al. [3], these are the words ranked highest by
LexRank [11], after removal of stop words such as “the”. The edge profits are proportional to the
relative frequency with which the words occur in the same sentences. The layout algorithm of
Barth et al. [3] first extracts a heavy star forest from the weighted input graph as in Theorem 5 and
then applies a force-directed post-processing.
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total profit (that is, the sum of the weights) of the realized edges. We also consider the
unweighted version of the problem, where all desired contacts yield a profit of 1.

Previous Work. Barth et al. [2] recently introduced MAX-CROWN and showed that the
problem is strongly NP-hard even for trees and weakly NP-hard even for stars. They
presented an exact algorithm for cycles and approximation algorithms for stars, trees,
planar graphs, and graphs of constant maximum degree; see the first column of Table 1.
Some of their solutions use an approximation algorithm with ratio α = e/(e− 1) ≈
1.58 [13] for the GENERALIZED ASSIGNMENT PROBLEM (GAP), defined as follows:
Given a set of bins with capacity constraints and a set of items that possibly have different
sizes and values for each bin, pack a maximum-valued subset of items into the bins. The
problem is APX-hard [6].

MAX-CROWN is related to finding rectangle representations of graphs, where ver-
tices are represented by axis-aligned rectangles with non-intersecting interiors and edges
correspond to rectangles with a common boundary of non-zero length. Every graph that
can be represented this way is planar and every triangle in such a graph is a facial trian-
gle. These two conditions are also sufficient to guarantee a rectangle representation [5].
Rectangle representations play an important role in VLSI layout, cartography, and archi-
tecture (floor planning). In a recent survey, Felsner [12] reviews many rectangulation
variants. Several interesting problems arise when the rectangles in the representation
are restricted. Eppstein et al. [10] consider rectangle representations which can realize
any given area-requirement on the rectangles, so-called area-preserving rectangular car-
tograms, which were introduced by Raisz [23] already in the 1930s. Unlike cartograms,
in our setting there is no inherent geography, and hence, words can be positioned any-
where. Moreover, each word has fixed dimensions enforced by its importance in the
input text, rather than just fixed area. Nöllenburg et al. [21] recently considered a variant
where the edge weights prescribe the length of the desired contacts.

Finally, the problem of computing semantics-aware word clouds is related to classic
graph layout problems, where the goal is to draw graphs so that vertex labels are readable
and Euclidean distances between pairs of vertices are proportional to the underlying graph
distance between them. Typically, however, vertices are treated as points and label overlap
removal is a post-processing step [9,15]. Most tag cloud and word cloud tools such as
Wordle [24] do not show the semantic relationships between words, but force-directed
graph layout heuristics are sometimes used to add such functionality [3,8,17,22,25].

Our Contribution. Known results and our contributions to MAX-CROWN are shown in
Table 1. Note that the results of Barth et al. [2] in column 1 are simply based on existing
decompositions of the respective graph classes into star forests or cycles.

Our results rely on a variety of algorithmic tools. First, we devise sophisticated
decompositions of the input graphs into heterogeneous classes of subgraphs, which also
requires a more general combination method than that of Barth et al. Second, we use
randomization to obtain a simple constant-factor approximation for general weighted
graphs. Previously, such a result was not even known for unweighted bipartite graphs.
Third, to obtain an improved algorithm for the unweighted case, we prove a lower bound
on the size of a matching in a planar graph of high average degree. Fourth, we use a
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Table 1: Previously known and new results for the unweighted and weighted versions of MAX-
CROWN (for α ≈ 1.58 and any ε > 0).

Weighted Unweighted

Graph class Ratio [2] Ratio [new] Ref. Ratio Ref.

cycle, path 1
star α 1+ ε Thm. 1
tree 2α 2+ ε Thm. 1 2 Thm. 6

NP-hard
max-degree ∆ b(∆ +1)/2c
planar max-deg. ∆ 1+ ε Thm. 7
outerplanar 3+ ε Thm. 2
planar 5α 5+ ε Thm. 1
bipartite 16α/3 (≈ 8.4) Thm. 3

APX-hard Thm. 9
general 32α/3 (≈ 16.9; rand.) Thm. 4 5+16α/3 Thm. 8

40α/3 (≈ 21.1; det.) Thm. 5

planar separator result of Frederickson [14] to obtain a polynomial-time approximation
scheme (PTAS) for degree-bounded planar graphs.

We start our paper with basic results on simple graph classes (see Section 2). Then,
we tackle weighted graphs (see Section 3). We also obtain improved results for several
unweighted graph classes (see Section 4). Finally, we show APX-hardness for bipartite
graphs of maximum degree 9 (see Section 5) and list some open problems (see Section 6).

Model. As in most work on rectangle contact representations, we do not count point
contacts of boxes. In other words, we consider two boxes in contact only if their
intersection is a line segment of positive length. In this model, the contact graph of
the boxes is clearly planar. Our algorithms can easily be modified to guarantee O(1)-
approximations also in the model that allows and rewards point contacts; see Appendix B.
We allow words to be placed either only horizontally, or both horizontally and vertically.

Runtimes. Most of our algorithms involve approximating a number of GAP instances
as a subroutine, using either the PTAS [4] if the number of bins is constant or the
approximation algorithm of Fleischer et al. [13] for general instances. Because of this,
the runtime of our algorithms consists mostly of approximating GAP instances. Both
algorithms to approximate GAP instances solve linear programs, so we refrain from
explicitly stating the runtime of these algorithms.

For practical purposes, one can use a purely combinatorial approach for approximat-
ing GAP [7], which utilizes an algorithm for the KNAPSACK problem as a subroutine.
The algorithm translates into a 3-approximation for GAP running in O(NM) time (or a
(2+ ε)-approximation running in O(MN log1/ε +M/ε4) time), where N is the number
of items and M is the number of bins. In our setting, the simple 3-approximation implies
a randomized 32-approximation (or a deterministic 40-approximation) algorithm with
running time O(|V |2) for MAX-CROWN on general weighted graphs.
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2 Some Basic Results

In this section, we present two technical lemmas that will help us to prove our main
results in the following two sections where we treat the weighted and unweighted cases
of MAX-CROWN. The second lemma immediately improves the results of Barth et al. [2]
for stars, trees, and planar graphs.

2.1 A Combination Lemma

Several of our algorithms cover the input graph with subgraphs that belong to graph
classes for which the MAX-CROWN problem is known to admit good approximations.
The following lemma allows us to combine the solutions for the subgraphs. We say that a
graph G= (V,E) is covered by graphs G1 = (V,E1), . . . ,Gk = (V,Ek) if E =E1∪·· ·∪Ek.

Lemma 1. Let graph G = (V,E) be covered by graphs G1,G2, . . . ,Gk. If, for i =
1,2, . . . ,k, weighted MAX-CROWN on graph Gi admits an αi-approximation, then
weighted MAX-CROWN on G admits a

(
∑

k
i=1 αi

)
-approximation.

Proof. Our algorithm works as follows. For i = 1, . . . ,k, we apply the αi-approximation
algorithm to Gi and report the result with the largest profit as the result for G. We show
that this algorithm has the claimed performance guarantee. For the graphs G,G1, . . . ,Gk,
let OPT,OPT1, . . . ,OPTk be the optimum profits and let ALG,ALG1, . . . ,ALGk be the
profits of the approximate solutions. By definition, ALGi ≥ OPTi /αi for i = 1, . . . ,k.
Moreover, OPT ≤ ∑

k
i=1 OPTi because the edges of G are covered by the edges of

G1, . . . ,Gk. Assume, w.l.o.g., that OPT1 /α1 = maxi(OPTi /αi). Then

ALG = ALG1 ≥
OPT1

α1
≥ ∑

k
i=1 OPTi

∑
k
i=1 αi

≥ OPT

∑
k
i=1 αi

. ut

2.2 Improvement on existing approximation algorithms

Lemma 2 ([4]). For any ε > 0, there is a (1+ ε)-approximation algorithm for GAP
with a constant number of bins. The algorithm takes nO(1/ε) time. ut

Using Lemmas 1 and 2, we improve the approximation algorithms of Barth et al. [2].

Theorem 1. Weighted MAX-CROWN admits a (1+ ε)-approximation algorithm on
stars, a (2+ ε)-approximation algorithm on trees, and a (5+ ε)-approximation algo-
rithm on planar graphs.

Proof. By Lemma 1, the claim for stars implies the other two claims since a tree can
be covered by two star forests and a planar graph can be covered by five star forests in
polynomial time [16]. We now show that we can use Lemma 2 to get a PTAS for stars.
Here, we give the PTAS for the model with point contacts; in Appendix A we show how
to handle the model without point contacts.

Let u be the center vertex of the star. We create eight bins: four corner bins uc
1,u

c
2,u

c
3,

and uc
4 modeling adjacencies on the four corners of the box u, two horizontal bins uh

1 and
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uh
2 modeling adjacencies on the top and bottom side of u, and two vertical bins uv

1 and
uv

2 modeling adjacencies on the left and right side of u; see Fig. 2 in Appendix E. The
capacity of the corner bins is 1, the capacity of the horizontal bins is the width w(u) of u,
and the capacity of the vertical bins is the height h(u) of u. In case we allow words to be
placed vertically, the capacity of the horizontal and the vertical bins is min{h(u),v(u)}.
Next, we introduce an item i(v) for any leaf vertex v of the star. The size of i(v) is 1 in
any corner bin, w(v) in any horizontal bin, and h(v) in any vertical bin. The profit of i(v)
in any bin is the profit p(u,v) of the edge (u,v).

Note that any feasible solution to the MAX-CROWN instance can be normalized so
that any box that touches a corner of u has a point contact with u. Hence, the above is an
approximation-preserving reduction from weighted MAX-CROWN on stars (with point
contacts) to GAP. By Lemma 2, we obtain a PTAS. ut

3 The Weighted Case

In this section, we provide new approximation algorithms for more involved classes of
(weighted) graphs than in the previous section. Recall that α = e/(e−1)≈ 1.58. First,
we give a (3+ ε)-approximation for outerplanar graphs. Then, we present a 16α/3-
approximation for bipartite graphs. For general graphs, we provide a simple randomized
32α/3-approximation and a deterministic 40α/3-approximation.

Theorem 2. Weighted MAX-CROWN on outerplanar graphs admits a (3+ ε)-approx-
imation.

Proof. It is known that the star arboricity of an outerplanar graph is 3, that is, it can
be partitioned into at most three star forests [16]. Here we give a simple algorithm for
finding such a partitioning.

Any outerplanar graph has degeneracy at most 2, that is, it has a vertex of degree
at most 2. We prove that any outerplanar graph G can be partitioned into three star
forests such that every vertex of G is the center of only one star. Clearly, it is sufficient
to prove the claim for maximal outerplanar graphs in which all vertices have degree
at least 2. We use induction on the number of vertices of G. The base of the induction
corresponds to a 3-cycle for which the claim clearly holds. For the induction step, let v
be a degree-2 vertex of G and let (v,u) and (v,w) be its incident edges. The graph G− v
is maximal outerplanar and thus, by induction hypothesis, it can be partitioned into star
forests F1, F2, and F3 such that u is the center of a star in F1 and w is the center of a
star in F2. Now we can cover G with three star forests: we add (v,u) to F1, we add (v,w)
to F2, and we create a new star centered at v in F3.

Applying Lemmas 1 and 2 to these three star forests completes the proof. ut

Theorem 3. Weighted MAX-CROWN on bipartite graphs admits a 16α/3-approximation.

Proof. Let G = (V,E) be a bipartite input graph with V = V1 ∪̇ V2 and E ⊆ V1×V2.
Using G, we build an instance of GAP as follows. For each vertex u ∈ V1, we create
eight bins uc

1,u
c
2,u

c
3,u

c
4,u

h
1,u

h
2,u

v
1,u

v
2 and set the capacities exactly as we did for the star

center in Theorem 1. Next, we add an item i(v) for every vertex v ∈V2. The size of i(v)
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is, again, 1 in any corner bin, w(v) in any horizontal bin, and h(v) in any vertical bin.
For u ∈V1, the profit of i(v) is p(u,v) in any bin of u.

It is easy to see that solutions to the GAP instance are equivalent to word cloud
solutions (with point contacts) in which the realized edges correspond to a forest of stars
with all star centers being vertices of V1. Hence, we can find an approximate solution of
profit ALG′1 ≥ OPT′1 /α where OPT′1 is the profit of an optimum solution (with point
contacts) consisting of a star forest with centers in V1.

We now show how to get a solution without point contacts. If the three bins on the
top side of a vertex u (two corner bins and one horizontal bin) are not completely full, we
can slightly move the boxes in the corners so that point contacts are avoided. Otherwise,
we remove the lightest item from one of these bins. We treat the three bottommost
bins analogously. Note that in both cases we only remove an item if all three bins are
completely full. The resulting solution can be realized without point contacts. We do the
same for the three left and three right bins and choose the heavier of the two solutions. It
is easy to see that we lose at most 1/4 of the profit for the star center u. If we do this
for all star centers, we get a solution with profit ALG1 ≥ 3/4 ·ALG′1 ≥ 3OPT′1 /(4α)≥
3OPT1 /(4α) where OPT1 is the profit of an optimum solution (without point contacts)
consisting of a star forest with centers in V1.

Similarly, we can find a solution of profit ALG2 ≥ 3OPT2 /(4α) with star centers
in V2, where OPT2 is the maximum profit that a star forest with centers in V2 can realize.
Among the two solutions, we pick the one with larger profit ALG =max{ALG1,ALG2}.

Let G? = (V,E?) be the contact graph realized by a fixed optimum solution, and let
OPT = p(E?) be its total profit. We now show that ALG ≥ 3OPT/(16α). As G? is a
planar bipartite graph, |E?| ≤ 2n−4. Hence, we can decompose E? into two forests H1
and H2 using a result of Nash-Williams [19]; see Fig. 5 in Appendix E. We can further
decompose H1 into two star forests S1 and S′1 in such a way that the star centers of S1 are
in V1 and the star centers of S′1 are in V2. Similarly, we decompose H2 into a forest S2 of
stars with centers in V1 and a forest S′2 of stars with centers in V2. As we decomposed the
optimum solution into four star forests, one of them—say S1—has profit p(S1)≥OPT/4.
On the other hand, OPT1 ≥ p(S1). Summing up, we get

ALG ≥ ALG1 ≥ 3OPT1 /(4α) ≥ 3p(S1)/(4α) ≥ 3OPT/(16α). ut
Theorem 4. Weighted MAX-CROWN on general graphs admits a randomized 32α/3-
approximation.

Proof. Let G = (V,E) be the input graph and let OPT be the weight of a fixed op-
timum solution. Our algorithm works as follows. We first randomly partition the
set of vertices into V1 and V2 = V \V1, that is, the probability that a vertex v is in-
cluded in V1 is 1/2. Now we consider the bipartite graph G′ = (V1 ∪̇V2,E ′) with E ′ =
{(v1,v2) ∈ E | v1 ∈V1 and v2 ∈V2} that is induced by V1 and V2. By applying Theo-
rem 3 on G′, we can find a feasible solution for G with weight ALG≥ 3OPT′ /(16α),
where OPT′ is the weight of an optimum solution for G′.

Any edge of the optimum solution is contained in G′ with probability 1/2. Let OPT be
the total weight of the edges of the optimum solution that are present in G′. Then, E[OPT] =
OPT/2. Hence,

E[ALG] ≥ 3E[OPT′]/(16α) ≥ 3E[OPT]/(16α) = 3OPT/(32α). ut
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Theorem 5. Weighted MAX-CROWN on general graphs admits a 40α/3-approximation.

Proof. Let G = (V,E) be the input graph. As in the proof of Theorem 3, our algorithm
constructs an instance of GAP based on G. The difference is that, for every vertex v ∈V ,
we create both eight bins and an item i(v). Capacities and sizes remain as before. The
profit of placing item i(v) in a bin of vertex u, with u 6= v, is p(u,v).

Let OPT be the value of an optimum solution of MAX-CROWN in G, and let OPTGAP
be the value of an optimum solution for the constructed instance of GAP. Since any
optimum solution of MAX-CROWN, being a planar graph, can be decomposed into five
star forests [16], there exists a star forest carrying at least OPT/5 of the total profit.
Such a star forest corresponds to a solution of GAP for the constructed instance; there-
fore, OPTGAP ≥ OPT/5. Now we compute an α-approximation for the GAP instance,
which results in a solution of total profit ALGGAP ≥ OPTGAP /α ≥ OPT/(5α). Next,
we show how our solution induces a feasible solution of MAX-CROWN where every
vertex v ∈V is either a bin or an item.

Consider the directed graph GGAP = (V,EGAP) with (u,v) ∈ EGAP if and only if the
item corresponding to u ∈V is placed into a bin corresponding to v ∈V . A connected
component in GGAP with n′ vertices has at most n′ edges since every item can be placed
into at most one bin. If n′ = 2, we arbitrarily make one of the vertices a bin and the
other an item. If n′ > 2, the connected component is a 1-tree, that is, a tree and an edge.
In this case, we partition the edges into two subgraphs; a star forest and the disjoint
union of a star forest and a cycle; see Fig. 3 in Appendix E. Note that both subgraphs
can be represented by touching boxes if we allow point contacts. This is due to the
fact that the stars correspond to a solution of GAP. Hence, choosing a subgraph with
larger weight and post-processing the solution as in the proof of Theorem 3 results in
a feasible solution of MAX-CROWN with no point contacts. Initially, we discarded at
most half of the weight and the post-processing keeps at least 3/4 of the weight, so
ALG≥ 3ALGGAP /8. Therefore, ALG≥ 3OPT/(40α). ut

4 The Unweighted Case

In this section, we consider the unweighted MAX-CROWN problem, that is, all desired
contacts have profit 1. Thus, we want to maximize the number of edges of the input graph
realized by the contact representation. We present approximation algorithms for different
graph classes. First, we give a 2-approximation for trees. Then, we present a PTAS for
planar graphs of bounded degree. Finally, we provide a (5+ 4α)-approximation for
general graphs.

Theorem 6. Unweighted MAX-CROWN on trees admits a 2-approximation.

Proof. Let T be the input tree. We first decompose T into edge-disjoint stars as follows.
If T has at most two vertices, then the decomposition is straight-forward. So, we assume
w.l.o.g. that T has at least three vertices and is rooted at a non-leaf vertex. Let u be a
vertex of T such that all its children, say v1, . . . ,vk, are leaf vertices. If u is the root of
T , then the decomposition contains only one star centered at u. Otherwise, denote by π

the parent of u in T , create a star Su centered at u with edges (u,π),(u,v1), . . . ,(u,vk)
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and call the edge (u,π) of Su the anchor edge of Su. The removal of u,v1, . . . ,vk from T
results in a new tree. Therefore, we can recursively apply the same procedure. The result
is a decomposition of T into edge-disjoint stars covering all edges of T .

We next remove, for each star, its anchor edge from T . We apply the PTAS of
Theorem 1 to the resulting star forest and claim that the result is a 2-approximation
for T . To prove the claim, consider a star S′u of the new star forest, centered at u with
edges (u,v1), . . . ,(u,vk) and let ALG be the total number of contacts realized by the
(1+ ε)-approximation algorithm on S′u. We consider the following two cases.
(A) 1≤ k≤ 4: Since it is always possible to realize four contacts of a star, ALG≥ k. Note

that an optimal solution may realize at most k+1 contacts (due to the absence of the
anchor edge from S′u). Hence, our algorithm has approximation factor (k+1)/k≤ 2.

(B) k≥ 5: Since it is always possible to realize four contacts of a star, we have ALG≥ 4.
On the other hand, an optimal solution realizes at most (1+ ε)ALG+1 contacts.
Thus, the approximation factor of our algorithm is ((1+ ε)ALG+1)/ALG≤ (1+
ε)+1/4 < 2.

The theorem follows from the fact that all edges of T are incident to the star centers. ut

Next, we develop a PTAS for bounded-degree planar graphs. Our construction needs
two lemmas, the first of which was shown by Barth et al. [2].

Lemma 3 ([2]). If the input graph G = (V,E) has maximum degree ∆ then OPT ≥
2|E|/(∆ +1).

The second lemma provides an exponential-time exact algorithm for MAX-CROWN. The
proof is given in Appendix C.

Lemma 4. There is an exact algorithm for unweighted MAX-CROWN with running time
2O(n logn).

Theorem 7. Unweighted MAX-CROWN on planar graphs with maximum degree ∆

admits a PTAS. More specifically, for any ε > 0 there is an (1+ ε)-approximation
algorithm with linear running time n2(∆/ε)O(1)

.

Proof. Let r be a parameter to be determined later. Frederickson [14] showed that we
can find a vertex set X ⊆V (called r-division) of size O(n/

√
r) such that the following

holds. The vertex set V \X can be partitioned into n/r vertex sets V1, . . . ,Vn/r such that
(i) |Vi| ≤ r for i = 1, . . . ,n/r and (ii) there is no edge running between any two distinct
vertex sets Vi and Vj. In what follows, we assume w.l.o.g. that G is connected, as we can
apply the PTAS to every connected component separately.

We apply the result of Frederickson to the input graph and compute an r-division X .
By removing the vertex set X from the graph, we remove O(n∆/

√
r) edges from G.

Now, we apply the exact algorithm of Lemma 4 to each of the induced subgraphs G[Vi]
separately. The solution is the union of the optimum solutions to G[Vi].

Since no edge runs between the distinct sets Vi and Vj, the subgraphs G[Vi] cover
G−X . Let E? be the set of edges realized by an optimum solution to G, let OPT = |E?|,
and let OPT′ = |E? ∩E(G−X)|. By Lemma 3, we have that OPT ≥ 2(n− 1)/(∆ +
1) = Ω(n/∆). When we removed X from G, we removed O(n∆/

√
r) edges. Hence,

OPT = OPT′+O(n∆/
√

r) and OPT′ = Ω(n(1/∆ −∆/
√

r)).
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Since we solved each sub-instance G[Vi] optimally and since these sub-instances
cover G−X , the solution created by our algorithm realizes at least OPT′ many edges.
Using this fact and the above bounds on OPT and OPT′, the total performance of our
algorithm can be bounded by

OPT
OPT′

=
OPT′+O(n∆/

√
r)

OPT′
= 1+O

(
n∆/
√

r
n(1/∆ −∆/

√
r)

)
= 1+O

(
∆ 2
√

r−∆

)
.

We want this last term to be smaller than 1+ ε for some prescribed error parameter
0 < ε ≤ 1. It is not hard to verify that this can be achieved by letting r = Θ(∆ 4/ε2).
Since each of the subgraphs G[Vi] has at most r vertices, the total running time for
determining the solution is n2(∆/ε)O(1)

. ut

Before tackling the case of general graphs, we need a lower bound on the size of
maximum matchings in planar graphs in terms of the numbers of vertices and edges.

Lemma 5. Any planar graph with n vertices and m edges contains a matching of size at
least (m−2n)/3.

Proof. Let G be a planar graph. Our proof is by induction on n. The claim holds for n= 1.
For the inductive step assume that n > 1. If G is not connected, the claim follows

by applying the inductive hypothesis to every connected component. Now assume that
G has a vertex u of degree less than 3. Consider the graph G′ = G−u with n′ = n−1
vertices and m′ ≥ m−2 edges. By the inductive hypothesis G′ (and hence, G, too) has a
matching of size at least (m′−2n′)/3≥ ((m−2)−2(n−1))/3 = (m−2n)/3.

It remains to tackle the case where G is connected and has minimum degree 3.
Nishizeki and Baybars [20] showed that any connected planar graph with at least n≥ 10
vertices and minimum degree 3 has a matching of size at least d(n+2)/3e ≥ n/3. This
shows the claim for n ≥ 10 since m ≤ 3n− 6. Finally, we consider the case that G is
connected, has minimum degree 3 and n≤ 9 vertices.

First, we assume that a maximum matching of G consists of a single edge e = (u,v).
Any edge in G is either equal to or incident on e. Since the minimum degree of G is 3,
there is an edge (u,x) 6= e incident on u and an edge (v,y) 6= e incident on v. Since
the matching is maximum, we have x = y. Hence, G must be a triangle, which is a
contradiction.

Now we assume that the maximum matching consists of two edges e = (u,v) and
e′ = (u′,v′). We show that n ≤ 5, which completes the proof since then 6 ≤ n ≤ 9
guarantees a matching of size at least 3. Assume for a contradiction that there are
vertices x and y on which e and e′ are not incident. Due to the maximality of the
matching {e,e′}, edges incident on x and y can only be incident on u, v, u′, and v′.
Since x has degree at least 3, G contains, w.l.o.g., the edges (x,u) and (x,v). Since y also
has degree 3, y must be adjacent to at least one of the vertices u and v, say u. But then
(x,v,u,y) is an augmenting path for the matching, contradicting its optimality. ut

Theorem 8. Unweighted MAX-CROWN on general graphs admits a (5 + 16α/3)-
approximation.
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Proof. The algorithm first computes a maximal matching M in G. Let V ′ be the set of
vertices matched by M, let G′ be the subgraph induced by V ′, and let E ′ be the edge
set of G′. Note that Ḡ = G−E ′ is a bipartite graph with partition (V ′,V \V ′) since
the matching M is maximal and hence every edge in E \E ′ is incident to a vertex of
V ′ and to a vertex not in V ′; see Fig. 6a in Appendix E. Hence, we can compute a
16α/3-approximation to Ḡ using the algorithm presented in Theorem 3.

Consider the graph G′′ = (V ′,E ′ \M) and compute a maximum matching M′′ in G′′;
see Fig. 6b. The edge set M∪M′′ is a set of vertex-disjoint paths and cycles and can
therefore be completely realized [2]. The algorithm realizes this set. Below, we argue
that this realization is in fact a 5-approximation for G′, which completes the proof (due
to Lemma 1 and since G is covered by G′ and Ḡ).

Let n′ = |V ′| be the number of vertices of G′. Let E∗ be the set of edges realized by
an optimum solution to G′, and let OPT = |E∗|. Consider the subgraph G∗ = (V ′,E∗ \M)
of G′′; see Fig. 6c. Note that G∗ is planar and contains at least OPT−n′/2 many edges.
Applying Lemma 5 to G∗, we conclude that the maximum matching M′′ of G′′ has size
at least (OPT−5/2n′)/3. Hence, by splitting OPT appropriately, we obtain

OPT = (OPT−5n′/2)+5n′/2 ≤ 3|M′′|+5|M| ≤ 5|M′′∪M| . ut

5 APX-Hardness

Theorem 9. Weighted MAX-CROWN is APX-hard even if the input graph is bipartite
of maximum degree 9, each edge has profit 1, 2 or 3, and each vertex corresponds to a
square of one out of three different sizes.

Proof. We give a gap-preserving reduction from 3-dimensional matching where we
create for each node a square and for each hyperedge e squares e?,e1, . . . ,e8 of suit-
able side lengths. In the contact graph, we create an edge (e?,e1) of profit 2, edges
(e?,e2), . . . ,(e?,e8) of profit 3, and, if v is incident to e, an edge (e?,v) of profit 1.
The idea is that edges (e?,e2), . . . ,(e?,e8) are always realized (with a total profit of
21); see Fig. 4 in Appendix E. If hyperedge e = (x,y,z) is in the matching, edges
(e?,x),(e?,y),(e?,z) are realized (yielding an extra profit of 3); otherwise only edge
(e?,e1) is realized (yielding an extra profit of 2). Appendix D contains the full proof. ut

6 Conclusions and Open Problems

We presented approximation algorithms for the MAX-CROWN problem, which can
be used for constructing semantics-preserving word clouds. Apart from improving
approximation factors for various graph classes, many open problems remain. Most of
our algorithms are based on covering the input graph by subgraphs and packing solutions
for the individual subgraphs. Both subproblems—covering graphs with special types of
subgraphs and packing individual solutions together—are interesting problems in their
own right. Practical variants of the problem are also of interest, for example, restricting
the heights of the boxes to predefined values (determined by font sizes), or defining more
than immediate neighbors to be in contact, thus considering non-planar “contact” graphs.
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Appendix
A The Model without Point Contacts for Stars

We show how we can reduce, for MAX-CROWN on stars, the case without point contacts
to the model with point contacts. This completes the proof of Theorem 1.

We first assume that all boxes have integral edge lengths, which can be accomplished
by scaling. Consider a feasible solution without point contacts. We now modify the
solution as follows. Each box that touches a corner of u is moved so that it has a point
contact with this corner. Afterwards, we move some of the remaining boxes until all
corners of u have point contacts or until we run out of boxes. This yields a solution
with point contacts in which there are two opposite sides of u—say the two horizontal
sides—which either do not touch any box or from which we removed one box during
the modification. Now observe that, if we shrink the two horizontal sides by an amount
of 1/2, then all contacts can be preserved since there was a slack of at least 1 at both
horizontal sides. Conversely, observe that any feasible solution with point contacts to
the modified instance with shrunken horizontal sides can be transformed into a solution
without point contacts since we always have a slack of at least 1/2 on both horizontal
sides. This shows that there is a correspondence between feasible solutions without point
contacts and feasible solutions with point contacts to a modified instance where we
either shrink the horizontal or the vertical sides by 1/2. The PTAS for MAX-CROWN on
stars consists in applying a PTAS to two instances of MAX-CROWN with point contacts
where we shrink the horizontal or vertical sides, respectively, and in outputting the better
of the two solutions.

B The Model with Point Contacts

In the model with point contacts, adjacencies between boxes may be realized by a point
contact, that is, if two boxes touch each other in two corners. Note that the APX-hardness
proof also holds for this model without any modification.

Bipartite and general graphs. For these graph classes, we do, on the one hand, no longer
need the post-processing that we applied in Theorems 3 and 5 (and implicitly also in
Theorem 4). This post-processing cost us up to a quarter of the total profit. Hence, we
can (for now) replace α by 3α/4, which improves the approximation factors for these
cases.

On the other hand, a realized graph is now not necessarily planar as four boxes can
meet in a point and both diagonals correspond to edges of the input graph. It is, however,
easy to see that the graphs that can be realized are 1-planar. This means that an optimal
solution has at most 4n−8 edges in the case of general graphs and at most 3n−6 edges
in the case of bipartite graphs. Furthermore, Ackerman [1] showed very recently that
a 1-planar graph can be covered by a planar graph and a tree. Hence, we can cover a
1-planar graph with seven star forests and a bipartite 1-planar graph with six star forests
(via a bipartite planar graph and a tree).
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Table 2: Approximation ratios for the version of MAX-CROWN where point contacts are allowed.

graph class weighted unweighted

bipartite 6α

general 14α (det.), 12α (rand.) 7+6α

If our approximation algorithm for bipartite graphs uses this decomposition into
six star forests, we easily get a 6α-approximation for this case. As a consequence, we
get (as in Theorem 4) a randomized 12α-approximation for general graphs. Similarly,
decomposing an optimum 1-planar solution into seven star forests (instead of five star
forests for planar graphs), we get a deterministic 14α-approximation for general graphs.

Unweighted general graphs. In order to modify the algorithm for the unweighted case,
we use the new decomposition of bipartite graphs. It is easy to prove that any 1-planar
graph with m edges and n vertices contains a matching of size at least (m−3n)/3: we
planarize the graph (by removing at most n edges) and then apply Lemma 5. This results
in a (7+6α)-approximation for unweighted general graphs.

Table 2 shows the approximation factors for the model with point contacts; in the
cases not mentioned in this table, the approximation ratio is the same as in the model
without point contacts shown in Table 1.

C An exact algorithm for unweighted MAX-CROWN

Lemma 6. There is an exact algorithm for unweighted MAX-CROWN with running time
2O(n logn).

Proof. Consider a placement which assigns a position [`B,rB]× [bB, tB] to every box,
with `B +w(B) = rB and bB +h(B) = tB. For the x-axis, this gives a (non-strict) linear
order on the values `B and rB; an order on the y-axis is implied similarly. Together, these
two orders fully determine the combinatorial structure of overlaps and contacts. (For
contact, two boxes must have a side of equal value and a side with overlap, both of
which can be seen from the orders.) The algorithm enumerates all possible combinations
of these orders. A single order can be enumerated using a permutation of the variables
and, between every two variables adjacent in this permutation, whether it is ‘=’ or ‘≤’.
The number of orders is bounded by O(22n(2n)!), for a total of 2O(n logn) combinations.
For any given pair of orders, it can be determined if they imply overlaps and what
the objective value is: the number of profitable contacts. If there are no overlaps, the
existence of an actual placement realizing the orders is tested using linear programming.
As these tests run in polynomial time, an optimal placement can be found in 2O(n logn)

time. ut
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D APX-Hardness

Theorem 9. Weighted MAX-CROWN is APX-hard even if the input graph is bipartite
of maximum degree 9, each edge has profit 1, 2 or 3, and each vertex corresponds to a
square of one out of three different sizes.

Proof. We give a reduction from 3-dimensional matching (3DM). An instance of this
problem is given by three disjoint sets X ,Y,Z with cardinalities |X |= |Y |= |Z|= k and
a set E ⊆ X×Y ×Z of hyperedges. The objective is to find a set M ⊆ E, called matching,
such that no element of V = X ∪Y ∪Z is contained in more than one hyperedge in M
and such that |M| is maximized.

The problem is known to be APX-hard [13]. More specifically, for the special case of
3DM where every v ∈V is contained in at most three hyperedges (hence |E| ≤ 3k) it is
NP-hard to decide whether the maximum matching has cardinality k or only k(1−ε0) for
some constant 0 < ε0 < 1. We reduce from this special case of 3DM to MAX-CROWN.

To this end, we construct the following MAX-CROWN instance from a given 3DM
instance. We create, for each v ∈V , a square of side length 1. For each hyperedge e ∈ E,
we create nine squares e?,e1, . . . ,e8 where e? has side length 3.5 and e1, . . . ,e8 have side
length 3. In the desired contact graph, we create an edge (e?,e1) of profit 2 and, for
i = 2, . . . ,8, an edge (e?,ei) of profit 3. We also create an edge (e?,v) of profit 1 if v is
incident to e in the 3DM instance.

Consider an optimum solution to the above MAX-CROWN instance. It is not hard
to verify that, for any hyperedge e = (x,y,z), the solution will realize the edges (e?,ei)
for i = 2, . . . ,8. Moreover, we can assume w.l.o.g. that the solution either realizes all
three adjacencies (e?,x), (e?,y), and (e?,z) of total profit 3 or the adjacency (e?,e1) of
profit 2; see Fig. 4 in Appendix E. We call such a solution well-formed.

Assume that there is a solution M to the 3DM instance of cardinality k. Then this can
be transformed into a well-formed solution to MAX-CROWN of profit (7 ·3+2)|E|+
|M|= 23|E|+ k.

Conversely, suppose that the maximum matching has cardinality at most (1− ε0)k.
Consider an optimum solution to the respective MAX-CROWN instance. We may assume
that the solution is well-formed. Let M be the set of hyperedges e = (x,y,z) for which
all three adjacencies (e?,x),(e?,y),(e?,z) are realized. Then, the profit of this solution
is (7 · 3+ 2)|E|+ |M| = 23|E|+ |M|. Note that M is in fact a matching because the
solution to MAX-CROWN was well-formed. Thus, the optimum profit is bounded by
23|E|+(1− ε0)k.

Hence, it is NP-hard to distinguish between instances with OPT ≥ 23|E|+ k and
instances with OPT≤ 23|E|+(1− ε0)k. Using |E| ≤ 3k, this implies that there cannot
be any approximation algorithm of ratio less than

23|E|+ k
23|E|+(1− ε0)k

= 1+
ε0k

23|E|+(1− ε0)k
≥ 1+

ε0k
(70− ε0)k

= 1+
ε0

70− ε0
,

which is a constant strictly larger than 1. ut
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E Additional Figures
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Fig. 2: PTAS for stars
in the proof of Theo-
rem 1

Fig. 3: Partitioning a 1-
tree into a star forest
(gray) and the union of
a cycle and a star forest
(black); see Theorem 5

Fig. 4: The two possible configurations of a hy-
peredge e = (x,y,z) in the proof of Theorem 9
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(a) The graph G? realized by
an optimum solution is pla-
nar and bipartite.

H1 H2

(b) G? can be decomposed into two forests H1 and H2 and
further into four star forests S1,S2 (black) with centers in V1
(disks) and S′1,S

′
2 (dashed) with centers in V2 (boxes).

Fig. 5: Partitioning the optimum solution in the proof of Theorem 3
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(a) G is covered by Ḡ (bipartite,
gray) and G′ with perfect matching
M (gray, bold).

(b) maximum matching
M′′ (gray/black) in G′′ =
G′−M.

(c) optimum solution to G′:
graph G∗ (black) and part
of M (gray).

Fig. 6: Partitioning the input graph and the optimum solution in the proof of Theorem 8
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Fig. 7: Der Koalitionsvertrag im Schnellcheck (Quick overview of the [new German] coali-
tion agreement), Spiegel Online, Nov. 27, 2013, www.spiegel.de/politik/deutschland/was-der-
koalitionsvertrag-deutschland-bringt-a-935856.html. (Click on “Fotos”.)

http://www.spiegel.de/politik/deutschland/was-der-koalitionsvertrag-deutschland-bringt-a-935856.html
http://www.spiegel.de/politik/deutschland/was-der-koalitionsvertrag-deutschland-bringt-a-935856.html
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