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measurements  

V Kortov 
Ural Federal University, Ekaterinburg, 62000 Russia 
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Abstract. Main application areas of high-dose dosimetry are described. The requirements to 

the materials for high-dose luminescent detectors are set. The examples of successful high-dose 

measurements using radiation-resistant phosphors are given. Viability of using materials with 

deep traps to detect intensive radiation flows is grounded. Characteristics of high-dose 

measurements using highly sensitive detectors TLD-500 (Al2O3:C) and LiF:Mg,Cu,P are 

discussed. 

1. Introduction

The interest in high-dose measurements of ionizing radiations is increasingly growing due to 

development of radiation technologies. These technologies include radiation modification of the 

properties of various materials, medical products sterilization, disinfection of agricultural products, 

radiation control of defects in large machine parts and equipment [1]. All the above mentioned 

technologies employ intensive isotope radiation sources or charged particle accelerators providing 

exposure to the doses of several dozens of kGy. High-dose measurements are also used for radiation 

monitoring of nuclear power station (NPS) equipment and storages of spent nuclear fuel. High dose 

measurements for radiation resistance tests of the materials and equipment are of great importance as 

well. These served as the reasons for more extensive study for design and development of high-dose 

luminescent radiation detectors. The main advantages of luminescent dosimetry are a wide range of 

the measured doses, possibility to register different types of radiation (with low and high LET), high 

reproducibility of measurement results, automated dose readers.  

The purpose of the paper is a brief analysis of the current status and modern trends in 

development of luminescent detectors for high-dose measurements.  

2. Requirements to the materials for high-dose luminescent detectors

At present about twenty types of commercial luminescent detectors of radiation with the (10
-6

-20) Gy 

measurement range are widely used for personal dosimetry and radiation monitoring of   

environment [2]. Still, the choice of luminescent detectors for high-dose dosimetry is limited. In the 

USA two types of thermoluminescent detectors (TLD): CaF2:Mn (TLD-400) with the operating dose 

range (10
-6

-10
2
) Gy and Li2B4O7:Mn (TLD-800) with the dose range (10

-3
-10

5
) Gy are used. In Russia

TLD on the base of aluminophosphate (PST) and sodiumsilicate (TLD-K) glasses with the highest 

registered dose of (2-5) kGy are widely used [3]. 

A great number of storage materials are known to be promising for development of high-dose 

TLD as for these materials there is no tissue equivalence requirement. However, there are challenges 
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to their usage. One of such challenges is saturation of the thermoluminescence (TL) yield at high-dose 

irradiation. In our experiments we were the first to measure TL yield in a wide range of      

gamma-radiation doses (10 mGy - 100 kGy) of the high-dose TLD-500 (Al2O3:C) detectors which we 

developed on the base of oxygen-deficient alumina single crystals [4]. Figure 1 shows a dose response 

of the main dosimetric peak at Тm=480 К of this detector in the given dose range. The linear dose 

response of the TL yield is shown to be limited to 10 Gy. With the further dose increase, TL intensity 

decreases to some extent. However, its medium value is only slightly different from the maximal one 

with the use of the dose of seven orders. It implies that the centers responsible for the main dosimetric 

peak in the TLD-500 detectors are not destroyed being exposed to high doses as aluminum oxide is a 

radiation-resistant material. However, the use of the main TL peak for dosimetric measurements is 

challenging due to saturation of its height at the doses higher than 10 Gy. 

One of the main causes of the TL yield saturation at high-dose irradiation is known to be a 

limited capacity of electron traps which can be filled with free electrons formed at the exposure [5]. As 

a result, saturation of the TL yield appears with a particular dose related to filling of all the traps 

responsible for the main dosimetric peak. Thus, the material for a high-dose detector should have a 

high capacity of unfilled trapping centers prior to exposure. 

Figure 1. Dose response of TLD-500 

(Al2O3:C) detectors at high dose -irradiation 

(Co-60). 

Figure 2. Normalized radioluminescence 

intensity as a function of alpha-particle fluence 

for ZnS:Ag
2+

 and Y2O3:Eu
3+ 

[6].

Another challenge to the usage of phosphors for high dose measurements is the degradation of 

the luminescent centers. The degradation of the luminescent characteristics under intensive irradiation 

can be well seen when radioluminescence (RL) is registered. Figure 2 shows degradation of RL of the 

two well known phosphors exposed to -particles [6]. Each of these phosphors has the -particle 

fluence range with the constant RL intensity, then the intensity drops sharply with the fluence 

increase. The RL degradation kinetics proves that radiation resistance of the luminescent centers in 

Y2O3:Eu phosphors is much higher than in ZnS:Ag. Taking into account all the above mentioned, the 

main requirements to the material for a high-dose detector is made: the detector should be  

radiation-resistant and have a large capacity of the unfilled trapping centers of the charge carriers.  

3. Radiation-resistant materials for high-dose dosimetry

Phosphors capable of keeping luminescent and dosimetric characteristics stable under high exposure 

doses belong to radiation resistance materials. Oxide dosimetric phosphors BeO and Al2O3 have the 

high radiation resistance and detectors based on the given oxides can be used for high-dose 
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measurements [7,8]. Recently, dosimetric characteristics of the TL detectors based on yttrium 

orthoaluminate crystals (YAlO3) with various dopants have been studied intensively [9,10].  

Radiation-resistant oxides of aluminum and yttrium contained in YAlO3 allow one to make detectors 

capable of registering doses up to (5-10) kGy. Natural silicates such as quartz, sand, topaz, onyx, etc., 

are also radiation-resistant materials [11-13]. The dose response of these materials was found to 

change linearly in the range from 10 Gy to several kGy. As an example, Figure 3 shows a dose 

response of topaz pellets irradiated with gamma-rays [12]. Dependence of radiation resistance on 

material structure was found. In particular, it has been shown that naturally disorder multiphase 

compounds, low-dimensional materials (glasses, ceramics), nanostructured materials, hetero-structures 

have high radiation resistance. These materials are disordered, therefore additional disorder caused by 

structural changes under irradiation does not affect significantly their characteristics in a wide dose 

range. 

Nanostructured phosphors are the most suitable materials for high-dose detectors. They have big 

capacity of the trapping centers due to the surface of the centers and high radiation resistance. A great 

number of researches have been made by now [14,15]. They have found the common feature shared 

by nanostructured phosphors of various compositions: their dose response remains linear at the doses  

(1.5-2) orders higher than the ones in microcrystalline analogues [8]. Figure 4 shows TL response of 

LiF:Mg,Cu,P detectors exposed to gamma-rays of Cs-137 [14]. It is necessary to note that the 

commercial polycrystalline detector provides higher sensitivity, but its TL response curve begins 

flattening out at the dose of 20Gy. The dose response of the nanocrystalline phosphor is linear up to 

20 kGy, and it can be used for measuring high doses. 

Figure 3. Dose response of topaz pellets 

irradiated with gamma rays (Co-60) [12]. 

Figure 4. Comparison of dose response 

provided by nano- and commercial phosphor 

[14]. 

4. Use of deep traps for high-dose measurements

It is also possible to increase capacity of the traps of dosimetric phosphor using deep traps of the 

charge carriers. For instance, in oxygen-deficient aluminum oxide the deep traps are present both in a 

single crystal and in its nanostructured analogue. The energy depth of these traps is bigger than the one 

in the traps of the main dosimetric peak used for low-dose measurements. The nature of deep traps is 

not completely studied, they are considered to be formed by aggregates of the native and impurity 

defects [16]. Deep traps are found following high-temperature TL peaks after high-dose irradiation 

(Figure 5). Each of these peaks can be used for dosimetric measurements while heating the irradiated 

detector. For example, for the intensive TL peak at 603 K, the dose response changes linearly in the 

range of (1,5-80) кGy after exposure of the TLD-500 detector to an electron pulse beam from an 
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accelerator [8]. Measurements of the high-temperature TL peaks appearing after beta-irradiation   

(Sr-90) of the TLD-500 detectors showed that the dose response in the majority of them does not 

exceed two orders [17]. It is connected with the fact that TL of the deep traps is also saturated with a 

particular dose. One can consider e  the following process of deep traps filling (see Figure 5). All traps 

in the detector material begin to be filled under exposure. However, the probability of capturing the 

charge carriers decreases with the increase of the trap energy depth. Therefore, the traps of the main 

dosimetric TL peak (A) are filled in the beginning. With the dose near its saturation the first       

high-temperature TL peak (B) appears and grows with the dose increase. After its saturation the 

TL intensity of the second high-temperature peak (C) increases with the dose growth. Similarly, 

deeper traps responsible for other high-temperature TL peaks are filled. The task of registering high 

doses consists in measuring TL yield of all deep raps. 

For this purpose the phototransfer luminescence (PTTL) [18] and photo-thermostimulation 

luminescence (PTSL) [19] methods are used. In both methods the detector exposed to a high dose is 

preliminary heated to (500-550) K to empty shallow traps. To register PTTL the detector is then 

exposed to intensive blue light for optical emptying the traps and for transfer of the electrons 

delocalized from the deep traps through the conduction band to the unfilled shallow traps. The 

following heating of the detector allows one to measure PTTL. Its intensity is proportional to a 

number of electrons which filled the deep traps under high-dose exposure. The disadvantage of the 

PTTL method is a long measuring procedure. Moreover, not all the deep traps might be emptied under 

photostimulation. The PTSL method makes it possible to eliminate these disadvantages. With the 

simultaneous photo-thermostimulation (thermally assisted OSL), the heating enhances electron energy 

in the traps and the photons of lower energy are required to empty the deep traps. The electron 

phototransfer to the shallow traps is similar to the one described for PTTL. These traps are 

thermoionized and the PTSL peaks are registered. The light sum of the peaks is proportional to the 

dose. The results of using the PTSL method while registering high doses by means of Al2O3:C 

detectors are presented in the work [20]. The PTSL peaks are located in the temperature range 

convenient for registration (up to 500 K), and the dose response is linear from 10
-2

 Gy to 10
3
 Gy. 

Figure 5. Glow curve of TLD-500 

detector after nanosecond electron pulse 

irradiation (dose 75 kGy). 

Figure 6. LiF:Mg,Cu,P glow-curves resulting from 

gamma irradiation (
60

Co source) for the dose range 

(1–500) kGy [24]. 
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At present the most sensitive to radiation detectors, i.e. detectors capable of measuring very low doses 

(1mkGy and lower), are TLD-500 (Al2O3:C) and TLD-700H (LiF:Mg,Cu,P) detectors. Due to the 

necessity to measure high doses, the study of the behavior of these detectors under high-dose exposure 

has become important. The intensity of the main dosimetric peak of the detectors under study is 

saturated with the (10-20) Gy dose, as it was mentioned earlier. The exposure of the LiF:Mg,Cu,P 

detector to high doses causes decrease of the main TL peak intensity at Тm=220 C with the 

simultaneous formation of new peaks. The Tm of these peaks is shifted to the range of high 

temperatures with the dose growth (Figure 6). At the dose about 50 kGy a stable TL peak (peak “B”) 

begins forming with Тm=450 C. The dose response of this peak remains linear up to 500 kGy [21]. 

The TL glow spectrum acquires new bands [22] but their nature is not studied. The obtained results 

give evidence of formation of new electron traps and recombination centers under high-dose 

irradiation. In our opinion, formation of a high-temperature dosimetric peak (peak “B”) under       

high-dose irradiation provides evidence of appearance in the LiF:Mg,Cu,P detector of deep traps 

connected with radiation defects and their complexes.  

The behavior of the TLD-500 (Al2O3:С) detector under high-dose irradiation is quite different from 

that of the LiF:Mg,Cu,P detector [23]. Figure 7 shows that the changes of the shape and temperature 

position of the main dosimetric peak are slight in a wide dose range. After exposure to nanosecond 

pulses of an electron accelerator, the saturation of the TL yield of this peak with the dose increase is 

observed up to 80 kGy (Figure 7). Then, a sublinear growth of the TL yield is registered with the dose 

increase up to 800 kGy. The measurements of photoluminescence (PL) of the detector exposed to a 

high dose show that a new wide band with the maximum at 550 nm appears in the PL spectrum. The 

intensity growth of this band is remarkable at the exposure doses of (70-80) кGy when the TL yield 

starts increasing. The performed analysis has shown that an new band in the PL spectrum is a 

superposition of glow bands of the aggregate F2-type centers in different charge states. These centers 

are additional electron traps capable of capturing free electrons, thus, increasing the TL yield in the 

(80-800) kGy dose range. 

Figure 7. Normalized TL glow curves of 

TLD-500 detectors after low and high 

dose irradiation (
60

Co). 

Figure 8. TL yield dependence in the main 

dosimetric peak at high-dose irradiation of the 

TLD-500 detector by an electron beam. 

Thus, the possibility of registering high doses using highly sensitive detectors of radiation is 

shown. An increase of the traps capacity in a some dose range due to radiation disorders is a common 

feature.  

The obtained results show the necessity of recovering the initial luminescent and dosimetric 

characteristics of the detectors exposed to a high dose. For his purpose, a special procedure of 

5. The possibility of registering high doses with highly sensitive radiation detectors
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annealing with experimentally defined temperature and period is required. As in the LiF crystal 

structural changes affecting its luminescence occur at heating above 240 С, development of the 

annealing procedure of the radiation disorders in this crystal is a real challenge. There are efforts to 

solve this problem [24]. However, LiF:Mg,Cu,P detectors can be used only for single measurements of 

high doses. Whereas for radiation-resistant TLD-500 (Al2O3:С) detectors, appropriate annealing 

conditions (900С, 1 hour) have been found. Under these conditions the initial sensitivity, luminescent 

and dosimetric characteristics of such detectors recover. As a result, there is a possibility of multiple 

repeated uses of TLD-500 detectors for high-dose measurements [23]. 

6. Conclusions

The results obtained allow one to make some general conclusions on high-dose  TL dosimetry current 

state and trends: 

1. At present several successful researches on luminescent and dosimetric properties of some

materials suitable for high-dose detector manufacture have been carried out. A number of

such materials can be expected to increase, as there is no tissue equivalence reguirement for

high-dose luminescent detectors.

2. The material for a high-dose detector should be radiation resistant and have significant

trapping center capacity.

3. Low-dimensional phosphors, particularly nanostructured ceramics, are promising for

creating high-dose luminescent detectors. Such materials have a large amount of charge

carrier traps and high radiation resistance.

4. Selection of efficient phosphors containing deep traps involved in accumulating and storing

dosimetric information is required.

5. It is necessary to develop an annealing procedure for every type of high-dose detectors to

restore their initial properties and to maintain reproducibility when the dose is measured.

6. Development of dosimetric devices based on luminescence registration from the deep traps

of the irradiated detectors by the PTTL and PTSL (TA-OSL) methods is a vital task.
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