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Abstract

We consider a nonlinear control system describing one economic
growth model. An optimal control problem for this system is posed
in the present paper and an extremal functional describing the wealth
of the region chosen depending to a regional consumption. Conditions
were found in which the possible use of the Pontryagin maximum princi-
ple. By using characteristics of a specific region from the basic scenario
of the integrated assessment model MERGE, we find a numerical solu-
tion of the posed optimal control problem.
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1 Introduction

Global climate change is a complicated and controversial concept; many of
the issues associated with it, continue to cause heated discussions. Researches
conducted to date have not yet allowed to study the nature and characteristics
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of the phenomenon fully, moreover, an assessment of the impact of climate
change on ecological, social and economical systems of regions seems to be
quite a daunting task. So to study and predict changes in the characteristics
of different regions integrated assessment models are used; one of them —
MERGE, suggested in [1, 2] and modified in [3, 4]. This model provides an
environment for the study of climate changes and assessment of their impact
on the development of socio-economic systems and also for the construction
of scenarios of development of regions. The complex nature of the model
gives the integration of the various submodels, such as the climatic submodel,
economic-energy submodel and damage assessment submodel.

The proposed research is closely related with the economic and energy sub-
model of MERGE. This submodel is designed to simulate the economic-wide
indexes of the regions on a large time interval. It is a fully integrated applied
model of the global economic equilibrium. In each moment of time supply
and demand are equalized by means of the energy costs as well as cost of the
notional generic merchandize uniting all goods produced outside the energy
sector. Each region is submitted as a single producer-consumer. Investment
decisions in each region are simulated by such choice of sequences of consump-
tion levels to maximize the sum of discounted utilities of consumption. The
present model is a discrete with a possible nonuniform mesh of the consider-
ing time interval. Optimal trajectories of components of the economic-energy
systems of regions are found by using the intertemporal optimization and by
maximizing the sum of intertemporal discounted utilities corresponding to the
each region. The optimization problem in the present case is a problem of
nonlinear programming and for its solution the iterative joint maximization
method is used [5].

2 Preliminary Notes

We consider a regional economic growth model similar to that one used in
MERGE. Dynamics of the main characteristics of the each region are described
by the system obtained using classical production function of Cobb–Douglas:

Ẏ = −µY + (auραlρ(1−α) + bvρβwρ(1−β))1/ρ,

K̇ = −µK + u,

Ė = −µE + v,

Ṅ = −µN + w,

(1)

where Y (t) is the economic output in every period t; K(t) is the capital; E(t)
is the electricity; N(t) is the non-electric energy; l(t) is a continuous function
describing the labour; α is an elasticity of substitution between capital and



On the optimal control problem 8519

labour; β is an elasticity of substitution between electricity and non-electric
energy; µ is the coefficient of depreciation; ρ is an elasticity of substitution be-
tween capital-labour and energy bundle; a and b are scale productivity factors.

By taking into account an economic sense, the control parameters can not
exceed certain values. Together with the fact that the characteristics of regions
nonnegative, this leads to restrictions of the form:

0 < au ≤ u ≤ bu, 0 < av ≤ v ≤ bv, 0 < aw ≤ w ≤ bw. (2)

The functions u(·), v(·) and w(·) satisfying the relations (2) will be called
admissible control. Let us introduce a vector-function c(·) = (u(·), v(·), w(·))>
and denote a set of the admissible controls by the symbol U .

We suppose that the parameters of regions are known at the initial moment
t0, which are positive by their economic sense, i.e. the initial state is given

Y (t0) = Y 0, E(t0) = E0, K(t0) = K0, N(t0) = N0,

Y 0, E0, K0, N0 > 0.
(3)

3 Main Results

In the present paper we consider an optimal control problem of the system (1)–
(3). Further, we assume t0 = 0.

Problem P1. It is required to determine the functions Y ∗(·), K∗(·), E∗(·),
N∗(·), solving the extremal problem

max
Y,K,E,N,c

J(Y,K,E,N, c), (4)

J(Y,K,E,N, c) =

T∫
0

d(t) lnC(t) dt, (5)

satisfying the system (1) and ensuring the fulfillment of restrictions (2). Con-
sumption C(t) at the moment t is determined by the classical formula [1]:

C = Y − I − f −G(E,N). (6)

Here d(t) is the coefficient which represents a social discount factor and an
economic loss factor due to the impact of climate change; I(t) is the investment
used to built capital stock, we assume I(t) = u(t); f(t) is a net exports,
G(E(t), N(t)) is the energy costs that represent the total costs of extracting
resources and supplying electric and non-electric energy determined by the
equality

G(E,N) = gE + hN, (7)
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where the positive coefficients g and h characterize the production cost of
electricity and non-electric energy respectively. The functions d(t) and f(t)
are assumed to be given, d(t) > 0 for t ∈ [0, T ].

The variableK does not appear explicitly in the definition of the maximized
functional (5) and the equations for the characteristics Y , E and N , therefore
the optimal trajectories K(t) are determined only by the initial conditions K0

and the optimal controls u∗. Thus, we can ignore the corresponding equation
of the system (1) in solving the extremal problem (4).

Because of the economic sense of parameters of the system (1) let us impose
the restrictions of the following form:

0 < α, β < 1, ρ < 0, µ > 0, au, bu, av, bv, aw, bw > 0. (8)

Lemma 3.1 For the functions Y , E and N the following estimates are
valid:

Y (t) ≥ Ym(tY ), E(t) ≤ EM(tE), N(t) ≤ NM(tN), t ∈ [0, T ],

where

Ym(t) = e−µtY 0 + µ−1ξ(1− e−µt),
EM(t) = e−µtE0 + µ−1bv(1− e−µt),
NM(t) = e−µtN0 + µ−1bw(1− e−µt),

ξ = (a(au)
ρα min

τ∈[0,T ]
lρ(1−α)(τ) + b(av)

ρβ(aw)ρ(1−β))1/ρ,

(9)

tY =

{
0, ξ ≥ µY 0,

T, ξ < µY 0,
, tE =

{
T, bv ≥ µE0,

0, bv < µE0,
tN =

{
T, bw ≥ µN0,

0, bw < µN0.
(10)

P r o o f. Let us write the Cauchy formula for equations of the system (1),
then we obtain

Y (t) = e−µtY 0 +

t∫
0

eµ(τ−t)(auρα(τ)lρ(1−α)(τ) + bvρβ(τ)wρ(1−β)(τ))1/ρ dτ,

E(t) = e−µtE0 +

t∫
0

eµ(τ−t)v(τ) dτ, N(t) = e−µtN0 +

t∫
0

eµ(τ−t)w(τ) dτ.

(11)

The functions E(t) andN(t) take the maximum values for v(t) ≡ bv and w(t) ≡
bw. In accordance to restrictions (8) the function Y (t) takes the minimum
values for the controls u(t) ≡ au, v(t) ≡ av and w(t) ≡ aw. Thus, by using the
formulas (11) we find expressions for the lower bounds of the functions Y (t) ≥
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Ym(t) and the upper bounds of the functions E(t) ≤ EM(t) and N(t) ≤ NM(t)
of the form (9).

Let us differentiate the first equation of the system (9), the we have

Ẏm(t) = e−µt(ξ − µY 0).

The sign of the derivative is defined by the following relations: if ξ ≥ µY 0,
then Ẏm(t) ≥ 0, and if ξ < µY 0, then Ẏm(t) < 0. So the function Ym(t) will
take its minimum value at the time moment tY .

By differentiating the second and the third equations of the system (9), we
obtain

ĖM(t) = e−µt(bv − µE0), ṄM(t) = e−µt(bw − µN0).

By investigating the signs of derivatives in the similar way we have that the
functions EM(t) and NM(t) will take maximum values at the time moments
tE and tN respectively. �

Theorem 3.2 Let the parameters of the system (1) satisfy the conditions (8),
the restrictions on the control (2) and the initial values (3) satisfy the inequal-
ities

Ym(tY )− bu − bf − gEM(tE)− hNM(tN) > 0,

where Ym, EM and NM are defined by the formulas (9), tY , tE and tN — by
the formulas (10); then the function of consumption takes only positive values

C(t) > 0, t ∈ [0, T ].

P r o o f. By taking into account the function of energy expenditures (7) the
following estimate for the function of consumption (6) is valid

C(t) = Y (t)− u(t)− f(t)− gE(t)− hN(t) ≥ Y (t)− bu − bf − gE(t)− hN(t).

By using the inequalities of Lemma we obtain

C(t) ≥ Ym(tY )− bu − bf − gEM(tE)− hNM(tN). �

Further we assume that the statement of the Theorem is valid. Let us
reduce the system (1), so we subtract the third and the fourth equations mul-
tiplied by g and h respectively from the first equation. Then by introducing
notations Z = Y − gE − hN we reduce the system (1) of the form

Ż(t) = −µZ(t)+(auρα(t)lρ(1−α)(t)+bvρβ(t)wρ(1−β)(t))1/ρ−gv(t)−hw(t) (12)

with a corresponding boundary condition

Z(0) = Z0 = Y 0 − gE0 − hN0. (13)
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As a result we obtain the following optimal control problem.
Problem P2. It is required to define functions Z∗(·), c∗(·), solving the

extremal problem

max
Z,c

J(Z, c), J(Z, c) =

T∫
0

d(t) ln(Z(t)− u(t)− l(t)) dt,

satisfying the equations (12) with the boundary conditions (13) and ensuring
the implementation of restrictions (2).

3.1 To the solution of the problem P2

We use the Pontryagin maximum principle [6] for investigation of properties
of the vector function x(t), 0 ≤ t ≤ T , which is an optimal program control
for the Problem P2.

Let us write the Hamilton–Pontryagin function for the problem, assuming
that ψ0 = −1:

H(t, Z, ψ, c) = ψ(−µZ + f 1/ρ − gv − hw) + d(t) ln(Z − u− l(t)), (14)

where f = auραlρ(1−α)(t) + bvρβwρ(1−β). Then we find the partial derivative of
the hamiltonian with respect to coordinateZ:

∂H/∂Z = −µψ + d(t)/(Z − u− l(t)).

So the conjugate equation ψ̇ = −H ′Z takes the form

ψ̇ = µψ − d(t)/(Z − u− l(t)), (15)

The right end of the trajectory is free, therefore the conjugate variable satisfy
the transversality condition

ψ(T ) = 0. (16)

By using the equation (12) with the condition (13), as well as (15) and
(16), we obtain the boundary value problem of the maximum principle for the
Problem P2 of the form

Ż = −µZ + f 1/ρ − gv − hw, Z(t0) = Z0,

ψ̇ = µψ − d(t)/(Z − u− l(t)), ψ(T ) = 0.
(17)

Assertion 3.3 Let the assumptions of Theorem hold. Then the patrial
derivative of the hamiltonian (14) with respect to control u is not equal to
zero.
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P r o o f. Let us find the derivative of the hamiltonian (14) with respect the
control u:

∂H/∂u = aαψf 1/ρ−1uαρ−1lρ(1−α)(t)− d(t)/(Z − u− l(t)).

We shall prove by contradiction. Let ∂H/∂u = 0, then by equating the found
derivative to zero, we have

d(t)/(Z − u− l(t)) = aαψf 1/ρ−1uαρ−1lρ(1−α)(t).

Let us substitute the previous expression into the conjugate system of the
boundary value problem (17), in this case we obtain

ψ̇ = (µ− aαf 1/ρ−1uαρ−1lρ(1−α)(t))ψ, ψ(T ) = 0.

The solution of the latest system is defined by the formula

ψ = D exp

( t∫
0

(µ− aαf 1/ρ−1(τ)uαρ−1(τ)lρ(1−α)(τ)) dτ

)
.

By taking into account the boundary condition ψ(T ) = 0, we find D = 0; then
ψ(t) ≡ 0. This equality gives

d(t)/(Z(t)− u(t)− l(t)) ≡ 0,

which contradicts the conditions of positivity C(t) and d(t). �

This assertion follows two cases: either u∗(t) = au or u∗(t) = bu, t ∈ [0, T ].
Let us find a derivative of the hamiltonian with respect to controls v and w:

∂H/∂v = ψ(bβ(au∗ρlρ(1−α)(t) + bvρβwρ(1−β))1/ρ−1vβρ−1wρ(1−β) − g),

∂H/∂w = ψ(b(1− β)(au∗ρlρ(1−α)(t) + bvρβwρ(1−β))1/ρ−1vβρwρ(1−β)−1 − h).

By equating the derivatives to zero, we obtain

v∗(t) = a1/ρu∗(t)l1−α(t)b̃, w∗(t) = a1/ρu∗(t)l1−α(t)(1− β)gb̃/(βh), (18)

where b̃ = (g/(bβ))1/(1−ρ)(βh/((1− β)g))ρ(1−β)/(1−ρ) − b((1− β)g/(βh))1−β.

3.2 An algorithm of solving the Problem P1

An analytical solution of the problem P1 as an optimal control problem is
complicated by the nonlinearity of the system (1), as well as nonconvexity of
the functional (5). For the solution of this problem methods of nonconvex
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optimization may be used [7, 8]. In this case we shall construct an optimal
control investigating the restrictions (2).

Let ti, i = 0, . . . , n, tn = T , is a partition of the time interval [t0, T ] with
a step δ = (T − t0)/n. We assume u(0) = 0, v(0) = 0 and w(0) = 0. On the
i-th iteration the optimal control u(i) according to the Lemma 1 can be set to
either au or bu. For the optimal controls v(i) and w(i) we assume that they can
be set to either av or bv and either aw or bw respectively or values defined by
the formulas (18).

For each set of the control parameters c(1), . . . , c(n) we solve the system of
differential equations (1) with a help of Euler method [9]. Then on (i + 1)-th
step of the iteration procedure we obtain

Y (i+1) = Y (i) + δ(−µY (i) + (au(i+1)αρl(i)ρ(1−α) + bv(i+1)βρw(i+1)ρ(1−β))1/ρ),

K(i+1) = K(i) + δ(−µK(i) + u(i+1)),

E(i+1) = E(i) + δ(−µE(i) + v(i+1)),

N (i+1) = N (i) + δ(−µN (i) + w(i+1)), i = 0, . . . , n− 1.

By using the found values of functions Y (1), . . . , Y (n), K(1), . . . , K(n), E(1), . . . , E(n),
N (1), . . . , N (n), we obtain the values of functional J (5). For this we calculate
the integral using the rectangle method [9]:

J = δ
n∑
i=1

d(i) lnC(i),

where C(i) = Y (i) − u(i) − l(i) −G(i)(E(i), N (i)).
Among the obtained values of the functional we choose the largest and

emphasize the corresponding set of controls, which will be optimal.

4 Results of the numerical modeling

By using the described in previous section algorithm let us construct solu-
tion of the problem P1 for specific values of parameters of the system (1) and
restrictions (2). We take Russian Federation and Ukraine as considered re-
gions. This regions have the following set of parameters: α = 0.3, β = 0.45,
µ = 0.05, ρ = −1.5 [1]. We investigate the dynamics of the main indexes on
the time interval from 2010 to 2020 y.; the initial state — Y 0 = 0.306 trillion
$, K0 = 0.857 trillion $, E0 = 0.2 TkWh, N0 = 5.258 EJ [10]. Hereinafter $
is USD2005.

Parameters of the energy expenditures function (7) are defined by equalities
h = 0.0025 trillion $/EJ, g = 0.0563 trillion $/TkWh [1].

The function of the difference between exports and imports F (t) is defined
by the formula F (t) = 0.027 trillion $. The function l(t) describing a labour
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productivity and measured in efficiency units is chosen as a constant: l(t) = 1.
The discount factor of utility is defined by the formula d(t) = 1−0.01(t−2010).
By using the formulas for the basic characteristics of region introduced in [1],
we find out a = 5.44 and b = 0.64.

As boundary values for control u we choose the investment volumes of 1996
and 2010 years, i.e. au = 0.005 trillion $, bu = 0.03 trillion $ [10]. We choose
a lower bound of the control u on the basis of production growth of electricity
in 2005–2010 years, the top bound — in 1987–1988 years [10]. As a result
we have av = 0.005 TkWh and bv = 0.012 TkWh. We choose the following
bounds of the control w : aw = 0.01 EJ and bw = 0.15 EJ. We choose a step
of the time interval mesh equal to one year, i.e. n = 10.

Graphics of the main macroeconomic characteristics of the region are pre-
sented at fig. 1–3. The results obtained by the algorithm of solving the problem
P1 are presented by the black solid line. Data of the basic scenario of the model
MERGE is shown by the dotted line. At fig. 1 a GDP forecast in Ukraine given
by the International Monetary Fund [11] is presented.

Fig. 1. Realized GDP

Investments taken as the control parameter u reach the maximum bu from 2010
to 2018 years, then take the value au up to 2020 year.

In the considering problem for the given set of parameters the optimal
control u∗ has a single switch point. The optimal control of production of
energy is defined by the formulas v∗(t) = bv, w

∗(t) = bw.
Graphics of electricity and nonelectric energy of the basic scenario of MERGE

and graphics obtained by the numeric solution of the problem P1 demonstrate
a similar behavior. Essential distinctions are observed at the GDP graphic.
Differences from IMF forecast can be explained that data of 2011 and 2012
years is used in this forecast whereas we use only data at the initial moment
(2010 y.).
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Fig. 2. Production of electricity

Fig. 3. Production of nonelectric energy

When building scenarios in MERGE the method of intertemporal optimiza-
tion is used, as well as such characteristics of the region, as a potential GDP
in the whole time period, which probably causes the observed differences with
the results of numerical solution of the problem P1.

Concluding remarks

In conclusion we note that the region is considered as a separate system with
a given external influence whereas the cumulative impact of regions on each
other in MERGE is taken into account. Therefore one of the main directions
of research is considering several interacting regions.
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