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Abstract—For an autonomous linear system of differential equations with commensurable
delays, asymptotic formulas are found that describe the analytic dependences of regularized
solutions of the system on the regularization parameter. The problem is solved under the re-
quirement that the initial function is sufficiently smooth but with the violation of the conditions
that guarantee the continuous extension of solutions in the direction of decreasing time.
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INTRODUCTION

We consider an autonomous linear system of differential equations with commensurable delays
d(t) .
g =D At =), (0.1)
j=0

where 2: R — R", A; for j = [0 : m] are constant n x n matrices, 7 > 0, and m > 2.

The problem of finding a solution of the Cauchy problem for system (0.1) on any interval
of the positive half-line is well-posed for an initial function ¢ € C = C([-r,0],R"), where
r =m7 [1, Sect. 6.4; 2, p. 17; 3, Sect. 2.2]. For finding its solution z(-, ») on the positive half-line,
we can use a step-by-step procedure, which, in the functional state space C' [4, p. 182], is described
by the formulas

xp=Uzxr_1, k>1, zo=v, zr(:)=z(+kr). (0.2)

Here, U: C' — C is a linear completely continuous operator defined by the formula
T

(Up)(@) =V (r+0)p(0) + Z V(r+0—s)Ajp(s—jr)ds, 0¢€[-r0], (0.3)
j=1
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556 DOLGII, SURKOV

where V' is the Cauchy matrix of (0.1). This formula follows from [5, formula (2.1)] if the system is
autonomous and w = r, see also [3,6]. Consecutive iterations localize intervals of solution of (0.1)
on the positive half-line by the formulas z(kr + 0, ¢) = x(0), where 6 € [—r,0] and k > 1.

To find a solution of the Cauchy problem z(-,¢) on the negative half-line, we use step-by-step
procedure (0.2) for negative values of the index k. In this procedure, consecutive iterations are
defined by the formulas

Tko = R(:Ek-l—l,aa Oé), k < _17 0,00 = P,
where R is a regularizing operator of the equation
Uzx = (0.4)

and « is a regularization parameter. We define a regularized solution z(-, ¢) of the Cauchy problem
on the negative half-line by the formulas xz(kr + 0, ¢) = 1,4 (0), where k£ < —1 and 0 € (—r,0].
Operator (0.3) can be continuously extended to the separable Hilbert space H = Lo([—r,0),

0
R") x R™ with inner product (¢,%) =47 (0)@(0) + | 7 (s)p(s)ds. This extension preserves the

complete continuity of the operator U.
To find a solution of ill-posed problem (0.4), we use Tikhonov’s regularization method [7, Ch. 3]
with a stabilizing functional of the following form:

0
Qlx] = ZET(0)$(0) + /(ZL‘T(S)I‘(S) + x/T(s)aj/(s)) ds, x & Ws([—r,0],R"). (0.5)

T

In the case when U is an integral operator in the space Lo([—r, 0], R™), ill-posed problem (0.4)
with stabilizing functional (0.5) has a unique solution that satisfies a boundary value problem for
an integro-differential equation [8]. A similar result can be proved for operator (0.3) in the space H.

In [9], for an autonomous linear system of differential equations with one delay, we established
the equivalence of a boundary value problem for an integro-differential equation and a boundary
value problem for a system of ordinary differential equations and constructed an asymptotics for
regularized solutions of an ill-posed Cauchy problem for smooth initial functions. We generalized
the results obtained in [9] to nonautonomous linear differential equations with one delay [10]; to
nonlinear differential equations with a delay that describes a population change [11]; and, in the
present paper, to autonomous linear systems of differential equations with commensurable delays.

1. BOUNDARY VALUE PROBLEM
FOR A REGULARIZED SOLUTION OF EQUATION (0.4)

In finding a regularized solution of equation (0.4) for a fixed value of the regularization param-
eter «, it is required to find an element x, € H that minimizes the functional

M p,x] = (Uzx — ¢, Uz — @) + afx].
This element satisfies the boundary value problem for integro-differential equation [9]
(U Uz — ) () + a(az(ﬁ) - ac"(ﬁ)) =0, ¢e€][-r0), 1)
(U*(Uzx — ¢))(0) + a(a:(O) + :1:’(0)) =0, 2'(-r)=0.
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ASYMPTOTICS OF REGULARIZED SOLUTIONS S57

Let us show that, for an autonomous linear system with aftereffect of the general form

0
WO [t +9) (1.2

T
where n: [—7,0] — R™*" is a function of bounded variation, boundary value problem (1.1) can be
replaced by an equivalent problem for a system of functional differential equations.

Assertion 1. Let det A, # 0 and Ly € H. Then, a regularized solution of equation (1.2)
coincides with the x component of a solution of the system of functional differential equations

0

5O aa)+ [ (7011 -0 () (00 - 2(0) (13)
o
D = [0 =01 20 - x(0) (14
60
B = [l 0 -2 - o00) (15)
0
WO _ [ ayixo s+ /O din(t 0 )] (1) (1.6
a6 —r—0 0
with boundary conditions w(50) 4 2O} + F(r) + 5} <, W
£(0) = x(0),  2(0) = ¢(0), (1)
X(-r) = 2(0), (1) = (19)

Here, a positive number « is the reqularization parameter of the ill-posed problem.

Proof. For system (1.2), the operator U is defined by the formula

(Ux)(0) =V(0+7r)x(0) + ]Oi?s (/GV(Q —2)n(s—z—r) dz>:r(s) ds, 0¢[-r0],

-Tr -

where V' is the Cauchy matrix of (1.2) [5]. The adjoint operator U*: H — H is defined by the
formulas
0

(U 9)(0) = VT (1)y(0) + / V(s + r)y(s) ds,

-r

o) = 1 ( /0 WO -2 - )V (~2) dz>y<o>

i

+/0jg(/SnT(Q—z—r)VT(s—z)dz>y(s)ds, 6 €[-r0).

T T
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558 DOLGII, SURKOV

Let us introduce auxiliary functions , x, and 2:

x(@) = Uz)(@), x(@) = U)W), 2(9)=Uie)@), 9el-r0),
x(0) = x(=0), x(0) = (Urx)(=0), 2(0) = (Uy)(=0),
where the operator U;: H — H' = W}([-r,0),R") x R" is defined by the formulas

0
(UTy) (@) = VT (~0)y(0) +/VT(S —0)y(s)ds, 0€[-r,0), (Uiy)(0)=0.
0

Then, the boundary value problem can be written in the form
(U3 (x = £)(¥) + a(z(¥) —2"(¥)) =0, 9 € [-r0), (1.10)
(U (x = ¥)(0) + a(z(0) +2'(0)) =0, a'(~r) =0, (1.11)

where the operator Us: H! — H is defined by the formulas

0
U)®) = gy [ (10 =5 =) =n(=r) s} ds, 0 € [r.0), U5p)(©) =0.

In view of the definition of the operator Uj, equation (1.10) is reduced to form (1.3).
Using the definitions of the operator U] and the Cauchy matrix V', we replace the integral
dependence between the variables ¥ and x by the boundary value problem

N T/ 0 T(s—
PO N0 (o) + / T syds, e lr0), $(-0) = x(0).
6

Then, in view of the properties of the function V' [3, Sect. 6.2], we have

0

T(_ T(g— ) i
8Va(9 Q)X(O) +/8V ée 9)X(8) ds — /[danT(9—a)] (/VT(S — a)x(s) ds+VT(—Oé)X(0)>
0 0 ¢

0

B / [dan" (6 — a)] %(a), 0 € [-1,0).
(%

As a result, we obtain equation (1.4) and the former condition in (1.8).

Applying similar calculations, we transform the dependence between the variables Z and ¢ to a
boundary problem, which is differential equation (1.5) with the latter boundary condition in (1.8).

Using the definitions of the operator U and the Cauchy matrix V, we replace the integral
dependence between the variables x and z by boundary value problem (1.6) with the former
boundary condition in (1.9).

Transforming the first term in boundary condition (1.11), we obtain

0
U*(x = 9)(0) = VT (=r)(x(0) = ¢(0)) + / V(s +7)(x(s) = (s)) ds

i
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ASYMPTOTICS OF REGULARIZED SOLUTIONS 559

= Ui (x = ¢)(=r) = x(=r) = 2(=7).
Consequently, boundary condition (1.11) coincides with boundary condition (1.7). O
Transform boundary value problem (1.3)—(1.9) using the special form of 7 for system (0.1)

k m
n(0) =0, =—> Aj, —(k+D)r<s<—kr, 0<k<m—1, n(-mr)=-)_ A4,
j=0 =0

and the special notation
Ti(s) =a(s = (- D7), Xi(s) =x(s = (G —17), Z(s) =2(s = (j — 1)7),
Xj(s) =x(s = (G —1)7), ¢j(s)=w(s —AQ—j)7r), se[-1,0, j=[1:m]

Theorem 1. Let detA,, # 0 and ¢ € H. Then, the formulas x(0) = z;(0 + (j — 1)7),
0€[—jr,—(i—=1)7], j = [1: m], define a reqularized solution of equation (0.4). Here, the functions
zj, 7 =[1:m], are components of a solution of the system of ordinary differential equations

adl = aij + ZAmﬂ (Xi — Zi), (1.12)
i=j
J
WIS a1y
k=1
J
g==> Al 14 —oj, (1.14)
m J
k=j k=1

with boundary conditions

2j(=7) = 2;41(0),  (-7) =25,,(0), j=[L:m—1], &,(-7)=0, (1.16)
a(21(0) + 21(0)) + Xm(—7) — 2m(—7) =0, (1.17)
Xi(=7) = X+1(0),  2i(=7) = £41(0), j=[1:m—1], (1.18)
X1(0) = x1(0),  21(0) = ¢1(0), (1.19)
Xi(=7) = x5+1(0), j=[:m—=1], xm(=7) = 21(0). (1.20)

Proof. Boundary conditions (1.7)-(1.9) and the continuity of solutions of system of functional
differential equations (1.3)—(1.6) imply the validity of boundary conditions (1.16)—(1.20). Setting
0 =s—(j—1)r, where s € [-7,0] and j = [1 : m], we transform system of equations (1.3)—(1.6) to
the form

ai’i(s) = aij(s)

s—(—-1)7
+ js / (UT(t) - UT(—mT)) R(s—(m+j—1D7—t)—2(s— (m+j—1r—1))dt,
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560 DOLGII, SURKOV

0
G == [ @i - G- D -0 - (o)
s—(j—1)T
0
GO == [ @)~ G- 1m0 - e,
s—(j—1)T
0 —(m—j+1)T—s

Yi(5) = / [dn(®)] x(s +t— (G — )7) + / [dn () (s +t — (m+j — 1)),

—(m—j+1)7—s5 —mT
se€[-7,0], j=[1:m]

Transforming the integral terms in these equations, we obtain

s—(j—1)1
d

—mT

m
= Z A Rmj—b-1(5) = Zmrj—b-1(5) = Xmtj—k(8) + Zmyj—k(5))

m m

+ YA () = 2m(5) = D Al Rmej—ils) = Zmaj—il ZAm-l—j i

=7 =7

0 j
/ A (O] R0 — (G~ D7 —1) = 3" AT (5),

s=(i—1)r h=1
0 J
[Tz - G- 1m0 =3 AT i),
s—(j—1)r k=1
0 m
[ e+ e= G- 07 = 3 A,
—(m—j+1)7—s k=j

—(m—j+1)T—s

/ [dn(®) z(s +1— (m+7 — )7 ZAmmxk s e =m0,

—mT

These equalities imply the validity of the theorem.

[ (O =0 ) Gl mot = D=0 = 2 (mok - )7 - o) de

- 22(8))7

j=1Ir:
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ASYMPTOTICS OF REGULARIZED SOLUTIONS 561

In the solution of ill-posed problem (0.4), the regularization parameter o can take arbitrarily
small positive values. Hence, boundary value problem (1.12)—(1.20) is singular. We pose the
problem of finding the dependence of the components Z;, j = [1 : m], of a solution of boundary
value problem (1.12)—(1.20) for a system of ordinary differential equations on the regularization
parameter «. For an autonomous linear system of differential equations with one delay, this problem
was solved in [9].

2. TRANSFORMATION OF BOUNDARY VALUE PROBLEM (1.12)—(1.20)

Solving the problem stated in the preceding section, we transform boundary value problem
(1.12)-(1.20) by eliminating the variables x;, Z;, and x;, j = [1 : m].

Theorem 2. Suppose that det A, # 0 and p € Wi ([—r,0],R"). Then, the formulas z(0) =
zj(0 + (j — 1)7), where 0 € [—j7,—(j — 1)7] and j = [1 : m], define a regularized solution of
equation (0.4). Here, the functions &;, j = [1 : m|, are the components of a solution of the system
of ordinary differential equations

m
Y S )30 ) 4o By a0 ()

qg=1 q=1
s € [—7‘,0], j=1[1:m],

with boundary conditions

j(=7) = £;41(0),  &(-7) =2),,1(0), j=[:m—1], @,(-7)=0, (2.2)
ch 1(@(0) = #4,(0) + (T + Ag) D Cr1(#1(0) — #4(0)) = 0, (2.3)
k=1
2(—r) = 27,1(0) + Af (21(0) +21(0) =0, j=[1:m—1], 2.4
#,(~7) = (=) + AL (#1(0) + (0) = 0, |
&'(=7) = &}41(0) ATZA e D Comk(@G(=7) = &g (=7))
q=Fk
+ Q_IAT(jl(O) - Som(_ )); 0, | = [1 tm— 1]7 (25)
(1) — +ATZA ZCq k(&g (=7) = &q(=T))

k‘

9=
+a AL (81(0) = om(-7)) =

Here, fi(s) = 3%, m—i—] (h(s) — Z?:iAk_iwk(s)), where s € [—7,0] and j = [1 : m], and
the matrixz coefficients of system of equations (2.1) are defined by the formulas

Z Bijqiq = Z Am—i—j —i Z Amtq-ilq, (2.6)
=1

m m k m

N T N
E :qumq E :Am—i-] i E Ag—i E Ak—pE :Cq—pxqa
q=1 =i p=1 q9=p
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562 DOLGII, SURKOV

Zquxq _ZAm—i-] zZAz kZCq Koq — ZAm—i-] zZAk—iZCq—ki’qa j=[1:m],
=i q=k

where the matrices C;, i = [0 : m — 1], are uniquely defined by the formulas

COZAr_n,lT ZAm—H -p 0, p:[llm—l].

Proof. Introducing the new variables y; = x; — %;, 7 = [1 : m], we replace boundary value

problem (1.12)—(1.20) by the following problem:

‘T - Oé{L’] +ZAm+] iYis

.
=- ZAj—kyk - X; + @5
k=1

m J
Xj = ZAk—ij + ZAmM—ji’k, j=[1:m],
k=) k=1

with boundary conditions
2j(—7) = 2;4100), 25(-7)=251(0), j=[1:m—1], i,(-7)=0,
y1(0) = x1(0) — ¢1(0),
yi(=7) =yj+1(0), j=[1:m—1], a(@(0)+21(0)) + ym(-7) =0,

Xj(_T) = Xj+1(0)7 .7 = [1 ‘m—= 1]7 Xm(_T) = ‘%1(0)
From (2.7) and (2.8), we find

J
Xi === > Ak + 9,
k=1

m
yj:azck_j(:i‘/]é—:i‘k), j=1[1:m].
k=j

Since ¢; € Wy ([—7,0],R"), b
we obtain #; € Wg([—, 0], R"). Further, substituting (2.15) into (2.14), we obtain

__azck ]xg,_i‘;c CMZA kZCq k(@ —2¢) + o5, J=[1:m]

Hence, in view of equation (2.9), we find the system of ordinary differential equations

7 m m m

aY Croj(@ry =) +ad ALY Conldy —iy) —ay Ay Conldy -
k=j /
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ASYMPTOTICS OF REGULARIZED SOLUTIONS 563

m k m
—ay Ay ALY Cpylig—2 +ZAm+k it = s ZAk juls
k=j p=1 q=p

k=1

where j = [1 : m] and s € [—7,0]. Using the definitions of the matrices C;, i = [0 : m — 1], we
transform the latter system to the form

A”"i_ZAm-i-j ZZAZ—'r—kZCq—k(‘%;”_ o ZAm—i-] zZAk—iZCq—k(‘%g/_i{])
H
_ZAmﬂ zZAk ZZA pZCq p(&g = 2q) +O‘_12Am+y zZAerq—ifq
=1
*ZAmﬂ z( ;<s>—ZAk_m<s>), j=[:ml, sel-r0],
k=t

which coincides in form with system of equations (2.1). Boundary conditions (2.10) coincide
with (2.2). Applying formulas (2.15) and (2.16) to (2.11), we obtain boundary condition (2.3).
Using formulas (2.15), we replace boundary conditions (2.12) by the following ones:

m—1

ch j(#R(=7) = Ex(=7)) = chk—j(f:'éﬂ(o)—@kﬂ(o))’ j=Mim=1, (2.17)

k=
Co(&" (—7) — Em(—7)) + &1(0) + 24 (0) = 0.

m—1
ZCk L@ (=) = 3(=) = D Cro(@1(0) = #441(0)), G =[1:m—1],
k=j
- e 2.18
Co(@m(=7) = &, (7)) + D Aq i > Cor(@)(—7) = &4(—7)) (2.18)
k=1 =k
£ 1(81(0) = (7)) = 0

m—1
S Oy (#(~7) = #41(0)) + Comy (@ (—7) = & (~7)) =0, j=[Lm 1],
k=j
Co(@m(=T) = Em(=T)) + 21(0) + 21(0) =0,
m—1

O (1) = 8 (0) + Con (@) — & (-T) =0, G =[1im 1]

k=j
Coldl(=7) = &ln(=7) + 30 AT D Coliy(=7) = (=) + 7 (@1(0) = pm(~7)) = 0.
k=1 q=Fk

In view of the definitions of the matrices C;, i = [0 : m—1], we transform these boundary conditions
to form (2.4) and (2.5). O

Lemma 1. Letdet A, #0. Then, B = |Bjl]',=; is a symmetric positive definite matriz.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 287 Suppl. 1 2014



564 DOLGII, SURKOV

Proof. Using formulas (2.6), which define the elements of the matrix B, we find that

m
T .
Bji = E :Am—l—j—kAm-i-i—k for 1<i<j<m,
k=j

m
T .
Bjj = ZAm+j—kAm+j—k for 1<j<m,
k=g

m
Bji = ZA;rn+j—kAm+i—k for 1< j<i1<m.
k=1

Therefore, B); = Bj; for 1 <i < j <m and B}; = Bj; for 1 <j <m.

Let us show that the quadratic form Z;nj:l a;jTBZ-jmi is positive definite. We have

m m m k m k k m
T T AT T AT T
E x; Bijr; = E E T, Am+j_k E A kTi = E E T, Am+j_k E A kT = E U, U,
k=1

i,j=1 =1 k=j i=1 k=1 j=1 i=1

k
U = Z Apvigri, k=1[1:m].
=1

If there exists ug # 0, k = [1 : m], then zj # 0. Indeed, choosing the smallest of these k, we have
1= A ug #0for k=1;uj=0and z; =0, 1 < j <k, and ), = A lup #0 for 1 < k < m.
Consequently, the quadratic form is positive definite. O

3. ASYMPTOTICS OF REGULARIZED SOLUTIONS

For finding an asymptotic representation for the general solution of system of equations (2.1),
methods of asymptotic integration of singular ordinary differential equations [12, p. 48; 13, p. 223]
and the results of paper [9] are used.

According to the lemma, eigenvalues of the matrix B are real and positive [14]. Then, by a
nonsingular orthogonal transformation defined by the matrix 7', the matrix B is reduced to the
Jordan form B = T'TJT, where J = diag (A, ..oy Aum); here, Ag, k = [1 : ], are the eigenvalues
of the matrix B.

Assertion 2 [9, Lemma 2]. Assume that ¢ € W2([—r,0],R"?), det A,, # 0, and eigenvalues
of the matriz B are simple. Then, the general solution of system of differential equations (2.1) is
defined by the asymptotic formula

4
i(s,00) =TTy Kj(a)(exp(Jj(a)(s —5;))D; + a_1/4Jj_1(a)( — Gj(a)f(s)

j=1
S

+ / exp(J;(a) (s — )G (a) f’(t)dt)), se[-7,0, (3.1)

Sj

where D; are arbitrary elements from C*™;

Ji(@) = diag (A1 (a), - . s A (@),

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 287 Suppl. 1 2014



ASYMPTOTICS OF REGULARIZED SOLUTIONS S65
i) = a_1/4()\,1€/4ej + 0%k, 5)), k=[1:nm]; s1=s,=0, s3=s54=—7;
e=(1+i)/V2, e1=¢ ex=e, e3=-8 es=—¢; K;(a)=TIpm+0(j);
Gi(e) = —1/4e; 73 + 0?4 ), j=1[1:4)].

Formula (3.1) is used for finding an asymptotic solution of boundary value problem (2.1)—(2.5).
Formula (3.1) implies the following asymptotic formulas:

#(—7,¢,0) = BT f(=7) + D3 + Dy + O(a'/*; D) + O(a'/%; ),
(0,,0) = BT'TTf(0) + Dy + Dy + O(aV/%; D) + O(a''; ),
M3 (=1, 0, ) = e3BY*Ds + e, BY*Dy + O(a'/*; D) + O(a/*; ),
a1/4§:'(0,g0,0z) = 1B, Dy + e2BY*Dy + O« 14D D)+ O« 1/4, ©),
al/zi‘"(—T, o, ) = e3B1/2D + 6231/2D4 + O(«a 1/4, D) + O(a1/4; ),
o230, ¢, ) = €2BY2 Dy + €3BY?Dy 4+ O(a*; D) + O(a''*; ),
B (—7, p,a) = 6333/415 + 6333/4ﬁ4 + O(a* D ) + O(at*; ),
o310, 0, ) = 6133/4D1 + 6333/4D2 + O(a* D ) + O(a*; ),
where Dy = T Dy, k=[1:4], and D = Hﬁkﬂi:l Here, O(al/4;.): C* — C™ and O(al/*;):

H? — C" are linear continuous mappings.
In view of these formulas, we transform boundary conditions (2.3)—(2.5) to the form

033 Gl (0., ) + O(alV%; D) = O(al/t; ),

o2 (& (=7, ,0) = #,1(0,0,0)) + O(@/% D) = O(a' % 9), j=[1:m—1],
al/2 (<1, p,) + O(al/%; B) = O(al/; ), %)
oM (@ (—1,0,0) — 3110, 0,0)) + O(@/*; D) = O(a/*; ), [1:m—1]
AL(#1(0) = o (—7)) + O(a/*; D) = O(a/*; ).
Substituting the values of the functions Zg(-, ¢, «), k = [1 : m], and their derivatives defined
by asymptotic formulas (3.2) into (3.3), we obtaln a linear nonhomogeneous system of algebraic
equations for finding 51, . ,54. The coefficients of this system depend continuously on «, and,

for « = 0, the system takes the form

(Ey + €3S,,CB3¥ YD1 + (Ey + €35,,CB¥*) Dy — E{ (D3 + Dy)
= BT f(—1) — E;B~'TT £(0),
B~Y4E,BY4(e1 Dy + e3D3) — e3D3 — 4Dy = 0,
B~ 12E,BV/2(e2D; 4 €2Dy) — €3D3 — €2Dy = 0,
(SmA]S1 + €3 Ey B3 Dy + (S Al S1 + e3 B B4 Dy — e3E1 B3 Ds — e3E1 B34 D,
= S Al (Smm(—T1) — SiB~IT T £(0)).
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From the second and third equations of this system, we find that

DY() = =, (EF —eF)DR(e) = |, (eFi = eF) (o),
Di(¢) = = ), EF + eP)DR(e) = |, (eFi — o) (o),

where F] = B—1/4E231/47 B = B—1/2E231/27 Ey = <0n(m—1)><n In(m—l)xn(m—1)>’ and 5?(¢)

Onxn Onxn(m—l)

and ﬁg(go) are solutions of the linear nonhomogeneous system

<E2 — ESmCBg/4 + ;2E1(26F1 - (6 — €)F2)>l~)1 + <E2 — éSmCBS/4

- BeR — (- e>F2>>f>2 = BT f(—7) - BaBMTT£(0),

V2
1

(3.4)
<SmA;|;LSl - 6E2.B3/4 — \/2

E((1—d)F — 2z'F2)> D + <SmAIn51 — eE,B3/4

1

+ \/2ElB3/4((1 +i)Fy + 2@))132 = S A (Smom(—7) — S1BTITT £(0)).

Here,

B, = <In(m—1)><n(m—1) On(m—l)xn) .S = (0 (In><n >,

Onxn(m—l) Onxn n(m—1)xn

S = (0”(m_1)xn> , C=(Co,...,Cn1)

I?’LX’I’L

Theorem 3. Assume that ¢ € WZ([-r,0],R"), det A, # 0, eigenvalues of the matriz B
are simple, and the determinant of system (3.4) is nonzero. Then, a solution of boundary value
problem (2.1)—(2.5) is defined by the asymptotic formula

4
i(s,0,0) =TT S exp(Jj(a)(s — 5,))TDUp) + T~ f(s) + O 5,0), s € [-7,0],
=1

where Jj(a) and s;, j = [1:4], are defined in Assertion 2.

Proof. The validity of the theorem follows from Assertion 2 and the asymptotic solution of
linear nonhomogeneous system (3.3). O
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