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1. Introduction 

The polarization reversal, being an attribute of ferroelectrics, has been always studied 

intensively. It has been shown that domain kinetics obtained in various ferroelectric materials 

essentially depends on experimental conditions. The understanding of the domain evolution 

mechanisms is necessary for creation of the precise tailored domain structures [1-3]. This 

technology denoted as “domain engineering” is developing rapidly [4, 5]. The periodically 

poled nonlinear optical materials are widely used for the production of the tunable coherent 

light sources based on quasi-phase matching effect [6-10]. 

At present, the thermodynamic approach is applied usually for analysis of the 

polarization reversal process and domain kinetics in ferroelectrics [11]. Though a large 

amount of experimental data concerning the domain structure evolution is accumulated, its 

theoretical description is developed to a much less degree. Our current understanding of the 

domain structure evolution is based on the kinetic approach, which takes into account the 

analogy of the domain kinetics in electric field to the first-order phase transition achieved 

through nucleation [3, 12, 13]. All stages of the domain kinetics have been attributed to the 

elementary processes of the thermally activated nucleation leading to growth of domains with 

preferred orientation of the spontaneous polarization defined by direction of the applied field. 

The nucleation probability is always spatially heterogeneous, as it is determined by the local 

value of the electric field produced by several sources [3, 12]. 

The kinetic approach is flexible enough to analyze a multitude of experimentally 

observed situations. In particular, it allows one to explain the origin of the variety of 

experimentally observed domain shapes, to predict qualitatively different regimes of the 

domain wall (DW) motion and to evaluate the critical values of the relevant parameters, 

which define transitions between these regimes [14-23]. However, there is no straightforward 

and general way at hand to extract the quantitative information about the process from the 
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experimental data. 

Sideways DW motion under application of the electric field is the stage of the domain 

kinetics studied experimentally by in situ methods in the best way. In some model crystals it 

is possible to obtain the motion of the plane DW with constant shape [15, 16, 18-20]. Several 

variants of this simplest process have been revealed. It has been demonstrated that the wall 

motion can be essentially nonmonotonic, such as the jump-like (jerky) wall motion in 

congruent lithium niobate LiNbO3 (LN) (Fig. 1) [15, 16] and gadolinium molybdate 

Gd2(MoO4) (GMO) single crystals [18, 19, 22, 23]. The process has been attributed to the 

deceleration of DW motion due to incomplete bulk screening and to interaction of the moving 

DW with the bulk defects [15-19, 22, 23]. Moreover, it has been demonstrated that the 

nonmonotonic DW motion can be realized also during polarization reversal in the circuit with 

the series resistance. In this case, the type of DW dynamics is defined by experimentally 

controlled feedback and delay. 

In this paper, we demonstrate how the nonmonotonic scenario of DW motion caused by 

the circuit feedback can be described theoretically on the basis of the kinetic approach [3, 12]. 

Actually, in the framework of the kinetic approach one assumes that the local value of the 

electric field, being composed of several components with different physical origins, is the 

driving force of the nucleation process: 

 �⃗� (x,t) = �⃗� ext + �⃗� dep(x,t) + �⃗� ext.sc (x,t) + �⃗� int.sc(x,t) (1) 

where the terms are external, depolarization, external screening, and internal screening fields, 

respectively. 

Eq. (1) is supplemented by phenomenological equation of the field dependence of DW 

motion velocity (v = v(E)). The latter may have the following form, which corresponds to 

experimental data obtained in LN and GMO crystals [15, 16, 18, 19]: 

 v(E(t)) =  (Eloc(v(t)) – Eth), for Eloc > Eth (2) 
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 v(E(t)) = 0, for Eloc < Eth, 

where Eth is the threshold field, is the DW mobility. 

One should mention that in literature (especially in the theoretical one) there is a 

tendency to solve the system of Eqs. (1) and (2) as if it has the only solution with constant 

velocity. In particular, such assumption was made by Morozovska et al. [11], where the 

influence of the screening retardation on the motion of the plane DW was taken into account. 

The authors established the existence of a stable steady DW motion for low and high velocity. 

However, they discovered the appearance of the DW motion instability in the range of 

intermediate velocities. Naturally, the actual type of the unsteady DW dynamics could not be 

determined within their simplified approach. 

The difficulty of the correct solution of the system (1), (2) is caused by the complex 

dependence of the field components in Eq. (1) on the unknown DW path of motion. Namely, 

the local field value is dependent not only on the current DW coordinate X(t), but on its 

previous positions X(t’ < t), also. Therefore, the simple form of the Eq. (1) is deceptive. 

Furthermore, the crucial dependence of the DW motion scenario on the memory effects 

caused by the screening retardation was confirmed by numerous experiments [13-23]. 

Of course, one can ignore the analytical difficulties and try to solve the system (1), (2) 

numerically using reasonable assumptions about the possible DW dynamics by analysis of the 

series of momentary domain patterns obtained by in situ visualization of the domain structure 

evolution during polarization reversal [3, 12]. However, our understanding of the fundamental 

switching mechanisms would be much deeper and the whole description of the processes 

would reach much higher quantitative level, if instead of a rather symbolic form (1), (2) the 

equation of DW motion assumed the explicit form: 

 𝐹(𝑋(𝑡), �̇�(𝑡), �̈�(𝑡), 𝑋(𝑡), … ) = 𝐸𝑒𝑥𝑡(𝑋(𝑡), 𝑡) (3) 

where X(t) is the position of the DW. 
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It would be especially fine, if it turned out to be possible to reduce approximately the 

Eq. (3) to such a form that is simple enough to obtain the explicit solutions in an analytical 

way, which would be the valuable step in the development of the kinetic approach. 

The goal of the present paper is twofold. We consider the switching process in 

ferroelectric capacitor, which is accomplished by single DW motion. In particular, we derive 

the DW motion equation, which turns out to be of the type of Eq. (3). Namely, it takes the 

form of a nonlinear oscillator equation that has “a negative friction force” within a certain 

electric field range. We establish the appearance of self-sustained periodic oscillations of the 

DW in this range and compare our theoretical results with the experimental data for switching 

in model crystal stoichiometric lithium tantalate (LiTaO3) produced by vapor transport 

equilibration (VTE-LT) [16, 24]. 

2. Experimental observation of nonmonotonic DW motion in VTE-LT 

Switching current was recorded during polarization reversal in VTE-LT single crystal in 

the circuit with series resistance (R = 10 MΩ) by application of the rectangular electric field 

pulses with amplitude 300-500 V (Fig. 1). 

The studied samples represented 800-m-thick plates cut normal to the polar axis with 

both polar surfaces covered by liquid electrodes (water solution of LiCl). The typical shape of 

the switching current (Fig. 2) contains the number of the narrow peaks corresponding to 

short-time accelerations of the wall motion. The amplitude and average frequency of the 

current peaks depend on the circuit parameters. 

3. Electric circuit and capacitor geometry 

Let us consider an electric circuit containing voltage source Uo, ferroelectric capacitor 

C, and series resistance R. The voltage U(t) applied to the ferroelectric capacitor which 



 6 

depends on the voltage drop on the series resistance is given by: 

 𝑈(𝑡) = 𝑈0 − 𝐼(𝑡)𝑅 (4) 

where U0 is the voltage applied to the circuit, I(t) is the switching current, 

 𝐼(𝑡) = 𝐶
𝑑𝑈(𝑡)

𝑑𝑡
− 2𝑃𝑠𝑣(𝑡)𝑙𝐷𝑊,  (5) 

where Ps is the spontaneous polarization, 𝑙𝐷𝑊 is the DW length, v(t) is the sideways DW 

velocity. 

It is seen that the presence of the series resistance provides the negative feedback, which 

stabilizes the circuit current near its average value. However, the real time dependence of 

switching current can be nontrivial due to the existence of the ferroelectric capacitor, which 

plays the role of a nonlinear element with memory, as it will be discussed in detail later on. 

The schematic representation of the ferroelectric capacitor with the intrinsic or artificial 

surface dead layer (dielectric gap) located at the interface between ferroelectric plate and 

electrode [11] is shown in Fig. 3. 

The studied ferroelectric capacitor represents the plate of uniaxial ferroelectric crystal 

with thickness d cut normal to polar axis with polar surfaces covered by continuous 

electrodes. The intrinsic or artificial dielectric gap (dead layer) with thickness L is situated 

between the electrode and the surface of the ferroelectric plate (Fig. 3). The screening charge 

layer with thickness hsc is situated in ferroelectric under the dead layer. The studied neutral 

180-degree DW represents a single vertical plane moved along X direction under the action of 

the electric field exceeded the threshold value Eth. 

4. Screening retardation and electric field on the nucleus 

We will assume that the polarization profile of the moving DW doesn’t change and can 

be approximated by P0(x - X(t)), where X(t) is the current DW coordinate. The residual 

depolarization field behind the DW is screened partially by the charge localized at the 
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interface with density σ(x,t). In the case when the screening mechanism does not involve any 

long-range diffusion of the carriers (for instance, if the screening is caused by the 

redistribution of the bulk charges or by reorientation of the defect dipoles) [3, 12], the 

corresponding phenomenological relaxation equation for σ(x,t) can be written in the following 

form [11]: 

 𝜏
𝑑𝜎(𝑥,𝑡)

𝑑𝑡
= 𝑃0(𝑥 − 𝑋(𝑡)) − 𝜎(𝑥, 𝑡) (6) 

where τ is the characteristic time of the screening process. 

The solution of the equation is given by: 

 𝜎(𝑥, 𝑡) =
1

𝜏
∫ 𝑃0(𝑥, 𝑡′)𝑒

𝑡′−𝑡

𝜏 𝜃(𝑡 − 𝑡′)𝑑𝑡′
∞

−∞
  (7) 

where 𝜃 is Heaviside function. 

We assume that the DW kinetics is determined by the nucleation at the wall near the 

polar surface, where the local electric field E is maximal. Correspondingly, one needs to 

calculate the value 𝐸(𝑧 = 0, 𝑥 = 𝑋(𝑡), 𝑡), which is given by: 

 𝐸(𝑧 = 0, 𝑥 = 𝑋(𝑡), 𝑡) = −∫
𝑒−𝑖𝑘𝑋(𝑡)

√2𝜋
�̃�𝑒𝑓𝑓(𝑘, 𝑡)𝑓(𝑘, 𝐿)𝑑𝑘

∞

−∞
 (8) 

where �̃�𝑒𝑓𝑓(𝑘, 𝑡) = �̃�0(𝑘, 𝑡) − �̃�(𝑘, 𝑡) is the Fourier transform of the density of net charge and 

the function 𝑓(𝑘, 𝐿) is defined by: 

 𝑓(𝑘, 𝐿) =
𝑡𝑎𝑛h(𝐿𝑘) 𝑐𝑜𝑠h(

𝑘(𝑑−𝐿)

𝛾
)

ε0(ε3 𝑡𝑎𝑛h(𝐿𝑘) 𝑐𝑜𝑠h(
𝑘(𝑑−𝐿)

𝛾
)+𝛾ε𝑠𝑖𝑛h(

𝑘(𝑑−𝐿)

𝛾
))

  (9) 

where 𝛾 = √
𝜀3

𝜀1
 is anisotropy factor, ε1, ε3 are permittivity for XY and Z directions, ε is 

permittivity of dead layer, 𝜀0 is the electric constant. 

Combining the exponential factor in Eq. (8) with a similar one taken from the Fourier 

transform �̃�𝑒𝑓𝑓(𝑘, 𝑡): 

 �̃�(𝑘, 𝑡) =
1

𝜏
∫ �̃�0(𝑘, 𝑡′)𝑒𝑖𝑘𝑋(𝑡′)𝑒

𝑡′−𝑡

𝜏 𝑑𝑡′   (10) 
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one can expand their combination coming into the integrand (8): 

 𝑒𝑖𝑘(𝑋(𝑡′)−𝑋(𝑡)) ≈ 𝑒𝑖𝑘𝑣(𝑡)[1+
𝑖𝑘

2
Ẍ(𝑡)(𝑡′−𝑡)

2
+⋯]

 (11) 

Now we make the assumption that one can truncate the series in Eq. (11) neglecting all 

higher order acceleration contributions. It is clear that the assumption is trivially correct in 

case of the steady-state DW propagation regime. However, we will prove that it can be a good 

approximation in the unsteady DW regime as well. Under this assumption, the integration 

over time in Eq. (8) can be performed as: 

 ∫ 𝑒𝑖𝑘(𝑋(𝑡′)−𝑋(𝑡))𝑒
𝑡′−𝑡

𝜏 𝜃(𝑡 − 𝑡′)𝑑𝑡′
∞

−∞
≈ −

𝑖𝜏(𝑘�̇�(𝑡)𝜏−𝑖)2+𝑘𝜏3Ẍ(𝑡)

(𝑘�̇�(𝑡)𝜏−𝑖)3
  (12) 

Accordingly, the electric field on the nucleus consists of two contributions, which 

depend on the DW velocity �̇�(𝑡) and acceleration �̈�(𝑡), respectively. Making use of Eq. (12) 

the next integration over k can be done in Eq. (8) in the limit d >>L and kL<<1. 

Taking into account the additional electric field contribution coming due to a negative 

feedback 𝐸nf (see Eq. (4)) under the assumption that τ << τec = RC one finds: 

 𝐸𝑛𝑓(ℎ(𝑡)) =
𝑈0

𝑑
−

2𝑙𝑃𝑠𝑅ℎ(𝑡)

𝑑 𝜏𝑒𝑐
 (13) 

where h(t) = X(t) – vot and vo is the average DW velocity, which is defined in the experiments 

by series resistance R. 

Substituting the result and also the delayed electric field contribution into Eq. (2), one 

arrives at the following equation of the DW motion: 

 𝑀 (�̇�(𝑡)) ḧ(𝑡) + 𝐹 (�̇�(𝑡)) − 𝐸𝑡h +
2𝑙𝑃𝑠𝑅h(𝑡)

𝑑 𝜏𝑒𝑐
−

�̇�(𝑡)

𝜇
= 0 (14) 

where M is the effective mass of the DW. 

Notice, that the Eq. (14) just has the form described in the introduction. The velocity 

dependence of M(V) is represented in Fig. 4. 

The following parameters have been used for numerical simulation: Ps = 65 μC/cm2, 

d = 0.8 mm, U0 = 400 V, Eth = 50 V/mm,  = 20, = 80, = 30, s,  
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= 20 mm2/(kV∙s), lDW = 2 mm, R = 10 M, C = 3.5 pF. 

5. Solutions of the DW motion equation 

The dynamics of the forced nonlinear oscillator is described by Eq. (14). In case of the 

application of the constant external electric field (infinite rectangular pulse) it is convenient to 

define �̇�(𝑡) = 𝑣0 + ℎ̇(𝑡), where 𝑣0 is the average DW velocity. The value of 𝑣0 is defined by 

the following algebraic equation: 

 
𝑣0

𝜇
=

𝑈0

𝑑
− 𝐸𝑡h − 𝐹(𝑣0) (15) 

One has the nonlinear differential equation to find the time-dependent function h(t), 

which describes the deviation from the steadily propagating DW: 

 𝑀(𝑣0 + ℎ̇(𝑡))ℎ̈(𝑡) +
2𝑙𝑃𝑠𝑅

𝜏𝑒𝑐 𝑑
ℎ(𝑡) + �̃�(𝑣0 + ℎ̇(𝑡)) = 0 (16) 

where �̃� (�̇�(𝑡)) ≡ 𝐹 (�̇�(𝑡)) − 𝐹(𝑣0) +
�̇�(𝑡)−𝑣0

𝜇
. 

If the derivative 
𝑑�̃�(�̇�)

𝑑�̇�
 taken at �̇�(𝑡)=𝑣0 is positive, then steady-state solution (with 

h = 0) is stable. According to Eq. (15), 𝐹(v) +
v

𝜇
= 𝐸0 − 𝐸𝑡ℎ plays the role of friction force. 

However, as it is seen from Fig. 5, the range of the average velocities (within the 

corresponding interval of the external electric field E₀ = 
𝑈0

𝑑
) can show the point, where the 

derivative becomes negative. Then the friction force term in Eq. (16) is also negative, which 

means physically that there is energy input to the DW motion. The input provides the 

appearance of the stationary self-sustained oscillations of h(t) and the corresponding periodic 

oscillations of the DW velocity around its average value v₀. The characteristic feature of the 

oscillations is that they typically deviate strongly from the conventional harmonic ones, 

except the value v₀ turns out to be very close to the end points of the instability interval 

(
𝑑�̃�(�̇�)

𝑑�̇�
= 0). The switching current I(t) is presented in Fig. 6. 
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Now we can at last justify our main assumption that the higher order acceleration 

contributions in Eq. (11) do play a minor role. Looking at Fig. 6, one notices that within the 

most part of the period the DW moves almost steadily with small acceleration. The short 

fractions of period, where the DW accelerates and decelerates drastically, are potentially 

dangerous for the truncation of Eq. (11). It means that the truncation procedure is good 

everywhere except inside the “fine structure” of the narrow current peaks. We can also 

confirm the visual picture by the analytical argument. If one scales both the time t and spatial 

coordinate x by the same factor 𝑤 ≡
𝜏𝑒𝑐 𝑑

2𝑙𝑃𝑠𝑅
, Eq. (16) assumes the following form: 

 𝑀(𝑣0 + ℎ̇(𝑡))𝑤ℎ̈(𝑡) + 𝑤�̃�(𝑣0 + ℎ̇(𝑡)) + ℎ(𝑡) = 0 (17) 

The mass term is multiplied by the factor w, while the velocity value is conserved under 

the scaling transformation. In case when the factor is small, it is clear that each additional 

differentiation over time in the higher order accelerations would be accompanied by the 

higher power of the same small factor. Therefore, the weak feedback regime can be 

quantitatively described by the truncated Eqs. (15) and (16). 

Eq. (17) is so called generalized Rayleigh equation. It is known that in case 
𝑑�̃�(�̇�)

𝑑�̇�
> 0 it 

has a stable fixed point h = 0, dh/dt = 0, which corresponds to a steady state propagation of 

DW with the constant velocity v = v0. In the opposite case 
𝑑�̃�(�̇�)

𝑑�̇�
< 0 a stable limit cycle 

appears, which is drawn in Fig. 7. 

In the unsteady regime, the propagation of DW is accompanied by the oscillations of 

velocity around its average value 𝑣0. After finishing of the transient stage, the DW motion 

assumes the perfect oscillatory character shown in Fig. 8. 

The irregular current oscillations are seen in experimental results (Fig. 2). This fact can 

be attributed to presence of immobile “quenched” defects [17]. To describe their role one 

should include the corresponding stochastic term in Eq. (16). 
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Similar equations have been explored in a general context of nonlinear dynamics, and a 

lot of information about the properties of their solutions has been obtained already [25]. For 

instance, if the applied field pulse is more complicated than the rectangular one, the 

straightforward extension of Eq. (16) assumes the form of so called perturbed Rayleigh 

equation [26]. Even in the simplest case of a single DW the latter non-autonomous equation 

has 3D phase space. Then, in contrast to the time-independent (“infinite”) rectangular pulse of 

the electric field, the structure of the attractor can be much more complicated than simple 

fixed points and limit cycles [26]. 

6. Conclusion 

In the paper, we have demonstrated how the general concepts of the kinetic approach 

can be further developed to obtain the quantitative description of the interplay between the 

domain kinetics and screening retardation. In particular, it has been shown that under certain 

conditions the memory effects caused by the screening processes can be taken into account 

using nonlinear differential equations. Similar equations have been investigated in a general 

context of nonlinear dynamics, and a lot of information about the properties of their solutions 

has been obtained already. Such phenomena as period doubling, synchronization, 

quasiperiodicity, and chaotic regimes are predicted to be observed in the measured current. 

The outlined analytical method can be used also to consider more complicated switching 

problems (like a growth of isolated polygon-shape domain, etc.). We are going to study them 

in future publications. 

Acknowledgements 

The equipment of the Ural Center for Shared Use “Modern nanotechnology” UrFU was 

used. The research was made possible in part by the Ministry of Education and Science of the 



 12 

Russian Federation (contract No. 14.594.21.0011), by RFBR (grants 13-02-01391-a and 14-

02-90447 Ukr-а). 

  



 13 

References 

1. Shur VYa, Rumyantsev EL: Kinetics of ferroelectric domain structure during switching: 

theory and experiment. Ferroelectrics. 1994; 151: 171-180. 

2. Shur VYa, Rumyantsev EL, Nikolaeva EV, Shishkin EI, Batchko RG, Miller GD, Fejer 

MM, Byer RL: Regular ferroelectric domain array in lithium niobate crystals for nonlinear 

optic applications. Ferroelectrics. 2000; 236: 129-144. 

3. Shur VYa: Kinetics of ferroelectric domains: application of general approach to LiNbO3 

and LiTaO3. J. Mater. Sci. 2006; 41: 199-210. 

4. Shur VYa: Domain engineering in lithium niobate and lithium tantalate: domain wall 

motion. Ferroelectrics. 2006; 340: 3-16. 

5. Shur VYa, Rumyantsev EL, Nikolaeva EV, Shishkin EI, Batchko RG, Fejer MM, Byer RL: 

Recent achievements in domain engineering in lithium niobate and lithium tantalite. 

Ferroelectrics. 2001; 257: 191-202. 

6. Byer RL: Quasi-phasematched nonlinear interactions and devices. J. Nonlinear Opt. Phys. 

& Mater. 1997; 6: 549-592. 

7. Rosenman G, Skliar A, Arie A: Ferroelectric domain engineering for quasi-phase-matched 

nonlinear optical devices. Ferroelectrics Rev. 1999; 1: 263-326. 

8. Yamada M, Nada N, Saitoh M, Watanabe K: First order quasi-phase-matched LiNbO3 

waveguide periodically poled by applying an external field for efficient blue second harmonic 

generation. Appl. Phys. Lett. 1993; 62: 435-436. 

9. Myers LE, Eckhardt RC, Fejer MM, Byer RL, Bosenberg WR, Pierce JW: Quasi-phase-

matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. 

1995; B12: 2102-2116. 

10. Batchko RG, Shur VYa, Fejer MM, Byer RL: Backswitch poling in lithium niobate for 

high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett. 1999; 75: 



 14 

1673-1675. 

11. Eliseev EA, Morozovska AN, Svechnikov GS, Rumyantsev EL, Shishkin EI, Shur VYa, 

Kalinin SV: Screening and retardation effect on 180o-domain wall motion in ferroelectrics: 

wall velocity and non-linear dynamics due to polarization-screening charge interactions. Phys. 

Rev. B. 2008; 78: 245409. 

12. Shur VYa: Correlated Nucleation and Self-organized Kinetics of Ferroelectric Domains. 

In: Schmelzer JWP: Nucleation Theory and Applications. Weinheim: Wiley-VCH; 2005: 6: 

178-214. 

13. Shur VYa, Gruverman AL, Rumyantsev EL: Dynamics of domain structure in uniaxial 

ferroelectrics. Ferroelectrics. 1990; 111: 123-131. 

14. Shur VYa, Kozhevnikov VL, Pelegov DV, Nikolaeva EV, Shishkin EI: Barkhausen jumps 

in the motion of a single ferroelectric domain wall. Phys. Solid State. 2001; 43: 1128-1131. 

15. Baturin IS, Konev MV, Akhmatkhanov AR, Lobov AI, Shur VYa: Investigation of jerky 

domain wall motion in lithium niobate. Ferroelectrics. 2008; 374: 280-287. 

16. Shur VYa, Akhmatkhanov AR, Baturin IS, Shishkina EV: Polarization reversal and jump-

like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. 

J. Appl. Phys. 2012; 111: 014101. 

17. Schrade D, Mueller R, Gross D, Utschig T, Shur VYa, Lupascu DC: Interaction of 

domain walls with defects in ferroelectric materials. Mechanics of Materials. 2007; 39: 161-

174. 

18. Shur VYa, Rumyantsev EL, Kuminov VP, Subbotin AL, Nikolaeva EV: Motion of a 

planar domain wall in the ferroelectric-ferroelastic gadolinium molybdate. Phys. Solid State. 

1999; 41: 112-115. 

19. Shur VYa, Nikolaeva EV, Rumyantsev EL, Shishkin EI, Subbotin AL, Kozhevnikov VL: 

Smooth and jump-like dynamics of the plane domain wall in gadolinium molybdate. 



 15 

Ferroelectrics. 1999; 222: 323-331. 

20. Shur VYa, Kozhevnikov VL, Ivanov RK, Pelegov DV: Generation of flicker-noise during 

motion of strictly oriented domain walls. Ferroelectrics. 2002; 265: 145-151. 

21. Shur VYa, Rumyantsev EL, Pelegov DV, Kozhevnikov VL, Nikolaeva EV, Shishkin EI, 

Chernykh AP, Ivanov RK: Barkhausen jumps during domain wall motion in ferroelectrics. 

Ferroelectrics. 2002; 267: 347-353. 

22. Lupascu DC, Shur VYa, Shur AG: The dynamics of a single planar domain wall in 

ferroelectric-ferroelastic Gd2(MoO4)3. Appl. Phys. Lett. 2002; 80: 2359-2361. 

23. Shur VYa, Nikolaeva EV, Shishkin EI, Baturin IS, Shur AG, Utschig T, Schlegel T, 

Lupascu DC: Deaging in Gd2(MoO4)3 by cyclic motion of a single domain wall. J. Appl. 

Phys. 2005; 98: 074106. 

24. Shur VYa, Akhmatkhanov AR, Baturin IS: Fatigue effect in stoichiometric LiTaO3 

crystals produced by vapor transport equilibration. Ferroelectrics. 2012; 426: 142-151. 

25. Thompson JMT, Stewart HB: Nonlinear dynamics and chaos. Chichester: John Wiley & 

Sons; 1986. 

26. Guckenheimer J, Holmes P: Nonlinear Oscillations, Dynamical Systems and Bifurcations 

of Vector Fields. New York: Springer-Verlag; 1983. 

  



 16 

Figure captions 

Fig. 1. Scheme of the electric circuit with ferroelectric capacitor and series resistance. 

Fig. 2. Switching current measured for polarization reversal of VTE-LT crystal in the circuit 

with series resistance (R = 10 MΩ). 

Fig. 3. The scheme of the ferroelectric capacitor with dielectric gap [11]. 

Fig. 4. The calculated dependences of the DW effective mass M(v) on velocity for various 

thicknesses L of the dielectric gap: L = 100 nm (blue thick curve), L = 1 μm (red dashed 

curve), L = 10 μm (green dot-dashed curve). 

Fig. 5. The calculated dependences of the DW velocity v on friction force for various 

thicknesses L of the dead layer according to Eq. (15). 

Fig. 6. The time dependence of the switching current for thickness of the dead layer L = 

0.1 m, average value of velocity v0 = 5.85 mm/s and with initial conditions h(0) = 0, h′(0) = 

40 mm/s. 

Fig. 7. Incipient limit cycle for thickness of the dead layer L = 0.1 m, average value of 

velocity v0 = 5.85 mm/s and with initial conditions h(0) = 0, h′(0) = 1 mm/s. 

Fig. 8. Transferring of transient regime to limit cycle, for thickness of the dead layer L = 

0.1 m, average value of velocity v0 = 5.85 mm/s and with initial conditions h(0) = 0, h′(0) = 

1 mm/s. 


