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THE STRUCTURE OF THE CATEGORY OF PARABOLIC EQUATIONS. I1

M. F.Prokhorova

We define here the category of partial differential equations. Special cases of morphisms from an object
(equation) are symmetries of the equation and reductions of the equation by a symmetry groups, but there
are many other morphisms. We are mostly interested in a subcategory that arises from second order parabolic
equations on arbitrary manifolds. We develop a special-purpose language for description and study of the internal
structure of such subcategories.
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СТРУКТУРА КАТЕГОРИИ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ. I

М. Ф.Прохорова

В статье даётся определение категории дифференциальных уравнений в частных производных. Специ-
альными классами морфизмов из объекта (уравнения) являются симметрии уравнения и редукции уравне-
ния по группе симметрий, однако имется и много других морфизмов. Особое внимание в статье уделяется
подкатегории, возникающей из параболических уравнений второго порядка, задданных на произвольных
многообразиях. Развивается специальный язык для описания и изучения внутренней структуры таких
подкатегорий.

Ключевые слова: категория дифференциальных уравнений в частных производных; факторизация
дифференциальных уравнений; параболические уравнения; уравнение реакции-диффузии; уравнение теп-
лопроводности; группа симметрий.

Introduction

In this paper we define the category PDE of partial differential
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equations, develop a special-purpose language for description and study
of its internal structure, and consider its full subcategory PE that arises
from second order parabolic equations on arbitrary manifolds. In the
next paper [8] we investigate the structure of PE in detail.

Let us define first the category PDE0, which is a full subcategory of
PDE .

Let π : N → M be a smooth fiber bundle, E be a subset of k-jet
bundle Jk(π). E could be considered as a k-th order partial differential
equation for sections of π; namely, s ∈ Γπ is a solution of E if k-th
prolongation jk(s) ∈ Γ

(

Jk(π) → M
)

is contained in E. Here Γπ denotes
the space of smooth sections of π.

Let π : N → M , π′ : N ′ → M ′ be smooth fiber bundles. Suppose
F : π → π′ is a smooth bundle morphism with the additional property
that F is a diffeomorphism on the fibers (see Fig. 1). Then F induces
the map F ∗ : Γπ′ → Γπ; denote by ΓFπ its image. We say that a section
of π is F -projectable if it is contained in ΓFπ. If F is surjective then
F ∗ is injective, so it defines the map from ΓFπ to Γπ′. If additionally
F is submersive then it defines the map F k : Jk

F (π) → Jk(π′), where
Jk
F (π) = F ∗Jk(π′) is the bundle of k-jets of F -projectable sections of π (see Fig. 2).

1This work was partially supported by the RFBR grants 09-01-00139-a, 15-01-02352 (Russia), and by the
Program for Basic Research of Mathematical Sciences Branch of Russian Academy of Sciences.
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Now we are ready to define PDE0. Its objects are pairs
(

π : N → M,E ⊂ Jk(π)
)

, k ∈ N, and
morphisms from an object

(

π : N → M,E ⊂ Jk(π)
)

to an object
(

π′ : N ′ → M ′, E′ ⊂ Jk(π′)
)

are
smooth bundle morphisms F : π → π′ satisfying the following conditions:

1. F defines surjective submersion M → M ′;
2. the diagram Fig. 1 is a pullback square in the category of smooth manifolds, that is for any

x ∈ M the map π−1(x) → π′−1(Fx) is a diffeomorphism;

3. E ∩ Jk
F (π) =

(

F k
)−1

(E′).

If F : (π,E) → (π′, E′) is a morphism in PDE0 then F ∗ defines a bijection between the set of all
solutions of E′ and the set of all F -projectable solutions of E.

In Section 2 we define a bigger category PDE , whose objects are pairs (N,E) where N is a
smooth manifold and E is a subset of the bundle Jk

m(N) of k-jets of m-dimensional submanifolds
of N , and whose morphisms from (N,E) to (N ′, E′) are maps N → N ′ sutisfying some analogue
of conditions (1-3) above. By definition, the solutions of an equation E are smooth m-dimensional
non-vertical integral manifolds of the Cartan distribution on Jk

m(N), which are contained in E.
Particularly, the set of solutions includes all m-dimensional submanifolds L ⊂ N such that the
k-th prolongation jk(L) ⊂ Jk

m(N) is contained in E. Any morphism F : (N,E) → (N ′, E′) of PDE
defines a bijection between the set of all solutions of E′ and the set of all F -projectable solutions
of E in the same manner as for PDE0.

The category PDE generalizes the notion of a symmetry group in two directions:

1. Automorphisms group of an object (N,E) in PDE is the symmetry group of the equation E.

2. For a symmetry group G of E the natural projection N → N/G defines the morphism
(N,E) → (N/G,E/G) in PDE . Here E/G is the equation describing G-invariant solutions
of E.

Note that morphisms of PDE go beyond morphisms of this kind.
In Sections 2 and 6 we discuss the relations between our approach to the factorization of PDE

and the other approaches.
Then we discuss the possibility of the introduction of a certain structure in PDE formed by

a lattice of subcategories. These subcategories may be obtained by restricting to equations of
specific kind (for example, elliptic, parabolic, hyperbolic, linear, quasilinear equations etc.) or to
the morphisms of specific kind (for example, morphisms respecting the projection of N on a base
manifold M as in PDE0) or both. When we interested in solutions of some equation it is useful
to look for its quotient objects because every quotient object gives us a class of solutions of the
original equation. It may happen that the position of an object in the lattice gives information on the
morphisms from the object and/or on the kind of the simplest representatives of quotient objects.
In Section 4 we develop a special-purpose language for description and study of such situations. We
introduce a number of partial orders on the class of all subcategories of fixed category and depict
these orders by various arrows (see Table 1 and Fig. 3). For instance, we say that a subcategory
C1 is closed in a category C and depict C • // C1 if every morphism in C with source from C1 is a

morphism in C1; we say that C1 is plentiful in C and depict C //___ C1 if for every A ∈ ObC1 and
for every quotient object of A in C there exists a representative of this quotient object in C1; and
so on.

We use this language in the next paper [8] for a detail study of the full subcategory PE of PDE
that arises from second order parabolic equations posed on arbitrary manifolds, but we hope that
our approach based on category theory may be useful for other types of PDE as well. An object of
PE is an equation for an unknown function u(t, x), x ∈ X having the form ut =

∑

i,j b
ij(t, x, u)uij+

∑

i,j c
ij(t, x, u)uiuj+

∑

i b
i(t, x, u)ui+q(t, x, u) in local coordinates

(

xi
)

on X, where X is a smooth
manifold. We prove that every morphism in PE is of the form (t, x, u) 7→ (t′(t), x′ (t, x) , u′(t, x, u))
(Theorem 1). Particularly, PE appears to be a subcategory of PDE0.

Using of the structure of PE developed in [8] is illustrated there on the example of the reaction-
diffusion equation

ut = a(u) (∆u+ η∇u) + q(x, u), x ∈ X, t ∈ R, (0.1)
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posed on a Riemannian manifold X equipped with a vector field η. There are two exceptional cases:
a(u) = eλuH(u) and a(u) = (u − u0)

λH(ln(u − u0)), where H(·) is a periodic function; in these
cases there are more morphisms then in a regular case. If only function a(u) does not belong to
one of these two exceptional classes then every morphism from equation (0.1) may be transformed
by an isomorphism (i.e. by a global change of variables) of the quotient equation to a “canonical”
morphism of very simple kind so that the “canonical” quotient equation has the same form as (0.1)
with the same function a(u) but is posed on another Riemannian manifold X ′, dimX ′ ≤ dimX.

This work was partially supported by the RFBR grants 09-01-00139-a, 15-01-02352 (Russia),
and by the Program for Basic Research of Mathematical Sciences Branch of Russian Academy of
Sciences. This paper was partially written during my stay at IHES; I am grateful to this institution
for hospitality and for the excellent working conditions. I am grateful to Vladimir Rubtsov and Yuri
Zarhin for useful remarks.

1. The “small” category PDE0 of partial differential equations

Let M , K be smooth manifolds. A system E of k-th order partial differential equations for a
function u : M → K is given as a system of equations Φl(x, u, . . . , u(k)) = 0 involving x, u and the
derivatives of u with respect to x up to order k, where x = (x1, . . . , xm) are local coordinates on M
and u = (u1, . . . , uj) are local coordinates on K. Further we will use the words “partial differential
equation”, “PDE” or “equation” instead of “a partial differential equation or a system of partial
differential equations” for short.

Recall some things about jets and related notions. The k-jet of a smooth function u : M → K at a
point x ∈ M is the equivalence class of smooth functions M → K whose value and partial derivatives
up to k-th order at x coincide with the ones of u. All k-jets of all smooth functions M → K form the
smooth manifold Jk(M,K), and the natural projection πk : Jk(M,K) → J0(M,K) = M×K defines
a smooth vector bundle over M ×K, which is called k-jet bundle. For every function u : M → K its
k-th prolongation jk(u) : M → Jk(M,K) is naturally defined. k-th order PDE for functions acting
from M to K can be considered as a subset E of Jk(M,K); solutions of E are functions u : M → K
such that the image of jk(u) is contained in E.

In more general situation we have a smooth fiber bundle π : N → M instead of a projection
M × K → M , and sections s : M → N instead of functions u : M → K. Denote by Γπ the space
of smooth sections of π; recall that a section of π is a map s : M → N such that π ◦ s is the
identity. Definitions of the k-jet bundle πk : Jk(π) → J0(π) = N and of the k-th prolongation
jk : Γπ → Γ

(

π ◦ πk : Jk(π) → M
)

are the same as ones for functions. Let E be a subset of Jk(π);
then E can be considered as a k-th order partial differential equation for sections of π, that is s ∈ Γπ
is a solution of E if the image of jk(s) is contained in E.

Let π : N → M , π′ : N ′ → M ′ be smooth fiber bundles. Let F : π → π′ be a smooth bundle
morphism with the additional property that F is a diffeomorphism on the fibers (see Fig. 1). F
induces the map F ∗ : Γπ′ → Γπ; denote by ΓFπ its image. We say that a section of π is F -
projectable if it is contained in ΓFπ. If F is surjective then F ∗ is injective, so it defines the map
F# : ΓFπ → Γπ′. If additionally F is submersive then it defines the map F k : Jk

F (π) → Jk(π′),
where Jk

F (π) = F ∗Jk(π′) is the bundle of k-jets of F -projectable sections of π (see Fig. 2). Recall
that a map F is called a submersion if dF : TxN → TF (x)N

′ is surjective at each point x ∈ N .

D e f i n i t i o n 1. Let π : N → M , π′ : N ′ → M ′ be smooth fiber bundles, E be a subset of
Jk(π), F : π → π′ be a smooth bundle morphism. We say that F is admitted by E if the following
conditions are satisfied:

1. F is a surjective submersion;

2. the diagram Fig. 1 is a pullback square in the category of smooth manifolds, that is for any
x ∈ M the map π−1(x) → π′−1(Fx) is a diffeomorphism;

3. E ∩ Jk
F (π) =

(

F k
)−1

(E′) fore some subset E′ of Jk(π′).
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If this is the case then we say that E′ is F -projection of E.

It turns out that the language of category theory is very convenient for our study of PDE. Recall
that a category C consists of a collection of objects ObC , a collection of morphisms (or arrows) HomC

and four operations. The first two operations associate with each morphism F of C its source and its
target, both of which are objects of C. The remaining two operations are an operation that associates
with each object C of C an identity morphism idC ∈ HomC and an operation of composition that
associates to any pair (F,G) of morphisms of C such that the source of F coincides with the target
of G another morphism F ◦G, their composite. These operations should satisfy some natural axioms
[3].

D e f i n i t i o n 2. PDE0 is the category whose objects are pairs
(

π : N → M,E ⊂ Jk(π)
)

with π being a smooth viber bundle, k ∈ N, and morphisms from an object
(

π : N → M,E ⊂ Jk(π)
)

to an object
(

π′ : N ′ → M ′, E′ ⊂ Jk(π′)
)

are smooth bundle morphisms F : π → π′ admitted by E
such that E′ is the F -projection of E.

If F : (π,E) → (π′, E′) is a morphism in PDE0 then F ∗ defines a bijection between the set of
all solutions of E′ and the set of all F -projectable solutions of E.

2. The category PDE of partial differential equations

In this section we define the category PDE of partial differential equations, whose objects are
pairs (N,E) such that N is a smooth manifold and E is a subset of the bundle Jk

m(N) of k-jets of
m-dimensional submanifolds of N .

Let N be a Cr-smooth manifold, 0 < m < dimN . The jet bundle πk : Jk
m(N) → N is a fiber

bundle with the fiber Jk
m(N)

∣

∣

x
over x ∈ N , where Jk

m(N)
∣

∣

x
is the set of equivalence classes of

smooth m-dimensional submanifolds L of N passing through x under the equivalence relation of
k-th order contact in x.

The k-jet of a k-smooth m-dimensional submanifold L over x ∈ L is the equivalence class from
Jk
m(N)

∣

∣

x
determined by L. Thus we have the prolongation map jk : L → Jk

m(N) taking each point

x ∈ L to the k-jet of L over x (so it is the section of the fiber bundle Jk
m(N) restricted to L ⊂ N).

For every k > l ≥ 0 the natural projection πk,l : Jk
m(N) → J l

m(N) maps the k-jet of L to the l-jet
of L over x for every m-dimensional submanifold L of N and every x ∈ L.

For a submanifold L of N the differential of the prolongation map jk : L → Jk
m(N) takes the

tangent bundle TL to the tangent bundle TJk
m(N). The closure of the union of the images of TL in

TJk
m(N) when L runs over all m-dimensional submanifolds of N is the vector subbundle of TJk

m(N);
it is called the Cartan distribution on Jk

m(N).

Let E be a submanifold of Jk(π), π : N → M , m = dimM . The graph of a section is an m-
dimensional submanifold of N , so Jk(π) is an open subspace of Jk

m(N) and E could be considered
as a submanifold of Jk

m(N). The extended version of E is defined as the closure of E in Jk
m(N) [4].

Since we don’t plan to consider infinitesimal properties of E in contrast to the Lie group analysis of
PDE, we would consider any subset E of Jk

m(N) as a partial differential equations. By definition,
solutions of such an equation are smooth m-dimensional non-vertical integral manifolds of the
Cartan distribution on Jk

m(N) that are contained in E. Note that for any m-dimensional submanifold
L of N its prolongation jk(L) is a non-vertical integral manifold of the Cartan distribution on Jk

m(N).
Therefore, if E ⊂ Jk

m(N) is obtained from a traditional PDE as it was described above, and if L
is the graph of a section u of π, then L is a solution of E in the above sense if and only if u is a
solution of the corresponding traditional PDE in the traditional sense. In addition there is allowed
the possibility of both multi-valued solutions and solutions with infinite derivatives (see [4] for the
details). Wherever we write concrete equation in the traditional form below we mean the extended
version of this equations, that is the closure of the corresponding set in Jk

m(N).

Now let us introduce some auxiliary notations.
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Let F : N → N ′ be a map. We say that L ⊂ N is F -projected if L = F−1(F (L)). Note that
if F is a surjective submersion and L is an F -projectable submanifold of N then L′ = F (L) is a
submanifold of N ′.

Let N , N ′ be Cr-smooth manifolds, 0 < m < dimN . Let F : N → N ′ be a surjective submersion
of smoothness class Cs, k ≤ s ≤ r.

D e f i n i t i o n 3. F -projectable jet bundle Jk
m,F (N) is the submanifold of Jk

m(N) consisting
of k-jets of all m-dimensional F -projectable submanifolds of N .

We write Jk
F (N) instead of Jk

m,F (N) if the value of m is clear from context.

There is natural isomorphism between the bundles Jk
m,F (N) and F ∗Jk

m′(N ′) over N , where

F ∗Jk
m′(N ′) = Jk

m′(N ′)×N ′ N is the pullback of Jk
m′(N ′) by F , dimN −m = dimN ′−m′. Therefore

we can lift F to the map F k : Jk
m,F (N) → Jk

m′ (N ′) by the following natural way:

1) Suppose ϑ ∈ Jk
m,F (N). Take an arbitrary F -projectable submanifold L of N such that the k-th

prolongation of L pass through ϑ (that is the k-jet of L over πk(ϑ)) is ϑ.

2) Assign to ϑ the point ϑ′ ∈ Jk
m′ (N ′), where ϑ′ is the k-jet of the submanifold L′ = F (L) ⊂ N ′

over F ◦ πk (ϑ).

D e f i n i t i o n 4. Let E ⊂ Jk
m(N). Let F : N → N ′ be a smooth surjective submersion. We

say that F is admitted by E if the intersection E ∩ Jk
m,F (N) is F k-projectable subset of Jk

m,F (N)

(see the left diagram on Fig. 3). Equivalently, E ∩ Jk
m,F (N) is the pre-image

(

F k
)−1

(E′) of some

E′ ⊂ Jk
m′(N ′); we say that E′ is F -projection of E.

E
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��
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Рис. 3. Morphisms of PDE (left diagram) and morphisms of PDEext (right diagram)

D e f i n i t i o n 5. The category of partial differential equations PDE is defined as follows:

• objects of PDE are pairs (N,E), where N is a smooth manifold, E is a subset of Jk
m (N) for

some integer k,m ≥ 1;
• morphisms of PDE with a source A = (N,E) are all surjective submersions F : N → N ′

admitted by E; target of such morphism is (N ′, E′) where E′ is F -projection of E;
• the identity morphism from A is the identity mapping of N , and the composition of morphisms

is the composition of appropriate maps.

If F : (N,E) → (N ′, E′) is a morphism in PDE then F ∗ defines a bijection between the set of
all solutions of E′ and the set of all F k-projectable solutions of E.

In [5] we defined the following notion of a map admitted by a pair of equations: a map F : N → N ′

is admitted by an ordered pair of equations (A,A′), A = (N,E), A′ = (N ′, E′) if for any L′ ⊂ N ′

the following two conditions are equivalent:

• L′ is the graph of a solution of E′,
• F−1(L′) is the graph of a solution of E.
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However, we are not happy with this definition; in particular, because it deals only with global
solutions of E. Therefore we now formulated the notion of a map admitted by an equation in terms
of (locally defined) jet bundles.

R e m a r k 1. Let A = (N,E) be an object of PDE . Then its automorphism group Aut(A)
is the symmetry group for the equation E.

R e m a r k 2. Suppose G is a subgroup of the symmetry group of E such that N/G is a smooth
manifold. Then the natural projection N → N/G defines the morphism (N,E) → (N/G,E/G) in
PDE . Here E/G is the equation describing G-invariant solutions of E.

Therefore, reduction of E by subgroups of Aut(A) defines a part of nontrivial morphisms from
A. But the class of all morphisms from A is significantly richer than the class of morphisms arising
from reduction by subgroups of Aut(A). Let Sol(A) be the set of all solutions of A, that is of all
smooth m-dimensional non-vertical integral manifolds of the Cartan distribution on Jk

m(N) that
are contained in E. In general, the subset F ∗(Sol(A′)) =

{

F−1(L′) : L′ ∈ Sol(A′)
}

⊆ Sol(A) of
solutions of A arising from a morphism F : A → A

′ can not be represented as a set of solutions
that are invariant under some subgroup of Aut(A). In particular, F ∗(Sol(A′)) can be the set of
G-invariant solutions, where G is a transformation group that is not necessarily a symmetry group
of E. Moreover, for a morphism F : A → A

′ it may occur that for every nontrivial diffeomorphism
g of N there is an element in F ∗(Sol(A′)) that is not g-invariant. More detailed discussion is given
in Section 6; see also [6], [7].

Our approach is conceptually close to the approach developed in [1] that deals with control
systems. If we set aside the control part and look at this approach relative to ordinary differential
equations, then we get the category of ordinary differential equations, whose objects are ODE
systems of the form ẋ = ξ, x ∈ X, where X is a manifold equipped with a vector field ξ, and
morphism from a system A to a system A

′ is a smooth map F from the phase space X of A to
the phase space X ′ of A′ that projected ξ to ξ′. In other words, F is a morphism if it transforms
solutions (phase trajectories) of A to solutions of A′: F∗(Sol(A)) = Sol(A′).

By contrast, we deal with pullbacks of the solutions of the quotient equation A
′ to the solutions

of the original equation A. In our approach the number of dependent variables in the reduced PDE
remains the same, while the number of independent variables is not increased. Thus in the approach
proposed the quotient object notion is an analogue of the sub-object notion (in terminology of [1])
with respect to the information about the solutions of the given equation; however, it is similar to
the quotient object notion with respect to interrelations between the given and reduced equations.

Note also that described above category of ODE from [1] is isomorphic to certain subcategory
of PDE . Namely, let us consider the following subcategory PDE1 of PDE :

• objects of PDE1 are pairs (N,E), where N = X × R, E is a first order linear PDE of the
form Lξu = 1 for unknown function u : X → R, ξ ∈ TX;

• morphisms of PDE1 are morphisms of PDE of the form (x, u) 7→ (x′(x), u).

One can easily see that the category of ODE from [1] is isomorphic to PDE1: the object Lξu = 1
corresponds to the object ẋ = ξ, and the morphism (x, u) 7→ (x′(x), u) corresponds to the morphism
x 7→ x′(x).

The category of differential equations was also defined in [2] in a different way: objects are
infinite-dimensional manifolds endowed with integrable finite-dimensional distribution (particularly,
infinite prolongations of differential equations), and morphisms are smooth maps such that image
of the distribution is contained in the distribution on the image, similarly to morphisms in [1].
Thus, the category of differential equations defined in [2] is quite different from the category PDE
defined here; one should keep it in mind in order to avoid confusion. The factorization of PDE A

by a symmetry group described in [2] is PDE A
′ on the quotient space describing images of all

solutions of A at the projection to the quotient space: F∗(Sol(A)) = Sol(A′). In that approach
every factorization of A provides a part of the information about all the solutions of A. In our
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approach factorization of A is such an equation A
′ that the pullbacks of its solutions are solutions

of A: F ∗(Sol(A′)) ⊆ Sol(A); so that from every factorization we obtain the full information about
a certain set of the solutions of the given equation.

The following two propositions are simple corollaries of our definitions.

Proposition 1. All morphisms in PDE are epimorphisms.

Proposition 2. Suppose (N,E), (N ′, E′), (N ′′, E′′) are objects of PDE, F : N → N ′ is a
morphism from (N,E) to (N ′, E′) in PDE, G : N ′ → N ′′ is surjective submersion. Then the
following two conditions are equivalent (see Fig. 4):

• G is a morphism from (N ′, E′) to (N ′′, E′′),
• GF is a morphism from (N,E) to (N ′′, E′′).
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J
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π′′
k
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N
F

// // N
′

G
// // N

′′

Рис. 4. Diagram for Proposition 2

3. The extended category PDEext of partial differential equations

Note that the Cartan distribution Ck(N) on Jk
m (N) restricted to Jk

m,F (N) coincides with the

lifting
(

F k
)∗

Ck
m′ (N ′) of the Cartan distribution on Jk

m′ (N ′), m′ = m−dimN+dimN ′. Taking this
into account and using the analogy with higher symmetry group, we replace Jk

m,F (N) to arbitrary

submanifold ∆ of Jk
m(N). Thus we obtain the category PDEext with the same objects as PDE and

extended set of morphisms involving transformations of jets. (This category will not be used in the
rest of the paper.)

D e f i n i t i o n 6. An extended category of partial differential equations PDEext is defined as
follows:

• objects of PDEext are pairs (N,E), where N is a smooth manifold, E is a subset of Jk
m (N)

for some integer k,m ≥ 1;
• morphisms of PDEext from A = (N,E ⊂ Jk

m(N)) to A
′ = (N ′, E′ ⊂ Jk′

m′(N ′)) are all pairs
(

∆, F̃
)

such that ∆ is a smooth submanifold of Jk
m(N), F̃ : ∆ → Jk′

m′(N ′) is a surjective

submersion, the Cartan distribution on Jk
m (N) restricted to ∆ coincides with the lifting

F̃ ∗Ck′

m′ (N ′) of the Cartan distribution on Jk′

m′ (N ′), and E ∩∆ = F̃−1(E′) (see right diagram
on Fig. 3);
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• the identity morphism from A is
(

∆ = Jk
m(N), F̃ = idN

)

;

• composition of
(

∆ ⊂ Jk
m(N), F̃ : ∆ → Jk′

m′(N ′)
)

and
(

∆′ ⊂ J ′k′

m (N ′), F̃ ′ : ∆′ → Jk′′

m′′(N ′′)
)

is
(

F̃−1(∆′), F̃ ′ ◦ F̃
)

.

For each integral manifold of the Cartan distribution on E′ its preimage is an integral manifold
of the Cartan distribution on E, so for each solution of E′ its pullback is some solution of E.

PDE embeds to PDEext by the following natural way: to the morphisms F : N → N ′ of PDE

from the equation of k-th order we assign the morphisms
(

∆, F̃
)

of PDEext such that ∆ = Jk
m,F (N),

F̃ = F k.

4. Usage of subcategories

We start with review of some basic definitions of category theory [3]. Given a category C and
an object A of C, one may construct the category (A ↓ C) of objects under A (this is the particular
case of the comma category): objects of (A ↓ C) are morphisms of C with source A, and morphisms
of (A ↓ C) from one such object F : A → B to another F ′ : A → B

′ are morphisms G : B → B
′ of

C such that F ′ = G ◦ F .
Suppose C is a subcategory of PDE , A is an object of C. Then the category (A ↓ C) of objects

under A describes collection of quotient equations for A and their interconnection in the framework
of C.

To each morphism F : A → B with source A (that is to each object of the comma category
(A ↓ C)) assign the set F ∗(Sol(B)) ⊆ Sol(A) of such solutions of A that “projected” onto underying
space of B (space of dependent and independent variables). We can identify such morphisms that
generated the same sets of solutions of A, that is identify isomorphic objects of the comma category
(A ↓ C).

Describe the situation more explicitly. An equivalence class of epimorphisms with source A is
called a quotient object of A, where two epimorphisms F : A → B and F ′ : A → B

′ are equivalent if
F ′ = I ◦F for some isomorphism I : B → B

′ [3]. If F : A → B and F ′ : A → B
′ are equivalent, then

they lead to the same subsets of the solutions of A: F ∗(Sol(B)) = F ′∗(Sol(B′)). So if we interested
only in the sets of the solutions of A, then all representatives of the same quotient object have the
same rights.

Therefore, the following problems naturally arise:

• to study all morphisms with given source,
• to choose a "simplest"representative from every equivalence class, or to choose representative

with the simplest target (that is the simplest quotient equation).

In order to deal with these problems we develop in this paper a special-purpose language.
Let us introduce a number of partial orders on the class of all categories to describe arising

situations. First of all, we define a few types of subcategories.

D e f i n i t i o n 7. Suppose C is a category, C1 is a subcategory of C.

• C1 is called a wide subcategory of C if all objects of C are objects of C1.

• C1 is called a full subcategory of C if every morphism in C with source and target from C1 is
a morphism in C1.

• We say that C1 is full under isomorphisms in C if every isomorphism in C with source and
target from C1 is an isomorphism in C1.

• We say that C1 is closed in C if every morphism in C with source from C1 is a morphism in
C1. (Note that every subcategory that is closed in C is full in C.)

• We say that C1 is closed under isomorphisms in C if every isomorphism in C with source from
C1 is an isomorphism in C1.
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• We say that C1 is dense in C if every object of C is isomorphic in C to an object of C1.

• We say that C1 is plentiful in C if for every morphism F : A → B in C, A ∈ ObC1 , there exists
an isomorphism I : B → C in C such that I ◦ F ∈ HomC1 (in other words, for every quotient
object of A in C there exists a representative of this quotient object in C1). Such morphism
I ◦ F we call C1-canonical for F .

• We say that C1 is fully dense (fully plentiful) in C if C1 is a full subcategory of C and C1 is
dense (plentiful) in C.

The first two parts of this definition are standard notions of category theory, while the notions
of the other parts are introduced here for the sake of description of the structure of PDE .

R e m a r k 3. Using the notion of “the category of objects under A”, we can define the notions
of closed subcategory and plentiful subcategory by the following way:

• C1 is closed in C if for each A ∈ ObC1 the category (A ↓ C1) is wide in (A ↓ C).

• C1 is plentiful in C if for each A ∈ ObC1 the category (A ↓ C1) is dense in (A ↓ C).

R e m a r k 4. C1 is fully dense in C if and only if the embedding functor C1 → C defines an
equivalence of these categories.

Choose some category U , which is big enough to contain all needful for us categories as it’s
subcategories. For our purposes U = PDE is sufficient.

Define the category U≥, whose objects are subcategories C of U , and a collection HomU≥
(C1, C2)

of morphisms from C1 to C2 is a one-element set if C2 is subcategory of C1 and empty otherwise, so
an arrow from C1 to C2 in U≥ means that C2 is the subcategory of C1. Let U= be the discrete wide
subcategory of U≥, that is objects of U= are all subcategories C of U , and the only morphisms are
identities, so C1 and C2 are connected by arrow in U= only if C1 = C2.

D e f i n i t i o n 8. Suppose C1, C2 are subcategories of U . A subcategory of U , whose objects
are objects of C1 and C2 simultaneously, and whose morphisms are morphisms of C1 and C2 simultaneously,
is called an intersection of C1 and C2 and is denoted by C1∩C2. In other words, C1∩C2 is the fibered
sum of C1 and C2 in U≥.

The following proposition is obvious:

Proposition 3. Suppose C1 is closed in C, and C2 is (full/closed/dense/plentiful) subcategory
of C; then C1 ∩ C2 is closed in C2 and is (full/closed/dense/plentiful) subcategory of C1.

Now we introduce some graphic designations for various types of subcategories of U≥ (see
Table 1). These designations will be used, particularly, for the representation of the structure of the
category of parabolic equations described below.

We shall use the term “meta-category” both for the category U≥ and for its subcategories defined
below to avoid confusion between U≥ and “ordinary” categories which are objects of U≥; and we
shall use Gothic script for meta-categories except U≥. One may view these meta-categories as a
partial orders on the class of all subcategories of U ; we prefer category terminology here since this
allows us to use category constructions for the interrelations between various partial orders.

Let us define wide subcategories W, F, FI, C, CI, D, and P of meta-category Ug. Objects of
them are categories, while arrows from C1 to C2 have a different meaning:

• in the meta-category W it means that C2 is wide subcategory of C1,

• in the meta-category F it means that C2 is full subcategory of C1,

• in the meta-category FI it means that C2 is full under isomorphisms in C1,

• in the meta-category C it means that C2 is closed subcategory of C1,

• in the meta-category CI it means that C2 is closed under isomorphisms in C1,

• in the meta-category D it means that C2 is dense subcategory of C1,
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 W Wide 

 F Full 

 FI Full under isomorphisms 

 C Close 

 CI Close under isomorphisms 

 D Dense 

 P Plentiful 

 Таблица 1. Basic meta-categories (arrows)

• in the meta-category P it means that C2 is plentiful subcategory of C1,

We shall denote the intersections of these meta-categories by the concatenations of appropriate
letters, for example: FD = F ∩D.

The following proposition is obvious.

Proposition 4. FI ∩P = F ∩P; CI ∩P = C; F ∩P ∩D = F ∩D.

Interrelations between “basic” meta-categories W, F, FI, C, CI, D, P and their intersections
(“composed” meta-categories) are represented on Fig. 5(a). Here an arrow means the predicate
“to be subcategory of”; we shall call it the “meta-arrow”. For example, meta-arrow from D to W

means that W is a subcategory of D. In the language of “ordinary” categories this meta-arrow
means that the statement “C2 is wide in C1” implies that C2 is dense in C1. Everywhere on Fig. 5(a)
a pair of meta-arrows with the same target means that this meta-category (target of these meta-
arrows) is the intersection of two “top” meta-categories (sources of these meta-arrows). For example,
FD = FP ∩PD.

On Fig. 5(b) the same scheme is represented as on Fig. 5(a), but the letter names are replaced
by the arrows of various types.

Instead of investigation of all or the simplest morphisms with the given source, we want to
introduce a certain structure in PDE , so that the position of an object in it gives an information
about the morphisms from the object and about the kind of the simplest representatives of equivalence
classes of the morphisms. In [8] we describe such a structure for the category of parabolic equations,
choosing some subcategories of PE connected by the arrows from Fig. 5(b). Then we use this
structure to describe the morphisms from nonlinear reaction-diffusion equation.

5. The category of parabolic equations

Let us consider the class P (X,T,Ω) of differential operators on a connected smooth manifold
X, which depend additionally on a parameter t (“time”), locally having the form

Lu =
∑

i,j

bij(t, x, u)uij +
∑

i,j

cij(t, x, u)uiuj +
∑

i

bi(t, x, u)ui + q(t, x, u),

x ∈ X, t ∈ T, u ∈ Ω
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P D FI 

FP PD W 

C FD PW 

a b 

CI 

U≥≥≥≥ 

U ====  U ====  

Рис. 5. Interrelations between basic meta-categories (arrows) and their intersections

in some neighborhood of each point, in some (and then arbitrary) local coordinates
(

xi
)

on X. Here
subscript i denotes partial derivative with respect to xi, quadratic form bij = bji is positive definite,
and cij = cji. Both T and Ω may be bounded, semibounded, or unbounded open intervals of R.

D e f i n i t i o n 9. The category PE of parabolic equations of the second order is the full
subcategory of PDE , whose objects are pairs A = (N,E), N = T × X × Ω auch that X is a
connected smooth manifold, T and Ω are open intervals, and E is an equation of the form ut = Lu,
L ∈ P (X,T,Ω) (more exactly, E is the extended version of the equation ut = Lu, that is a closed
submanifold of J2

n+1(T ×X × Ω), n = dimX).

E x a m p l e 1. Let Φk(x), x ∈ R
3 − {0} be a spherical harmonic of the k-th order. Then

the map (t, x, u) 7→ (t, |x| , u /Φk(x)) defines the morphism in the category PE from the object A

corresponding to equation ut = ∆u and X = R
3 −{0}, T = Ω = R, to the object A′ corresponding

to equation u′t′ = u′x′x′ − k (k + 1)x′−2u′ and X ′ = R+, T ′ = Ω′ = R. One may assign to the set
Sol(A′) of all solutions of the quotient equation the set F ∗(Sol(A′)) of such solutions of the original
equation that may be written in the form u = Φk(x)u

′ (t, |x|).

E x a m p l e 2. The following example shows that not every endomorphism in PE is an
automorphism. Consider object A, for which X = S1 = R mod 1, T = Ω = R, E : ut = uxx.
Then the morphism from A to A defined by the map (t, x, u) 7→ (4t, 2x, u) has no inverse.

Theorem 1. Every morphism in PE has the form

(t, x, u) 7→
(

t′(t), x′ (t, x) , u′(t, x, u)
)

, (5.2)

with submersive t′(t), x′(t, x), and u′ (t, x, u). Isomorphisms in PE are exactly diffeomorphisms of
the form (5.2).

P r o o f. Passing from the equation ut = Lu to the equation in the extended jet bundle for
unknown submanifold L ⊂ X × T ×Ω locally defined by the formula f (t, x, u) = 0, and expressing
the derivatives of u by the corresponding derivatives of f , we obtain the following extended version
of E:

ftf
2
u =

∑

i,j

bij
(

fijf
2
u − (fiufj + fjufi) fu + fifjfuu

)

−
∑

i,j

cijfifjfu +
∑

i

bifif
2
u − qf3

u (5.3)
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Suppose F : A → A
′ is a morphism in PE , N ′ = X ′ × T ′ × Ω′, and E′ is defined by the equation

u′ =
∑

i′,j′

Bi′j′
(

t′, x′, u′
)

u′i′j′ +
∑

i′,j′

Ci′j′
(

t′, x′, u′
)

u′i′u
′
j′ +

∑

i′

Bi′
(

t′, x′, u′
)

u′i′ +Q
(

t′, x′, u′
)

.

Consider the extended analog of the last equation:

f ′
t′f

′2
u′ =

∑

i′,j′

Bi′j′
(

f ′
i′j′f

′2
u′ −

(

f ′
i′u′f ′

j′ + f ′
j′u′f ′

i′

)

f ′
u′ + f ′

i′f
′
j′f

′
u′u′

)

−

−
∑

i′,j′

Ci′j′f ′
i′f

′
j′f

′
u′ +

∑

i′

Bi′f ′
i′f

′2
u′ −Qf ′3

u′ , (5.4)

where f ′ (t′, x′, u′) = 0 is the equation locally defining a submanifold L′ of N ′.

Recall that F : (t, x, u) 7→ (t′, x′, u′) is a morphism in PE if and only if for each point ϑ ∈ N
and for each submanifold L′ of N ′, F (ϑ) ∈ L′, the following two conditions are equivalent:

• the 2-jet of L′ at the point F (ϑ) satisfies (5.4)

• the 2-jet of F−1 (L′) at the point ϑ satisfies (5.3).

In other words, the conditions “f ′ is solution of (5.4)” and “f is solution of (5.3)” should be equivalent
when

f (t, x, u) = f ′
(

t′ (t, x, u) , x′ (t, x, u) , u′ (t, x, u)
)

.

To find all such maps we use the following procedure:

1. Express derivatives of f in (5.3) through derivatives of f ′:

∂f

∂t
=

∂f ′

∂t′
∂t′

∂t
+

∂f ′

∂x′i
′

∂x′i
′

∂t
+

∂f ′

∂u′
∂u′

∂t

and so on.

2. In the obtained identity substitute the combinations of the derivatives of f ′ for ∂f ′/∂t′ by
formula (5.4). Then repeat this step for ∂2f ′/∂t′2 in order to eliminate all derivatives with
respect to t′. After reducing to common denominator, the transformed identity will have the
form Φ = 0, where Φ is a rational function of partial derivatives of f ′ with respect to x′ and
u′. The coefficients φ1, . . . , φs of Φ are functions of 4-jet of the map F .

3. Solve the system φ1 = 0, . . . , φs = 0 of partial differential equations for a map F .

Let us realize this procedure. Note that we shall not write out function Φ completely. Instead
we consider only some of its coefficients and then use the obtained information about F in order to
simplify Φ step by step.

First note that the derivatives of the forth order arise only in term ∂2f ′/∂t′2 when we fulfill the
step 2 of the above procedure. Write this term before the final realization of step 2 for the sake of
simplicity:

Φ =
∑

i,j

bij
(

t′it
′
jf

2
u − t′it

′
ufjfu − t′jt

′
ufifu + t′

2
ufifj

) ∂2f ′

∂t′2
+ . . . =

=
∑

i,j

bij
(

t′ifu − t′ufi
) (

t′jfu − t′ufj
) ∂2f ′

∂t′2
+ . . .

The coefficient at ∂2f ′/∂t′2 must be zero, and the quadratic form bij is positive definite. We get
t′ifu = t′ufi, so

t′i
(

f ′
t′t

′
u + f ′

x′x′u + f ′
u′u′u

)

= t′u
(

f ′
t′t

′
i + f ′

x′x′i + f ′
u′u′i

)
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(here and below we use the notations

f ′
i′ =

∂f ′

∂x′i′
, f ′

x′x′u =
∑

j′

f ′
j′x

′j
′

u

and so on). Hence we obtain the following system of equations:

{

t′uu
′
i = u′ut

′
i

t′ux
′
i = x′ut

′
i

(5.5)

One of the following three conditions holds:

1. t′u = 0, t′x = 0;
2. t′u = 0, t′x 6= 0;
3. t′u 6= 0.

In the second case u′u = x′u = 0. Taking into account the equality t′u = 0, we obtain a desired
contradiction to the assumption that F is a submersion.

In the third case we get from (5.5) the identities t′x = ωt′u, u
′
x = ωu′u, x

′i
′

x = ωx′i
′

u , where
ω = t′x/t

′
u is a section of π∗T ∗X, π : N = T ×X ×Ω → X is the natural projection, π∗T ∗X is the

vector bundle over N induced by π from the cotangent bundle T ∗X, and ω =
∑

i ωi(t, x, u)dx
i in

local coordinates. This implies that fx = ωfu. Substituting the last formula to (5.3), we get

ft = fu





∑

i,j

bij
(

∂ωi

∂xj
− ωj

∂ωi

∂u

)

−
∑

i,j

cijωiωj +
∑

i

biωi − q



 .

Denote the expression in square brackets by ζ (t, x, u). Then ft = ζfu. Expressing derivatives of
f in terms of derivatives of f ′, we obtain t′t = ζt′u, x

′
t = ζx′u, u

′
t = ζu′u. Consider the field of

hyperplanes that kill the 1-form dt′ in the tangent bundle TM (recall that t′u 6= 0, so dt′ is non-
degenerated). The differential of F vanishes on these hyperplanes because du′ ∧ dt′ = dx′i

′
∧ dt′ =

0. Therefore rank(dF ) ≤ 1. Since dimN ′ ≥ 3, F can not be submersive, which contradicts the
definition of an admitted map.

Finally, we see that only the first case is possible. Hence t′ is a function of t, and f ′
t′ may appear

only in the representation of ft. Let us look at the terms of Φ containing (f ′
u′)

−2:

Φ =
∑

i′,j′,k′,l′

t′tx
′i
′

ux
′j

′

uB
′k

′l′
f ′

i′f
′
j′f

′
k′f

′
l′f

′
u′u′

(

f ′
u′

)−2
+ . . . .

Substitution of any covector ω =
∑

i′ ωi′dx
′i
′

∈ Γ (T ∗X ′) to the expression

∑

i′,j′,k′,l′

t′tx
′i
′

ux
′j

′

uB
′k

′l′
ωi′ωj′ωk′ωl′ = t′t

(

∑

i′

x′
i′

uωi′

)2




∑

k′,l′

B′k
′l′
ωk′ωl′





should give zero. The quadratic form B′k
′l′ is positive definite, so

∑

k′,l′ B
′k

′l′ωk′ωl′ > 0 when ω 6= 0.

Taking into account that F is submersive, we obtain t′t 6= 0. Therefore
∑

i′ x
′i
′

uωi′ = 0 for any ω,
that is x′u ≡ 0. This implies x′ = x′ (t, x), t′ = t′ (t), which completes the proof. �

6. Comparison with the reduction by a symmetry group

As Remark 2 shows, our definition of morphism in PDE is a generalization of the reduction by
a symmetry group. So we can obtain sets of solutions more general than the sets of group-invariant
solutions provided by the group analysis of PDE (though our approach is more laborious owing
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to the non-linearity of the system of PDE describing a morphisms). Let us illustrate this by an
example of a primitive morphism.

D e f i n i t i o n 10. A morphism F : A → B of a category C is called a reducible in C if there
exist non-invertible morphisms G : A → C, H : C → B in C such that F = H ◦ G. Otherwise, a
morphism is called primitive in C.

Note that the reduction of PDE by a symmetry group defines a primitive morphism if and
only if this group has no proper subgroups The reduction by any symmetry group that is not a
discrete cyclic group of prime order may be always represented as a superposition of two nontrivial
reductions, so the corresponding morphism is a superposition of two non-invertible morphisms and
therefore is reducible. In particular, this situation takes place for any nontrivial connected Lie group.

However, the situation for morphisms is completely different. Even a morphism that decreases
the number of independent variables by 2 or more may be primitive; below we present an example
of such a morphism. In contrast, in the Lie group analysis we always have one-parameter subgroups
of a symmetry group, so the morphism corresponding to a symmetry group is always reducible.

E x a m p l e 3. Consider the following morphism F : A → B in PE :
• A is the heat equation ut = a(u)∆u posed on X = {(x, y, z, w) : z < w} ⊂ R

4 equipped with
the metric

gij =









1 0 0 0
0 γ α β
0 α 1 0
0 β 0 1









,

where α = xew, β = xez, γ = 1+α2+β2, a /∈ Aexp∪Adeg. In the coordinate form A looks as

a−1(u)ut = uxx + uyy − 2αuyz − 2βuyw +
(

1 + α2
)

uzz+

+2αβuzw +
(

1 + β2
)

uww + (αβ)w uz + (αβ)z uw.

• B is the heat equation a−1(u)ut = uxx + uyy posed on Y = {(x, y)} = R
2 equipped with

Euclidean metric.
• The morphism F is defined by the map (t, (x, y, z, w), u) 7→ (t, (x, y), u).

This morphism decreases the number of independent variables by 2 and nevertheless is primitive in
PE .

Additional examples of morphisms that are not defined by any symmetry group of the given
PDE, and also a detailed investigation of the case dimY = dimX − 1, may be found in [6], [7].
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