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THE STRUCTURE OF THE CATEGORY OF PARABOLIC EQUATIONS. II!

M. F. Prokhorova

This is the second part of the series consisting of two papers. Here we investigate the category PE of parabolic
equations introduced in the first paper. The objects of this category are second order parabolic equations posed
on arbitrary manifolds, and the morphisms generalize the notion of the quotient map by a symmetry group. We
introduce a certain structure in PE formed by the lattice of subcategories. These subcategories are obtained
by the restricting to equations of specific kind or to morphisms of specific kind or both. We investigate this
structure using a language developed in the first paper. An example that deals with nonlinear reaction-diffusion
equation is discussed in more detail.

Keywords: category of partial differential equations, factorization of differential equations; parabolic equation;
reaction-diffusion equation; heat equation; symmetry group.

CTPYKTYPA KATEI'OPUU ITAPABOJIMYECKNX YPABHEHUMN. IT

M. @. ITpoxoposa

9TO0 BTrOpas 4acTb IUKJA U3 ABYX CTaTell, IOCBANEHHAS UCCIEJOBAHNIO KATETOPUN TapabOINTIeCKIX ypaB-
HeHuii PE, BBeEéHHOM B nepBoil crarbe. OOGbEKTAME 9TOM KATErOPUU SABJISIOTC apabOJIMdeCKue ypPaBHEHUS
BTOPOrO MOPSAIKA, 33AaHHbIE Ha IIPOU3BOJIBHBIX MHOIOOODPAa3UAX, a MOPGMU3MBI 0000INAIOT HOHATHE PELyKIINN
o rpymnmne cumMerpuii. Mbl BBoguM B PE CTPYKTYpy, 06pa30BaHHYIO PEIIETKOM IOAKATErOpUii, BO3HUKAIOIIUX
[IPY OrPAHUYECHUN KJlacca ypaBHeHuil (ypaBHEHHSIME ONPEIEJEHHOTO BUJA), MK Kiacca MopdusmMos (Mopdus-
MaMU OIPEEJIEHHOIO TUIIA), WA ¥ TOTO, ¥ IPYroro OqHOBpeMeHHO. VcciienoBanue 9To CTPYyKTYPbl IPOBOAUTCS
C UCIIOIb30BAHUEM CIENMAJIBHOIO A3bIKA, PA3BUTOrO B MEPBOil crarbhe. OTAEIbHO PACCMOTPEH IPUMED HEJIUHEH-
HOI'O ypaBHEHUsI peakiuu-auddys3un.

KoroueBble cioBa: kareropusi gudpepeHIua bHbIX YyPABHEHUII B YaCTHBIX IIPOM3BONHBIX; (haKTOpU3AIUs
nuddepeHnuaIbHbIX YPaBHEHNI; TapaboniecKrue ypaBHEHN; yPaBHEHNE Peakunu-audy3un; ypaBHEHIE Tell-
JIOIIPOBOZHOCTH; I'PYIIa CUMMETPHIA.

Introduction

This paper is the second part of the series of two papers. In the first part [2| the author defined
the category PDE of partial differential equations and its full subcategory PE that arises from
second order parabolic equations on arbitrary manifolds. This paper is devoted to the investigation
of the internal structure of the category PE by means of the special-purpose language developed in
[2].

Recall the definition of the category of parabolic equations from [2]. Let us consider the class
P (X, T,Q) of differential operators on a connected smooth manifold X, which depend additionally
on a parameter ¢t (“time”), locally having the form

Lu= Z bij(t, T, u)uij + Z cij(t, T, u)uiu; + Z bi(t, x,u)u; + q(t, z,u),
2¥) 2,7 7
reX,teT, uef

in some neighborhood of each point, in some (and then arbitrary) local coordinates ($’) on X. Here
subscript ¢ denotes partial derivative with respect to z*, quadratic form b = b7* is positive definite,
and ¢ = ¢/, Both T and 2 may be bounded, semibounded or unbounded open intervals of R. The
category PE of parabolic equations is a subcategory of PDE, whose objects are pairs A = (N, E),

IThis work was partially supported by the RFBR grants 09-01-00139-a, 15-01-02352 (Russia), and by the
Program for Basic Research of Mathematical Sciences Branch of Russian Academy of Sciences.
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N =T x X x Q, where X is a connected smooth manifold, T" and ) are open intervals, F is an
equation of the form w, = Lu, L € P (X, T, ). Theorem 1 of |2] asserts that every morphism in P&
has the form

(t,z,u) — (F(t), 2 (t,2),d (t, z,u)), (0.1)

with submersive t'(t), 2'(t,x), and u/(¢,x,u). Isomorphisms in PE are exactly diffeomorphisms of
the form (0.1).

Section 1 of this paper is devoted to the classification of parabolic equations in this framework
and to the description of the internal structure of PE. The proofs of Theorems 1-7 given in the
section are postponed to Section 3.

Section 2 illustrates the using of this structure of PE on the example of the reaction-diffusion
equation

u = a(u) (Au+nVu) +q(z,u), =€ X, teR, (0.2)

posed on a Riemannian manifold X equipped with a vector field n. There are two exceptional cases:
a(u) = eMH(u) and a(u) = (u — ug) H (In(u — ug)), where H(-) is a periodic function; in these
cases there are more morphisms then in a regular case. If only function a(u) does not belong to
one of these two exceptional classes then Theorems 9-10 assert that every morphism from equation
(0.2) may be transformed by an isomorphism (i.e. by a bijective global change of variables) of the
quotient equation to the “canonical” morphism of very simple kind so that the “canonical” quotient
equation has the same form as (0.2) with the same function a(u) but is posed on another Riemannian
manifold X', dim X’ < dim X.

1. The structure of P€ and classification of parabolic equations

We formulate here the number of theorems describing the internal structure of PE; the proofs
of these theorems are given in Section 3 below. Certain parts of the structure of PE are depicted
schematically on Fig. 1 (the full picture is not given here in view of its awkwardness).

Let us consider five full subcategories P& of PE, 1 < k < 5, whose objects are equations that
can be written locally in the following form:

up = Z b (t, ) (i + M, 2, w)ugug) + Z b (t, 2, u)u; + q(t, v, u) (P&Y)

ut—atqub’]tqu]+Z twuzuZuJ—FZb (t,z,w)u; +q(t,xz,u) (PE2)

uy = a(t,r,u) Z b (t, ) (uij + )\(t, T, u)uiug) + Z b (t, z, u)u; + q(t, z,u) (PE3)

Zb] (t m’Jqu —1—20” (t, z, u)u;u; —i—Zb tla: s u)u; + q(t, o, u) (PE4)

up = ib”(t x) (uj —i—i(t T, u)uu;) + Zb (t,x,uw)u; + q(t,xz,u) (PEs)
ij i

Remark 1. Everywherein the paper we use notation of a category equipped with a subscript
and /or primes for its full subcategory. For example, QPEy, QPE’, and QPE). defined below are full
subcategories of QPE.

Remark 2. In equations of the categories PEy and PE3, function a(-) is determined up
to multiplication by arbitrary function from 7" x X to R™; moreover, it is determined only locally.
Nevertheless we can lead these equations to the equations of the same form but with globally defined
function a: T'x X x Q — R™. For example, we can require that a(t,z,ug) = 1, where uq is a fixed
point of Q. Everywhere below we will assume that function «a is globally determined on T x X X 2.
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Puc. 1. The part of the structure of the category of parabolic equations
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Theorem 1.
1. P& and P&y are closed in PE.

2. PE3 =PELNPEy is closed in PE1, in PEy, and in PE.
3. PE4 is closed in PEy and in PE.
4. PEs =PE3SNPE, is closed in PE3, in PE4, and in PE.

Definition 1. TPE, QPE, SQPE, AQPE, and EPE are wide subcategories of PE, whose
morphisms have the following form:

(t,y(t,z),v (t,z,u)) for TPE
(t,y(t,z), o(t, z)u +(t,x)) for QPE

(t,2,u) = § (ty(), o(t 2)u+ ¢(t,2))  for SQPE
(t, y(z), p(x)u+P(z)) for AQPE
(t,y(z),u) for EPE

Denote TPE, = TPE NPE.

Theorem 2.
1. TPE is wide and plentiful in PE.

2. TPEy is closed in TPE; it is wide and plentiful in PE, k= 1..5.

Definition 2. The category QPE of quasilinear parabolic equations is the full subcategory
of QPE, whose objects are equations of the form

ijt:nuulj—i—z:b (t,z,u)u; + q(t, z,u), (QPE)
7]

(in a local coordinates). In particular, morphisms of QPE are maps of the form

(t,z,u) = (t,y(t,z), o(t, z)u + Y(t,x)) .

Denote by A, (M, Q) the set of continuous positive functions a: M x Q — R that satisfy the
condition

Vm e M FJuj,ugy  a(m,ur) # a(m,usg). (Ane)
Define full subcategories of QPE, whose objects are equations of the following form:
u = a(t, x,u) Zb”tmu@]+ZbZt:vu)ul+q(t:Eu) (QPE
7‘7 l
up = alt, o, u) Zbij(t,x)uij + ) OV (tm u)u + gt 2, u), a € Ane (T x X) (QPE!)
ut—Zb’] ta:u”—FZb t,x,u)u; + q(t, x,u) (QPEY)

i,

u = a(t,z,u (ij (t, z)uqj —|—sz (t,x)u ) +Z£i(t,x)ui+q(t,x,u) (QPE")

)

ur = a(t,z,u (ij (, xuw—l—Zb’t z)u )—i—q(t,x,u) (QPEY)

up = a(u) (Z b9 (t, x)uij + Z bi(t, x)uz) + Z&i(t, x)u; + q(t, z,u) (QPEY(a))

7 -
Zb]txu”%—Zb’txuz—i-q(t:ru) (QPEY)

’.7
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Uy = Z bij (ta 'r)uij + Z bz (ta x)uz +a (tv x)u + QO(t7 33), (nglllq)

1,7 A

where a(-) is a positive function. The family of categories QPE" (a) is parameterized by functions
a (), that is one assigns the category QPE”(a) to each continuous positive function a: Q — R.

We define additionally the full subcategory QPE. of OPE, whose objects are equations from
QPE posed on a compact manifolds X.

Let us introduce the following notation for the intersections of enumerated “basic” subcategories:
for a string o we set QPE, = N{QPE,: a € o}, QPEL = QPE, N QPEP. Particularly, QPEY,
denotes the intersection QPE!, N QPEG.

In the same manner as in Remark 2, we can obtain a global function a(u) for any equation from
QPE!(a), for example, by imposing the condition a(ug) = 1. Such function a(u) is independent of
the choice of neighborhood in T' x X x Q and of local coordinates.

Theorem 3.

QPE is closed in QPE and is fully dense in TPE.
QPE. is closed in QPE.
QPE = QPENPEy = QPE NPE;3 is fully dense in TPE3 and is closed in QPE.
QP& = QPENPEs = QPE N'PE5 is fully dense in TPE5 and is closed in QPE’.
QPE" is closed in QPE'.
QPE] = QPE" NPEs = QPE" N QPE} = QPEY (1) is closed in QPEY, in QPE", and in
QPE].

7. QPEY, is closed in QPEY.

8. QPE! is closed in QPE'.

9. QPEL,, is fully plentiful in QPE".
10. QPEL, is fully dense in QPEY.

SRR

Denote by Aeyxp the set of functions of the form a(u) = e*H (u) and by Ageg the set of functions

of the form a(u) = (u—uo)* H (In (u — ug)), where A, ug are arbitrary constants and H (-) is
arbitrary nonconstant periodic function.

Theorem 4.

1. If a ¢ Aexp U Adeg, then QPE}(a) is fully plentiful in QPE".

2. QPEG,(a) is fully plentiful in QPE)(a); if a & Acxp U Adeg then QPEG,(a) is fully plentiful
in QPE(.

3. QPE(.(a) is fully dense in QPEY, (a).

4. Suppose A is an object of QPEY(a), F: A — B is a morphism in PE such that there is
no object of QPEL(a) isomorphic to B in PE (that is a(-) € Aexp U Adeg). Then there

exists an object of QPE" isomorphic to B such that the composition of F: A — B with
this isomorphism is of the form

(t,y(t,x),u—i—d)(t,x}), ac Aexp
(tv y(t’ x)v vo + (u - uO) exXp (¢(t7 .’L‘))), ac Adeg

(t,z,u) — {

In addition, for each t € T and x1,29 € X such that y(t,z1) = y(t,z2), the difference
W(t, z2) —Y(t,x1) is an integral multiple of H, where H is the period of periodic function H.
The same assertion holds if we replace QPEL(a) by QPEL,(a) and QPE” by QPE.
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Example 1. The equation
E:u = (2+sinu) ug,

is an object of QPEG,(f), with X =T = Q =R, f(u) = 2+sinu, and f € Aexp. It admits both
maps (t,7,u) — (¢, mod 27, u) and (t,x,u) — (t,# mod 27, u + x). In both cases Y = S1. In the
first case the quotient equation has the form vy = (2 + sinw) vy, so it is an object of QPEY,(f).
In the second case the quotient equation has the form vy = (2 +sin(v + y)) vyy; it is an object of
QPE(, but is not isomorphic to any object of QPEL,(f).

Definition 3. The category of semi-autonomous quasilinear parabolic equations SQPE
is the intersection SOPE N QPE”. In other words, SQPE is the full subcategory of SOPE and the

wide subcategory of QPE”, whose objects are equations of the form

up = a(t, x,u) (Z b9 (t, x)uij + Z bi(t, x)uz) + Z E(t, x)u; + q(t, z,u), (SQPE)

i3

and morphisms are maps of the form (¢, z,u) — (t,y(x), p(t, z)u + P(t, )).
Define additionally the following full subcategories of SQPE:

SQPE, = SQPE N QPEY, where o is one of possible subscripts of QPE”;

SQPEy is the category, whose objects are equations of the form

us = a(t,x,u) Zb” T)ui; + Zb’ (t,z)u; | + Zﬁi(t,x)ui + q(t, z,u). (SQPE)

17-]

Theorem 5.

SOPE is closed in SOPE.

SOPEy = SOPEN QPE, SOPE, = SOPEN QPE! . and SQPEy are closed in SQPE.
SOPEy, coincides with QPE| 0n7 it 1is closed in SQPEy and in SQPE,,.

SOPE = SQPEN QPEY = SQPE, (1) is closed in SQPE,.

If a ¢ Acxp U Adeg, then SQPE4(a) is fully plentiful in SQPE.

Gt o =

Definition 4. The category of autonomous quasilinear parabolic equations AQPE is the
full subcategory of AQPE, whose objects are equations of the form

u = a(z,u) (Au+nVu) + EVu + gz, u) (AQPE)

posed on a Riemann manifold X equipped with vector fields &, n
Define full subcategories AQPE, = AQPE N QPEY of AQPE, where o is one of possible
subscripts of QPE”. The objects of these categories are equations of the form

= a(z,u) (Au+nVu) + EVu + q(z,u), a € Ap(X), (AQPE,)
= a(z,u)(Au +nVu) + q(z,u), (AQPEy)
up = a(u)(Au+ nVu) + EVu + q(x, u), (AQPE,(a))
up = Au~+ EVu + q(z,u). (AQPEq)

Theorem 6.
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AQPE is closed in AQPE.

AQPE,, is closed in AQPE and full in SQPEy,.

AQPEy and AQPE1 are closed in AQPE.

If a(-) ¢ Aexp U Adeg, then AQPEq(a) is fully plentiful in AQPE.
AQPE q(a) is closed in SQPEq(a).

AR R

Definition 5. Define the following full subcategories of EPE (its morphisms are maps of
the form (¢,z,u) — (t,y(x),u)):

EPE = EPE N AQPE,

EPE, = EPE N AQPE,,,
EPEq(a) = EPE N AQPE,(a).

Denote by A% the set of functions a(u) of the form a(u) = e’ H(u) and by Ag’étg the set of

exp
functions of the form a(u) = (u — u)™ H (In (u — ug)), where A, ug are arbitrary constants, H(-) is

arbitrary periodic function (that is Aexp C ASkp, Adeg C A(efgfg).

Theorem 7.
1. EPE is closed in EPE and wide in AQPE.
2. EPE,, EPEy, EPEL, and EPE4(a) are closed in EPE.

8. If a ¢ AZ, U AGsL, then EPEq(a) coincides with AQPE,(a).

Let us consider the sequence depicted on Fig. 2. Selecting the “weakest” arrow in this sequence,
we obtain the following result.

PE EE==>TPE Qgpf QrE" QfPfSn 5Q£P£0nb AQPE,,
‘TLP£1 SQPEg, .SQEPEOnba EPE,,,

Puc. 2. The sequence of arrows from PE to EPEppq(a)

Theorem 8.
1. Ifa & Acxp U Adeg, a # const then AQPEq,(a) is fully plentiful in TPE and plentiful in PE.
2. Ifa ¢ ASU Ag’é;, a # const then EPEyq(a) is fully plentiful in TPE and plentiful in PE.

2. Factorization of the reaction-diffusion equation

Let us consider a nonlinear reaction-diffusion equation
ur = a(u) (Au~+nVu) + q(z, u)

for an unknown function u(t,z), u: T x X — Q, where T" and 2 are open intervals of R and X is
a connected Riemann manifold equipped with a vector field n and a function ¢q: X x T — . This
equation defines the object A of PE.

The following two theorems are the immediate corollaries of Theorem 8.
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Theorem 9. Let F': A — B be a morphism of PDE and B be an object of PE. Suppose that
a(u) can be written neither in a form e’ H(u) nor in a form (u—ug)*H(In(u —ug)) with X\ # 0, ug
being real constants, H(-) being a periodic function. Then there exists an isomorphism I: B — B’ of
PE (in other words, a bijective global change of variables of the form (0.1) in the quotient equation)
transforming F to the morphism I o F' of the form

(t,z,u) — (t,2'(z),u)
such that the quotient equation B’ is the reaction-diffusion equation
ve = a(v) (Av +1'Vv) + ¢ (2',v) (2.3)

for an unknown function v: T x X' — Q, posed on some Riemannian manifold X' equipped with a
vector field £ and a function ¢': X' x T — Q.

Theorem 10. Let F': A — B be a morphism of PDE and B be an object of PE. Suppose that
either a(u) = age™ or a(u) = ag(u — ug)* for some real constants X\ # 0, ug, ag. Then there exists
an isomorphism I: B — B’ of PE (in other words, a bijective global change of variables of the form
(0.1) in the quotient equation) transforming F to the morphism I o F of the form

(.2, u) = (8,2 (2), p(x)u + ()

for some smooth functions ¢: X — R\ {0}, ¥: X — R, such that the quotient equation B’ is
the reaction-diffusion equation (2.3) for an unknown function v: T x X' — ', posed on some
Riemannian manifold X' equipped with a vector field n' and a function ¢': X' x T — €.

3. Proofs of Theorems 1-8

Proof of Theorem 1

The map (t,x,u) — (7(t),y (t,x),v(t,z,u)) is a morphism in PE if and only if
nB¥ = Z bijyzkyé'
i’j

nC* = (InU,), B" + U, Z cijyfyé-
imj
nBY =3 bk 423 0 (U 123 U+ > byl -yl (3.4)

.3 1,J i,J i

nQ=U" [ D 07U+ VU + Y Ui+ qlt, 2, U) — U

1, 0, i

where function v = U (¢, z,v) is the inverse of the v (¢, z,u). The quotient equation is written as
Vr = )k BFlg + Dkl C*ugvy + 3, B*up, + Q. Here and below indexes i, j relate to z, indexes k,
[ relate to y.

By definition, all P&, are full subcategories of PE.

1. Let us prove that P&, is closed in PE. Suppose A € Obpg,, F': A — B is a morphism in
PE. Then ¢V = A(t,z,u)b". From the second equation of system (3.4) we get

CM (r,y,0) = BY (r,y,0) [ (InU),, + A(t,,0) Uy] -

The quadratic form B* is non-degenerated at any point (7,4, v), so the expression in square brackets
is a function of (7, y, v): Tt_l (InU,),+A(t, 2, u)U, = A (7,y,v), and C¥ (1,y,v) = A (1, y,v) B* (7,9, v).
Thus B € Obpg, .
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Let us show that P& is closed in PE. Suppose A € Obpg,, F': A — B is a morphism in PE.
Then b¥ = a(t,x,u)b¥ (¢, ). Using the first equation of system (3.4), we obtain

7 BM = a(t, z,u) Zl_)ijyfgé
“ ()

Taking into account that the quadratic form B* is non-degenerated, we obtain that B # 0
everywhere. From the equality

kl Biga kol
D (ryw) = 72”1—)%1%
215 07Yi Y

Bl
we obtain that this fraction is function of (¢,y). Thus

(t, )

B*(7,y,v) = A(r,y,v)B¥ (1, y)

for A(r,y,v) = B (7,y,v) and some functions B¥(t,y). Therefore, B € Obpg,. [

2. PE3 = PELNPEy is closed in PE, in PE1, and in PE,, because PE1 and PE4 are closed in
PE. O

3. Suppose A € Obpg, and F': A — B is a morphism of PE. From the first equation of (3.4)
we obtain that B* (7,y,v) is independent of v. Hence B¥ = B* (1,y), P&, is closed in PE, so it is
closed in P&, too. I

4. Since PE3 and P&, are closed in PE, we obtain that PE5 = PE3NPE, is closed in PE, PE3
and P84 OJ

Proof of Theorem 2

1. By definition, 7PE is wide in PE.

Suppose F': A — B is a morphism in PE. By Theorem 1 from [2], the function 7(¢) is non-
degenerated, so we can consider the inverse function t (7). The map (7,y,v) — (t(7),y,v) is an
isomorphism in PE. Note that the superposition of F' with this isomorphism is a morphism in 7 PE.
Therefore TPE is plentiful in PE. O

2. TPE}, is closed in PE, while TPE is wide and plentiful in PE. Thus TPE, = PEL NTPE is
closed in TPE and also it is wide and plentiful in PE. I

Proof of Theorem 3

Using system (3.4), we see that the map (¢,z,u) — (t,y, ou + 1) is a morphism in QPE if and
only if

i

7‘7
BY = by +2) 07 (ng)u + ) byl — )
J &J i

Qe =Y g+ vai—a | o+ [ S 0dy+ > b | +a(ta, v+ )
1,7 % i

\ 4,7

where ¢ = ¢!, 1) = —p 1), so U = @v + 1. By definition, all subcategories of QPE considered in
the Theorem are full subcategories of QPE.
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la. If ¢¥ = 0 and v is linear in w, then C* = 0. It follows from the second equation of system
(3.4) that QPE is closed in QPE.

1b. Let F: A — B, (t,z,u) — (t,y(t,z),v(t,z,u)) be a morphism in TPE;, and A, B €
Obgpe. Using the second equation of system (3.4), we get (InU,), B¥ = C* = 0. It follows that
U is linear in v, v is linear in u, F' is a morphism in QPE, and QPE is full in TPE.

lc. Suppose A € Obypg,. Fix up € Qa and consider the map F': (t,z,u) — (t,z,v(t,x,u)),

where
u

£
v(t, z,u) :/exp /)\(t,x,g)dg dé.

uo o

F' defines an isomorphism in 7PE&; from A to B with

C% = (InU,), b + U,\Y = vt (A = (Inwvy,),) = 0.
Therefore every object of TPE7 is isomorphic in TPE; to some object of QPE, and QPE is full in
TPEL. O

2. The image of a compact under a continuous map is compact. The surjectivity of the map
completes the proof. [

3. TPE3 is closed in P&y, QPE is fully dense in PEy. O

4. TPE5 is closed in TPE3, and QPE’ is fully dense in TPE3. Equality QPE} = TPEs N QPE’
completes the proof.

5. Let A € Obgpgr, and suppose F': A — B is a morphism in QPE’. From the first equation
of system (3.5) we obtain
a(t,z,u) = A(t,y,v)a(t, x), (3.6)

where a(t,2) = B (1,y (t,2)) /(50,09 (6 2)ylyl(t,2)
From the second equation of (3.5) we obtain

BE(t,y,v) = A(t,y, v)o" (t,2) + u*(t,2), (3.7)

where

Wty =a | D byl +2> b () yf + > byl |, pFt ) =D gyl —uf.

0,3 1,J i
Further we will need the following statement:

Lemma 1 (about the extension of a function). Suppose M, N are C"-manifolds, 1 < r < oo,
F: M — N is a surjective C"-submersion, pu: M — R is a C*-function, 0 < s < r (if s =0 then u
is continuous). Take

Ny = {n € N: M|F—1(n) = const} ,
My=F"1'(No)={meM: vm' e M [F(m/) =F(m)] = [u(m') =pn@m)]},

Fo = Fly, o = pilyy,, and define a function vo: No — R by the formula voFo = po (see Fig. 3(a)).
Then vg can be extended from Ny to the entire manifold N so that the extended function v: N — R
has class C* of smoothness (see Fig. 3(b); both diagrams Fig. 3(a, b) are commutative).
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My —20 Ny
R R
e

Puc. 3. The extension of a function

Proof of Lemma 1

Take an open covering {V;: i € I'} of N such that for every V; there is a C"-smooth section
pi: Vi = M over V;, Fop; = id[y, (such a covering exists, because F' is submersive and surjective).
Let {\;} be a C"-partition of unity subordinated to {V;} [1]. Let

_J A p(pi(n)), neV;
Vi(n){07 név;

Then v (n) = > v; (n) is a desired function. O
el

Proof of Theorem 3 (continuation)

Fix k. In the notations and assumption of Lemma 1, replace F' by the map (¢,z) — (¢, y(t,z))
and the continuous function p by u*(t, ). We obtain that there exists a continuous function v* (¢, )
such that for each (tg, o) if 1£* (¢, x) is constant on the pre-image of (¢, o) with respect to the map
(t,z) = (t,y(t,z)) then v* (tg,yo) coincides with this constant. Let

BH(t,y,v) = (Bt (t.y,0) =M (t.) JA(ty,0). (3.8)

Consider the following two cases for every point (g, yo):

Case 1: The function A (to,yo,v)_is independent of v. Then (3.7) implies that B* (to,yo,v) is
independent of v; (3.8) implies that B* is independent of v.

Case 2: For given (tp,y0) the set {A (t9,y0,v) : v € Q} contains more then one element. Then
(3.7) implies that the restriction of u* (¢p,z) to the pre-image of a point (tg,yo) is constant. Thus
w¥ (to, r) = V¥ (to,yo) on this pre-image, and B¥ = w* (¢, x) is independent of v in this case too.

In both cases B*(t,y,v) = A(t,y,v)B*(t,y) + v*(t,). So, the equation B has the form

Alt,y,v) ZB"“ tyvkz+ZB (t,y)v +ZV (t:y)ve + Q(t, y, v),

and B is an object of QPE”.

F is a morphism in QPE” if and only if the following system holds; we will use this system in
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the proof of the rest of the theorem.
(at,z,u) = Alt,y, v)a(t, z)
BM(t,y) = aZb”yZ y;(t, o)

7]

yf+5k—Z§ZyZ = a(t,z,u) Zb”yw+2zw In @) yZ+Zb’ — B*/a
" (3.9)

Qe =[> abp;+Y (ab' + &) @i — @1 | v+

+ Z b”%sz—l-z abz—i-fZ Vi — U | +q(t @, pv+ )

,J

6. QP& is closed in QPE” and in QPE’, because QPE” and QPE] are closed in QPE’. QPEY
is closed in QPE(, because QP& is the subcategory of QPE”. [

7. Suppose A € Obgpgll/q, and F': A — B is a morphism in QPEY. From the third equation of
(3.5) we get

Qt,y,v) =

S 6Gi+ > Vet aq(ta) =@ | @ o+ | D b+ Y b+ ao(t )~y | g =
irj i i\j i
Ql(t> $)U + QO(t7 ZL‘),
so @1, Qo are functions of (¢,y), and B € Oprglllq. Thus QPEY, is closed in QPEY. O

8. Suppose A € ObQ'pgil, F: A — B is a morphism in QPE’. For given (tg,yo) let us fix
arbitrary zo such that y (to, o) = yo. Since a € A,.(T x X), from (3.6) we get

A (to, yo,v) = a (to, zo, @ (to, m0) v + ¥ (to, 20)) @ (to, T9) # const.

Finally, we obtain A € Ap. (T x Y), and B € Obgper , so QPE;, is closed in QPE’. O

9. Suppose A € Obgpggn, B € Obgpgr. Substituting § = 0 in the third equation of (3.9), we
get

yr + 2R (t,y) = a(t, z,u) Zb”y —|—22b” Inp) yl—i-ZbZ — B¥/a | (t,z).

Since left hand side is independent of v and a € A,.(T x X), both sides of this equality vanish, and
we get

yr = —Z"(t,y) (3.10)

The function y(t,x) satisfies the ordinary differential equation (3.10) with smooth right hand side,
so for any t, t' the equality y(t,z1) = y(t,z2) implies that y(t',z1) = y(t',x2). Let l-parameter
transformation group gs: T XY — T X Y be given by (¢,y(t,z)) — (t + s,y(t + s,2)). This group
is correctly defined when T" = R; otherwise transformations g; are partially defined, nevertheless
reasoning below remains correct after small refinement.

The composition gsg_s is identity for every s , so gs is bijective. {gs} is the flow map of the
smooth vector field 9, — >°, E¥ (¢, Y)Oyr, so transformations {gs} are smooth by both ¢ and y.



The structure of the category of parabolic equations 13

Define the map z(¢,y) by the equality g_.(¢,y) = (0, z(¢t,y)). Then the map G: T xY — T xY,
(t,y) — (t,2(t,y)) is an isomorphism in QPE” such that z(¢, y(t,z)) = 2(0,y(0,z)) for every z, t.
Therefore G o I € Homgpgy. U

10. Suppose A is an object of QPE”. Since X is compact, there exists a solution y: T x X — X
of the linear PDE 0y* /ot = >, &'(t,z)0y" /02'. Then the isomorphism (¢,z,u) — (t,y(t,z),u)
maps A to some object of QPE(. Thus QP& is closed in QPEY. O

Proof of Theorem 4

If a # const then QPE(,(a) is fully plentiful in QPEY(a) thanks to the part 9 of Theorem 3.

If a = const then QPE(a) coincides with QPEY, which is closed in QPE” by Theorem 3. So
QPE"(a) is fully plentiful in QPE”.

Suppose now that a # const, A € Obgpgr(q), and F': A — B is a morphism in QPE". Let us
see on equation (3.6) as a functional one:

a(p(t,z)v+ v (t,z)) = A(t,y,v)a(t, z). (3.11)
We have three cases:

Case 1. a(u) = He)‘iﬁ A, H = const, and A # 0. Substituting a(u) to (3.11), we get Ap(t, z)v —
In A(t,y,v) = (lnc’z — ) —1In H) The right hand side of this equality is a function of (¢,x), so
@ = ¢(t,y), and the isomorphism (¢,y,v) — (t,y, p(¢, y)v) maps B to some object of QPEY(a).

Case 2. a(u) = H (u— up)*, A, H,up = const, and A # 0. Substituting a(u) to (3.11), we get

(v+@ 1t 2) (Pt ) — o)) = A(t,y,0)H 'galt, z).

Thus ¢! (15 — uo) = q(t,y) for some function ¢, so the object B maps by the isomorphism (¢, y, v) —
(t,y,v + q(t,y) + up) to some object of QPE" (a).

Case 3. Suppose now that a(u) is neither He nor H (u — ug)”. Denote Z = (¢, z), § = (¢, 1),
a = Ina. Fix arbitrary gp € T x Y and denote Z = {Z: §(Z) = 5o} C T x X. Since (3.11), for any
To,T1 € Z and @; = ¢ (Z;), ¥; = 1 (%;)) the value a ((,51,2 + ’QZ_JI) -« (cﬁoz + 1[)0) is independent of v.
Let G = G (7o) be the additive subgroup of R generated by the set {In¢ (z) —Iln@g (Zo) : = € Z}.

We have the following two subcases.
Case 3.1: G # {0}. Put Hy=1In P1—Inpy € G—{0}, up = (7])0 - 151) /(®1 — @o) . Substituting
v = (w + ug — TZO) /@0, for any w we have « (ele + uo) — a(w+ ug) = ¢ = const. Consider the
function B () = a (€* 4 ugp). Since 8 (ZL‘ + ﬁ1> = B(z) + ¢, for A = ¢/H; the function 8 (z) — Az is
H 1-periodic. Therefore,
a(u) = (u— uo)’\ H (In (u — up)),

where H is ijl—periodic, H # const, since the case “H = const” have been considered above. Let
H > 0 be the smallest positive period of H. For all z € Z the number In ¢ (Z) —In ¢ is a multiple of

H,sop(z) € {(,50 exp (kﬁ) ke Z} for any go. Since a(u) is independent of g, H is independent
of 7o too.

Case 3.2: G = {0}, that is ¢|, = ¢o = const. Here we have two possible subsubcases:

Case 3.2.a: 9|, # const, that is 370,71 € Z: ¢ (T1) — ¢ (Zo) = H; # 0. Then o (u+ Ifll) -

a(u) = const. By the same token as in case 3.1 we get a(u) = H(u)e™, where A\ = const and H

is a periodic function with the smallest period H > 0. Note that such a representation of a(u) is

unique. Substituting this to (3.11), we obtain that Vy Vo, Z1 € Zy the number ¢ (z1) — ¢ (Zo) is a
multiple of H.
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Case 3.2.b: 1E| , = const for given go. We already considered the cases a(u) = H (u)eM and
a(u) = (u—ug) H (In (u — ug)), so we can assume now without loss of generality that a is not of
this form. Then for every gy we have 1/?! , = const, ¢ = ¢ (¥), and ¥ = 1 (7). Thus the isomorphism
(t,y,v) = (t,y,8(t,y)v+ ¢ (t,y)) maps B to some object of QPEY (a).

The proof of the full density of QPE(,,(a) in QPE” (a) is similar to the proof of part 10 in
Theorem 3. [

Proof of Theorem 5

1. QPE" is closed in QPE, and SQPE is the subcategory of QPE. Therefore SQPE is closed
in SQPE. O

2. SOPE, is closed in SQPE for the same reason as in Part 1 of this Theorem. This implies
that SQPE,, is closed in SQPE.

Suppose A is an object of SQPEy, F': A — B is a morphism in SQPE. Then B(t,y,v) =
A(t,y,v)wk(t, z), where w” is defined as in (3.7). Hence w” is a function of (¢,%), and B is an object
of SQPE&.

Suppose A is an object of SQPEy, F': A — B is a morphism in SQPE. From the first equation
of (3.5) we obtain

Rkl bkt
B ) = T
Zz‘,j bei Y;
The right hand side is independent of ¢, so it is a function of y; denote this function by B’*(y).
Then AB* = A'(t,y,v)B™(y), where A’ = AB'!. It follows that B is an object of SQPE}, and
SOPEy is closed in SQPE. O

3. Let us recall that SQPEy,, is closed in QPEY,. So it is sufficient to prove that any morphism
in QP& is also a morphism in SQPE,,. Suppose that F': A — B is a morphism in QPE(,. Then
uF (8,2) = A(t,y, ) (t, ), where

().

] DL R SRR S
i3 i,j 2%
Since the left hand side of this equality is independent of v and A € A,,.(Y), we conclude that
wF = 0. Thus F is a morphism in SQPEy,. Finally, SOPEo, = QPEG,,, is closed in QPE( and is
fully dense in QPE!. O

4. QP& is closed in QPE, so SQPE is closed in SQPE and, consequently, is closed in SQPEy.
O

5. The proof is similar to the proof of part 1 of Theorem 4. [J

Proof of Theorem 6

From (3.5)-(3.6) and the fact that SQPE} is closed in SQPE it follows that the map (¢, z, u) —
(t,y,ou + 1) is a morphism in SQPE with the source from AQPE if and only if the following
conditions are satisfied:

((A(t,y,v) =a(z,u)a(t,z)
B(y)  =a(t,z)VyFvy
BE(t,y,v) =A(t,y,v)B*(t,y) + C(t,y) =
=ale,v) (Ayk +(n+2V (Inp)) Vy’“) +EVy
Q¢ = (a (A +nVP) +EVP — i) v+
+ (a (A + V) +EVD - Gy) +q (1,2, 60 + )

(3.12)
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1. Suppose F': A — B is a morphism in AQPE, A is an object of AQPE. From the second
equation of system (3.12) it follows that a = a(z). Using the first equation of (3.12) and taking
into account that @, 1) are independent of ¢, we see that A = A (y, v) is independent of ¢. It follows
from the third equation of (3.12) that B* is independent of ¢, B*(y,v) = A(y,v)B*(t,y) + C* (t,y).
From this formula, by the same token as in the proof of part 4 of Theorem 3, we obtain existing of
functions H*(y), Z¥(y) such that B*¥ = A(y, v)H*(y) +Z*(y). Substituting u = @(z)v + 1 (x) in the
last equation of (3.12), we obtain that @ is independent of ¢. This implies that the target B of the
morphism F' has the form

ve=Aly,0) [ DB o+ Y H @ | + > @) + Q(y, v).
k,l k

k

We prove so far that B has such a form only locally. Neverytheless we can lead it to an equation
of the same form but with globally defined function A(y,v), for example by the way described in
Remark 2. Then quadratic form B* is defined on the whole manifold Y, so we can equip Y with a
Riemannian metric B and finally get B € Obgops. O

2. AQPE,, = AQPE NSQPE, is closed in AQPE, because SQPE,, is closed in SQPE.
Let F: A — B be a morphism in SQPEy,, and both source and target of F' are objects of
AQPE,,. Then a is independent of ¢, and

a (;U, @(t, z)v + 1 (1, x)) = A (y(x),v)a(x). (3.13)

Let x = xg. Suppose that the set {(cﬁ (t,20) 7 (t,xo))} has more than one element, and consider
the intervals

I(v)={(p(t,z0)v+v(t,x0)) :t€Ta} CR.

Then a (zg,u) is constant on any interval w € I (v), because the right hand side of (3.13) is
independent of t. Note that I (v) is a continuous function of v in the Hausdorff metric, and
Vit @ (t,x0) # 0. If at any v the interval I (v) does not collapses into a point, then a (zg,u) is
constant on J I (v). But this contradicts to the condition a € A, (X). Therefore I (vg) degenerates
into a point at some vg, @ (t,z0)vo + ¥ (t,20) = ug, 50 pv + P = @ (t,20) (v — vo) + ug. By the
assumption, card { (@ (t,z0),v (t,z0))} > 1, so the set {@ (t,z0)} is non-degenerated interval.
Therefore, a (xo,u) is constant on the sets {u < up} and {u > wup}. But this contradicts to the
condition a € A,.(X) and continuity of a. This contradiction shows that for each xy the functions
@, 1 are independent of t. Consequently F' is a morphism in AQPE, and AQPE,, is the full
subcategory of SOPEy,. [

3. Since SQPEy and SQPE; are closed in SQPE, the subcategories AQPEy and AQPE; are
closed in AQPE. O

4. If a ¢ Aexp U Ageg then AQPE,(a) is plentiful in AQPE by the same arguments as used in
the proof of part 1 of Theorem 4, after replacement of Z, § to x,y respectively. O]

5. Let F: A — B be a morphism in SQPE,,(a), A be an object of AQPE,,(a). Then
a (@(t,z)v +¢(t,x)) = A(v)a(z).
As we proved in part 2, the functions @, 1 are independent of ¢, F is a morphism in AQPE, and

B € Obagpe NObsope,,(a) = Obagre, . (a) -

Since AQPEq(a) is full in AQPE,,, we see that F' is a morphism in AQPE,,(a). O
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Proof of Theorem 7
1. EPE is closed in EPE, because AQPE is closed in AQPE. O

2. EPE,, EPEy, EPEL are closed in EPE, because AQPE,,, AQPEy, AQPE, are closed in
AQPE. T

Suppose F': A — B is a morphism in EPE and A € Obgpg, (o). Then the first equation of (3.5)
has the form A(y,u)B*(y) = a(u)Vy*Vy'. Hence Vy*Vy' = ¢F!(y) for some functions g*'. For
BF = g¥l(y) we have A(y,u) = a(u). So A is an object of EPE,(a), and EPE,(a) is closed in EPE.
U

3. The proof is similar to the proof of Theorem 3. [J
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