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THE STRUCTURE OF THE CATEGORY OF PARABOLIC EQUATIONS. II1

M. F.Prokhorova

This is the second part of the series consisting of two papers. Here we investigate the category PE of parabolic
equations introduced in the first paper. The objects of this category are second order parabolic equations posed
on arbitrary manifolds, and the morphisms generalize the notion of the quotient map by a symmetry group. We
introduce a certain structure in PE formed by the lattice of subcategories. These subcategories are obtained
by the restricting to equations of specific kind or to morphisms of specific kind or both. We investigate this
structure using a language developed in the first paper. An example that deals with nonlinear reaction-diffusion
equation is discussed in more detail.
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СТРУКТУРА КАТЕГОРИИ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ. II

М. Ф.Прохорова

Это вторая часть цикла из двух статей, посвященная исследованию категории параболических урав-
нений PE, введённой в первой статье. Объектами этой категории являются параболические уравнения
второго порядка, задданные на произвольных многообразиях, а морфизмы обобщают понятие редукции
по группе симметрий. Мы вводим в PE структуру, образованную решёткой подкатегорий, возникающих
при ограничении класса уравнений (уравнениями определённого вида), или класса морфизмов (морфиз-
мами определённого типа), или и того, и другого одновременно. Исследование этой структуры проводится
с использованием специального языка, развитого в первой статье. Отдельно рассмотрен пример нелиней-
ного уравнения реакции-диффузии.

Ключевые слова: категория дифференциальных уравнений в частных производных; факторизация
дифференциальных уравнений; параболические уравнения; уравнение реакции-диффузии; уравнение теп-
лопроводности; группа симметрий.

Introduction

This paper is the second part of the series of two papers. In the first part [2] the author defined
the category PDE of partial differential equations and its full subcategory PE that arises from
second order parabolic equations on arbitrary manifolds. This paper is devoted to the investigation
of the internal structure of the category PE by means of the special-purpose language developed in
[2].

Recall the definition of the category of parabolic equations from [2]. Let us consider the class
P (X,T,Ω) of differential operators on a connected smooth manifold X, which depend additionally
on a parameter t (“time”), locally having the form

Lu =
∑

i,j

bij(t, x, u)uij +
∑

i,j

cij(t, x, u)uiuj +
∑

i

bi(t, x, u)ui + q(t, x, u),

x ∈ X, t ∈ T, u ∈ Ω

in some neighborhood of each point, in some (and then arbitrary) local coordinates
(

xi
)

on X. Here
subscript i denotes partial derivative with respect to xi, quadratic form bij = bji is positive definite,
and cij = cji. Both T and Ω may be bounded, semibounded or unbounded open intervals of R. The
category PE of parabolic equations is a subcategory of PDE , whose objects are pairs A = (N,E),

1This work was partially supported by the RFBR grants 09-01-00139-a, 15-01-02352 (Russia), and by the
Program for Basic Research of Mathematical Sciences Branch of Russian Academy of Sciences.
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N = T × X × Ω, where X is a connected smooth manifold, T and Ω are open intervals, E is an
equation of the form ut = Lu, L ∈ P (X,T,Ω). Theorem 1 of [2] asserts that every morphism in PE
has the form

(t, x, u) 7→ (t′(t), x′(t, x), u′(t, x, u)), (0.1)

with submersive t′(t), x′(t, x), and u′(t, x, u). Isomorphisms in PE are exactly diffeomorphisms of
the form (0.1).

Section 1 of this paper is devoted to the classification of parabolic equations in this framework
and to the description of the internal structure of PE . The proofs of Theorems 1-7 given in the
section are postponed to Section 3.

Section 2 illustrates the using of this structure of PE on the example of the reaction-diffusion
equation

ut = a(u) (∆u+ η∇u) + q(x, u), x ∈ X, t ∈ R, (0.2)

posed on a Riemannian manifold X equipped with a vector field η. There are two exceptional cases:
a(u) = eλuH(u) and a(u) = (u − u0)

λH(ln(u − u0)), where H(·) is a periodic function; in these
cases there are more morphisms then in a regular case. If only function a(u) does not belong to
one of these two exceptional classes then Theorems 9-10 assert that every morphism from equation
(0.2) may be transformed by an isomorphism (i.e. by a bijective global change of variables) of the
quotient equation to the “canonical” morphism of very simple kind so that the “canonical” quotient
equation has the same form as (0.2) with the same function a(u) but is posed on another Riemannian
manifold X ′, dimX ′ ≤ dimX.

1. The structure of PE and classification of parabolic equations

We formulate here the number of theorems describing the internal structure of PE ; the proofs
of these theorems are given in Section 3 below. Certain parts of the structure of PE are depicted
schematically on Fig. 1 (the full picture is not given here in view of its awkwardness).

Let us consider five full subcategories PEk of PE , 1 ≤ k ≤ 5, whose objects are equations that
can be written locally in the following form:

ut =
∑

i,j

bij(t, x, u) (uij + λ(t, x, u)uiuj) +
∑

i

bi(t, x, u)ui + q(t, x, u) (PE1)

ut = a(t, x, u)
∑

i,j

b̄ij(t, x)uij +
∑

i,j

cij(t, x, u)uiuj +
∑

i

bi(t, x, u)ui + q(t, x, u) (PE2)

ut = a(t, x, u)
∑

i,j

b̄ij(t, x) (uij + λ(t, x, u)uiuj) +
∑

i

bi(t, x, u)ui + q(t, x, u) (PE3)

ut =
∑

i,j

bij(t, x)uij +
∑

i,j

cij(t, x, u)uiuj +
∑

i

bi(t, x, u)ui + q(t, x, u) (PE4)

ut =
∑

i,j

bij(t, x) (uij + λ(t, x, u)uiuj) +
∑

i

bi(t, x, u)ui + q(t, x, u) (PE5)

R e m a r k 1. Everywhere in the paper we use notation of a category equipped with a subscript
and/or primes for its full subcategory. For example, QPEk, QPE ′, and QPE ′

k defined below are full
subcategories of QPE .

R e m a r k 2. In equations of the categories PE2 and PE3, function a(·) is determined up
to multiplication by arbitrary function from T ×X to R

+; moreover, it is determined only locally.
Nevertheless we can lead these equations to the equations of the same form but with globally defined
function a : T ×X × Ω → R

+. For example, we can require that a(t, x, u0) ≡ 1, where u0 is a fixed
point of Ω. Everywhere below we will assume that function a is globally determined on T ×X ×Ω.
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Рис. 1. The part of the structure of the category of parabolic equations
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Theorem 1.

1. PE1 and PE2 are closed in PE.

2. PE3 = PE1 ∩ PE2 is closed in PE1, in PE2, and in PE.

3. PE4 is closed in PE2 and in PE.

4. PE5 = PE3 ∩ PE4 is closed in PE3, in PE4, and in PE.

D e f i n i t i o n 1. T PE , QPE , SQPE , AQPE , and EPE are wide subcategories of PE , whose
morphisms have the following form:

(t, x, u) →































(t, y(t, x), v (t, x, u)) for T PE

(t, y(t, x), ϕ(t, x)u+ ψ(t, x)) for QPE

(t, y(x), ϕ(t, x)u+ ψ(t, x)) for SQPE

(t, y(x), ϕ(x)u+ ψ(x)) for AQPE

(t, y(x), u) for EPE

Denote T PEk = T PE ∩ PEk.

Theorem 2.

1. T PE is wide and plentiful in PE.

2. T PEk is closed in T PE; it is wide and plentiful in PEk, k = 1..5.

D e f i n i t i o n 2. The category QPE of quasilinear parabolic equations is the full subcategory
of QPE , whose objects are equations of the form

ut =
∑

i,j

bij(t, x, u)uij +
∑

i

bi (t, x, u)ui + q(t, x, u), (QPE)

(in a local coordinates). In particular, morphisms of QPE are maps of the form

(t, x, u) → (t, y(t, x), ϕ(t, x)u+ ψ(t, x)) .

Denote by Anc (M,Ω) the set of continuous positive functions a : M × Ω → R that satisfy the
condition

∀m ∈M ∃u1, u2 a (m,u1) 6= a (m,u2) . (Anc)

Define full subcategories of QPE , whose objects are equations of the following form:

ut = a(t, x, u)
∑

i,j

b̄ij(t, x)uij +
∑

i

bi(t, x, u)ui + q(t, x, u) (QPE ′)

ut = a(t, x, u)
∑

i,j

b̄ij(t, x)uij +
∑

i

bi(t, x, u)ui + q(t, x, u), a ∈ Anc (T ×X) (QPE ′
n)

ut =
∑

i,j

bij(t, x)uij +
∑

i

bi(t, x, u)ui + q(t, x, u) (QPE ′
1)

ut = a(t, x, u)





∑

i,j

b̄ij(t, x)uij +
∑

i

b̄i(t, x)ui



+
∑

i

ξi(t, x)ui + q(t, x, u) (QPE ′′)

ut = a(t, x, u)





∑

i,j

b̄ij(t, x)uij +
∑

i

b̄i(t, x)ui



+ q(t, x, u) (QPE ′′
0)

ut = a(u)





∑

i,j

b̄ij(t, x)uij +
∑

i

b̄i(t, x)ui



+
∑

i

ξi(t, x)ui + q(t, x, u) (QPE ′′
a(a))

ut =
∑

i,j

bij(t, x)uij +
∑

i

bi(t, x)ui + q(t, x, u), (QPE ′′
1)
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ut =
∑

i,j

bij(t, x)uij +
∑

i

bi(t, x)ui + q1(t, x)u+ q0(t, x), (QPE ′′
1q)

where a(·) is a positive function. The family of categories QPE ′′
a(a) is parameterized by functions

a (·), that is one assigns the category QPE ′′
a(a) to each continuous positive function a : Ω → R.

We define additionally the full subcategory QPEc of QPE , whose objects are equations from
QPE posed on a compact manifolds X.

Let us introduce the following notation for the intersections of enumerated “basic” subcategories:
for a string σ we set QPEσ = ∩{QPEα : α ∈ σ}, QPEβ

σ = QPEσ ∩ QPEβ. Particularly, QPE ′′
0n

denotes the intersection QPE ′
n ∩ QPE ′′

0.

In the same manner as in Remark 2, we can obtain a global function a(u) for any equation from
QPE ′′

a(a), for example, by imposing the condition a(u0) = 1. Such function a(u) is independent of
the choice of neighborhood in T ×X × Ω and of local coordinates.

Theorem 3.

1. QPE is closed in QPE and is fully dense in T PE1.

2. QPEc is closed in QPE.

3. QPE ′ = QPE ∩ PE2 = QPE ∩ PE3 is fully dense in T PE3 and is closed in QPE.

4. QPE ′
1 = QPE ∩ PE5 = QPE ′ ∩ PE5 is fully dense in T PE5 and is closed in QPE ′.

5. QPE ′′ is closed in QPE ′.

6. QPE ′′
1 = QPE ′′ ∩ PE5 = QPE ′′ ∩ QPE ′

1 = QPE ′′
a (1) is closed in QPE ′

1, in QPE ′′, and in
QPE ′′

0.

7. QPE ′′
1q is closed in QPE ′′

1.

8. QPE ′
n is closed in QPE ′.

9. QPE ′′
0n is fully plentiful in QPE ′′

n.

10. QPE ′′
0c is fully dense in QPE ′′

c .

Denote by Aexp the set of functions of the form a(u) = eλuH(u) and by Adeg the set of functions

of the form a(u) = (u− u0)
λH (ln (u− u0)), where λ, u0 are arbitrary constants and H (·) is

arbitrary nonconstant periodic function.

Theorem 4.

1. If a /∈ Aexp ∪ Adeg, then QPE ′′
a(a) is fully plentiful in QPE ′′.

2. QPE ′′
0a(a) is fully plentiful in QPE ′′

a(a); if a /∈ Aexp ∪ Adeg then QPE ′′
0a(a) is fully plentiful

in QPE ′′
0.

3. QPE ′′
0ca(a) is fully dense in QPE ′′

ca(a).

4. Suppose A is an object of QPE ′′
a(a), F : A → B is a morphism in PE such that there is

no object of QPE ′′
a(a) isomorphic to B in PE (that is a(·) ∈ Aexp ∪ Adeg). Then there

exists an object of QPE ′′ isomorphic to B such that the composition of F : A → B with
this isomorphism is of the form

(t, x, u) →

{

(t, y(t, x), u+ ψ(t, x)), a ∈ Aexp

(t, y(t, x), v0 + (u− u0) exp (ψ(t, x))), a ∈ Adeg

In addition, for each t ∈ T and x1, x2 ∈ X such that y(t, x1) = y(t, x2), the difference
ψ(t, x2)− ψ(t, x1) is an integral multiple of Ĥ, where Ĥ is the period of periodic function H.
The same assertion holds if we replace QPE ′′

a(a) by QPE ′′
0a(a) and QPE ′′ by QPE ′′

0.
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E x a m p l e 1. The equation

E : ut = (2 + sinu)uxx

is an object of QPE ′′
0a(f), with X = T = Ω = R, f(u) = 2 + sinu, and f ∈ Aexp. It admits both

maps (t, x, u) 7→ (t, x mod 2π, u) and (t, x, u) 7→ (t, x mod 2π, u+ x). In both cases Y = S1. In the
first case the quotient equation has the form vt = (2 + sin v) vyy, so it is an object of QPE ′′

0a(f).
In the second case the quotient equation has the form vt = (2 + sin(v + y)) vyy; it is an object of
QPE ′′

0, but is not isomorphic to any object of QPE ′′
0a(f).

D e f i n i t i o n 3. The category of semi-autonomous quasilinear parabolic equations SQPE
is the intersection SQPE ∩QPE ′′. In other words, SQPE is the full subcategory of SQPE and the
wide subcategory of QPE ′′, whose objects are equations of the form

ut = a(t, x, u)





∑

i,j

b̄ij(t, x)uij +
∑

i

b̄i(t, x)ui



+
∑

i

ξi(t, x)ui + q(t, x, u), (SQPE)

and morphisms are maps of the form (t, x, u) 7→ (t, y(x), ϕ(t, x)u+ ψ(t, x)).
Define additionally the following full subcategories of SQPE :

SQPEσ = SQPE ∩ QPE ′′
σ, where σ is one of possible subscripts of QPE ′′;

SQPEb is the category, whose objects are equations of the form

ut = a(t, x, u)





∑

i,j

b̄ij(x)uij +
∑

i

b̄i(t, x)ui



+
∑

i

ξi(t, x)ui + q(t, x, u). (SQPEb)

Theorem 5.

1. SQPE is closed in SQPE.

2. SQPE0 = SQPE ∩ QPE ′′
0, SQPEn = SQPE ∩ QPE ′′

n, and SQPEb are closed in SQPE.

3. SQPE0n coincides with QPE ′′
0n; it is closed in SQPE0 and in SQPEn.

4. SQPE1 = SQPE ∩ QPE ′′
1 = SQPEa (1) is closed in SQPE0.

5. If a /∈ Aexp ∪ Adeg, then SQPEa(a) is fully plentiful in SQPE.

D e f i n i t i o n 4. The category of autonomous quasilinear parabolic equations AQPE is the
full subcategory of AQPE , whose objects are equations of the form

ut = a(x, u) (∆u+ η∇u) + ξ∇u+ q(x, u) (AQPE)

posed on a Riemann manifold X equipped with vector fields ξ, η.
Define full subcategories AQPEσ = AQPE ∩ QPE ′′

σ of AQPE , where σ is one of possible
subscripts of QPE ′′. The objects of these categories are equations of the form

ut = a(x, u) (∆u+ η∇u) + ξ∇u+ q(x, u), a ∈ Anc(X), (AQPEn)

ut = a(x, u)(∆u+ η∇u) + q(x, u), (AQPE0)

ut = a(u)(∆u+ η∇u) + ξ∇u+ q(x, u), (AQPEa(a))

ut = ∆u+ ξ∇u+ q(x, u). (AQPE1)

Theorem 6.
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1. AQPE is closed in AQPE.

2. AQPEn is closed in AQPE and full in SQPEbn.

3. AQPE0 and AQPE1 are closed in AQPE.

4. If a (·) /∈ Aexp ∪ Adeg, then AQPEa(a) is fully plentiful in AQPE.

5. AQPEna(a) is closed in SQPEna(a).

D e f i n i t i o n 5. Define the following full subcategories of EPE (its morphisms are maps of
the form (t, x, u) 7→ (t, y(x), u)):

EPE = EPE ∩ AQPE ,

EPEσ = EPE ∩ AQPEσ,

EPEa(a) = EPE ∩ AQPEa(a).

Denote by Aext
exp the set of functions a(u) of the form a(u) = eλuH(u) and by Aext

deg the set of

functions of the form a(u) = (u− u0)
λH (ln (u− u0)), where λ, u0 are arbitrary constants, H(·) is

arbitrary periodic function (that is Aexp ⊂ Aext
exp, Adeg ⊂ Aext

deg).

Theorem 7.

1. EPE is closed in EPE and wide in AQPE.

2. EPEn, EPE0, EPE1, and EPEa(a) are closed in EPE.

3. If a /∈ Aext
exp ∪ Aext

deg, then EPEa(a) coincides with AQPEa(a).

Let us consider the sequence depicted on Fig. 2. Selecting the “weakest” arrow in this sequence,
we obtain the following result.

 

QPE ′′

QPE n′′

0QPE n′′

0SQPE n 0EPE na0SQPE nba

0AQPE na0SQPE nbQPE

QPE ′
1TPE

PE TPE

Рис. 2. The sequence of arrows from PE to EPE0na(a)

Theorem 8.

1. If a /∈ Aexp ∪Adeg, a 6= const then AQPE0a(a) is fully plentiful in T PE and plentiful in PE.

2. If a /∈ Aext
exp ∪ Aext

deg, a 6= const then EPE0a(a) is fully plentiful in T PE and plentiful in PE.

2. Factorization of the reaction-diffusion equation

Let us consider a nonlinear reaction-diffusion equation

ut = a(u) (∆u+ η∇u) + q(x, u)

for an unknown function u(t, x), u : T ×X → Ω, where T and Ω are open intervals of R and X is
a connected Riemann manifold equipped with a vector field η and a function q : X × T → Ω. This
equation defines the object A of PE .

The following two theorems are the immediate corollaries of Theorem 8.
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Theorem 9. Let F : A → B be a morphism of PDE and B be an object of PE. Suppose that
a(u) can be written neither in a form eλuH(u) nor in a form (u−u0)

λH(ln(u−u0)) with λ 6= 0, u0
being real constants, H(·) being a periodic function. Then there exists an isomorphism I : B → B

′ of
PE (in other words, a bijective global change of variables of the form (0.1) in the quotient equation)
transforming F to the morphism I ◦ F of the form

(t, x, u) 7→ (t, x′(x), u)

such that the quotient equation B
′ is the reaction-diffusion equation

vt = a(v)
(

∆v + η′∇v
)

+ q′(x′, v) (2.3)

for an unknown function v : T ×X ′ → Ω, posed on some Riemannian manifold X ′ equipped with a
vector field ξ′ and a function q′ : X ′ × T → Ω.

Theorem 10. Let F : A → B be a morphism of PDE and B be an object of PE. Suppose that
either a(u) = a0e

λu or a(u) = a0(u− u0)
λ for some real constants λ 6= 0, u0, a0. Then there exists

an isomorphism I : B → B
′ of PE (in other words, a bijective global change of variables of the form

(0.1) in the quotient equation) transforming F to the morphism I ◦ F of the form

(t, x, u) 7→ (t, x′(x), ϕ(x)u+ ψ(x))

for some smooth functions ϕ : X → R \ {0}, ψ : X → R, such that the quotient equation B′ is
the reaction-diffusion equation (2.3) for an unknown function v : T × X ′ → Ω′, posed on some
Riemannian manifold X ′ equipped with a vector field η′ and a function q′ : X ′ × T → Ω′.

3. Proofs of Theorems 1-8

Proof of Theorem 1

The map (t, x, u) 7→ (τ(t), y (t, x) , v(t, x, u)) is a morphism in PE if and only if































































τtB
kl =

∑

i,j

bijyki y
l
j

τtC
kl = (lnUv)v B

kl + Uv

∑

i,j

cijyki y
l
j

τtB
k =

∑

i,j

bijykij + 2
∑

i,j

bij (lnUv)j y
k
i + 2

∑

i,j

cijUjy
k
i +

∑

i

biyki − ykt

τtQ = U−1
v





∑

i,j

bijUij +
∑

i,j

cijUiUj +
∑

i

biUi + q(t, x, U)− Ut





(3.4)

where function u = U (t, x, v) is the inverse of the v (t, x, u). The quotient equation is written as
vτ =

∑

k,lB
klvkl +

∑

k,l C
klvkvl +

∑

k B
kvk +Q. Here and below indexes i, j relate to x, indexes k,

l relate to y.
By definition, all PEk are full subcategories of PE .

1. Let us prove that PE1 is closed in PE . Suppose A ∈ ObPE1
, F : A → B is a morphism in

PE . Then cij = λ(t, x, u)bij . From the second equation of system (3.4) we get

Ckl (τ, y, v) = Bkl (τ, y, v)
[

τ−1
t (lnUv)v + λ (t, x, u)Uv

]

.

The quadratic form Bkl is non-degenerated at any point (τ, y, v), so the expression in square brackets
is a function of (τ, y, v): τ−1

t (lnUv)v+λ(t, x, u)Uv = Λ(τ, y, v), and Ckl (τ, y, v) = Λ (τ, y, v)Bkl(τ, y, v).
Thus B ∈ ObPE1

.
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Let us show that PE2 is closed in PE . Suppose A ∈ ObPE2
, F : A → B is a morphism in PE .

Then bij = a(t, x, u)b̄ij(t, x). Using the first equation of system (3.4), we obtain

τtB
kl = a(t, x, u)





∑

i,j

b̄ijyki y
l
j





(t,x)

.

Taking into account that the quadratic form Bkl is non-degenerated, we obtain that B11 6= 0
everywhere. From the equality

Bkl

B11
(τ, y, v) =

∑

i,j b̄
ijyki y

l
j

∑

i,j b̄
ijy1i y

1
j

(t, x)

we obtain that this fraction is function of (t, y). Thus

Bkl(τ, y, v) = A(τ, y, v)B̄kl (τ, y)

for A (τ, y, v) = B11 (τ, y, v) and some functions B̄kl(t, y). Therefore, B ∈ ObPE2
. �

2. PE3 = PE1 ∩ PE2 is closed in PE , in PE1, and in PE2, because PE1 and PE2 are closed in
PE . �

3. Suppose A ∈ ObPE4
and F : A → B is a morphism of PE . From the first equation of (3.4)

we obtain that Bkl (τ, y, v) is independent of v. Hence Bkl = Bkl (τ, y), PE4 is closed in PE , so it is
closed in PE2 too. �

4. Since PE3 and PE4 are closed in PE , we obtain that PE5 = PE3 ∩PE4 is closed in PE , PE3

and PE4. �

Proof of Theorem 2

1. By definition, T PE is wide in PE .
Suppose F : A → B is a morphism in PE . By Theorem 1 from [2], the function τ(t) is non-

degenerated, so we can consider the inverse function t (τ). The map (τ, y, v) → (t (τ) , y, v) is an
isomorphism in PE . Note that the superposition of F with this isomorphism is a morphism in T PE .
Therefore T PE is plentiful in PE . �

2. T PEk is closed in PE , while T PE is wide and plentiful in PE . Thus T PEk = PEk ∩ T PE is
closed in T PE and also it is wide and plentiful in PEk. �

Proof of Theorem 3

Using system (3.4), we see that the map (t, x, u) → (t, y, ϕu+ ψ) is a morphism in QPE if and
only if











































Bkl =
∑

i,j

bijyki y
l
j

Bk =
∑

i,j

bijykij + 2
∑

i,j

bij (ln ϕ̄)j y
k
i +

∑

i

biyki − ykt

Qϕ̄ =





∑

i,j

bijϕ̄ij +
∑

i

biϕ̄i − ϕ̄t



 v +





∑

i,j

bijψ̄ij +
∑

i

biψ̄i − ψ̄t



+ q
(

t, x, ϕ̄v + ψ̄
)

, (3.5)

where ϕ̄ = ϕ−1, ψ̄ = −ϕ−1ψ, so U = ϕ̄v+ ψ̄. By definition, all subcategories of QPE considered in
the Theorem are full subcategories of QPE .
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1a. If cij = 0 and v is linear in u, then Ckl = 0. It follows from the second equation of system
(3.4) that QPE is closed in QPE .

1b. Let F : A → B, (t, x, u) 7→ (t, y (t, x) , v(t, x, u)) be a morphism in T PE1, and A,B ∈
ObQPE . Using the second equation of system (3.4), we get (lnUv)v B

kl = Ckl = 0. It follows that
U is linear in v, v is linear in u, F is a morphism in QPE , and QPE is full in T PE .

1c. Suppose A ∈ ObT PE1
. Fix u0 ∈ ΩA and consider the map F : (t, x, u) 7→ (t, x, v(t, x, u)),

where

v(t, x, u) =

u
∫

u0

exp





ξ
∫

u0

λ (t, x, ς) dς



 dξ.

F defines an isomorphism in T PE1 from A to B with

Cij = (lnUv)v b
ij + Uvλb

ij = v−1
u (λ− (ln vu)u) = 0.

Therefore every object of T PE1 is isomorphic in T PE1 to some object of QPE , and QPE is full in
T PE1. �

2. The image of a compact under a continuous map is compact. The surjectivity of the map
completes the proof. �

3. T PE3 is closed in PE1, QPE is fully dense in PE1. �

4. T PE5 is closed in T PE3, and QPE ′ is fully dense in T PE3. Equality QPE ′
1 = T PE5 ∩QPE ′

completes the proof.

5. Let A ∈ ObQPE ′′ , and suppose F : A → B is a morphism in QPE ′. From the first equation
of system (3.5) we obtain

a(t, x, u) = A(t, y, v)ā(t, x), (3.6)

where ā(t, x) = B11 (t, y (t, x))
/(

∑

i,j b
ij(t, x)y1i y

1
j (t, x)

)

.

From the second equation of (3.5) we obtain

Bk(t, y, v) = A(t, y, v)ωk (t, x) + µk(t, x), (3.7)

where

ωk(t, x) = ā





∑

i,j

b̄ijykij + 2
∑

i,j

b̄ij (ln ϕ̄)j y
k
i +

∑

i

b̄iyki



 , µk(t, x) =
∑

i

ξiyki − ykt .

Further we will need the following statement:

Lemma 1 (about the extension of a function). Suppose M , N are Cr-manifolds, 1 ≤ r ≤ ∞,
F : M → N is a surjective Cr-submersion, µ : M → R is a Cs-function, 0 ≤ s ≤ r (if s = 0 then µ
is continuous). Take

N0 =
{

n ∈ N : µ|F−1(n) = const
}

,

M0 = F−1 (N0) =
{

m ∈M : ∀m′ ∈M
[

F
(

m′
)

= F (m)
]

⇒
[

µ
(

m′
)

= µ (m)
]}

,

F0 = F |M0
, µ0 = µ|M0

, and define a function ν0 : N0 → R by the formula ν0F0 = µ0 (see Fig. 3(a)).
Then ν0 can be extended from N0 to the entire manifold N so that the extended function ν : N → R

has class Cs of smoothness (see Fig. 3(b); both diagrams Fig. 3(a, b) are commutative).



The structure of the category of parabolic equations 11

M0
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  A
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µ0

  A
AA

AA
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��

ν0
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}}

R

M

µ
==||||||||

N

ν

``AAAAAAAA

b

Рис. 3. The extension of a function

Proof of Lemma 1

Take an open covering {Vi : i ∈ I} of N such that for every Vi there is a Cr-smooth section
pi : Vi →M over Vi, F ◦ pi = id|Vi

(such a covering exists, because F is submersive and surjective).
Let {λi} be a Cr-partition of unity subordinated to {Vi} [1]. Let

νi (n) =

{

λi (n)µ (pi (n)) , n ∈ Vi
0, n /∈ Vi

.

Then ν (n) =
∑

i∈I

νi (n) is a desired function. �

Proof of Theorem 3 (continuation)

Fix k. In the notations and assumption of Lemma 1, replace F by the map (t, x) 7→ (t, y(t, x))
and the continuous function µ by µk(t, x). We obtain that there exists a continuous function νk (t, y)
such that for each (t0, y0) if µk(t, x) is constant on the pre-image of (t0, y0) with respect to the map
(t, x) 7→ (t, y(t, x)) then νk (t0, y0) coincides with this constant. Let

B̄k(t, y, v) =
(

Bk(t, y, v)− νk(t, y)
)

/A(t, y, v) . (3.8)

Consider the following two cases for every point (t0, y0):

Case 1: The function A (t0, y0, v) is independent of v. Then (3.7) implies that Bk (t0, y0, v) is
independent of v; (3.8) implies that B̄k is independent of v.

Case 2: For given (t0, y0) the set {A (t0, y0, v) : v ∈ Ω} contains more then one element. Then
(3.7) implies that the restriction of µk (t0, x) to the pre-image of a point (t0, y0) is constant. Thus
µk (t0, x) = νk (t0, y0) on this pre-image, and B̄k = ωk(t, x) is independent of v in this case too.

In both cases Bk(t, y, v) = A(t, y, v)B̄k(t, y) + νk(t, y). So, the equation B has the form

vt = A(t, y, v)





∑

k,l

B̄kl(t, y)vkl +
∑

k

B̄k(t, y)vk



+
∑

k

νk(t, y)vk +Q(t, y, v),

and B is an object of QPE ′′.

F is a morphism in QPE ′′ if and only if the following system holds; we will use this system in
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the proof of the rest of the theorem.























































































a(t, x, u) = A(t, y, v)ā(t, x)

B̄kl(t, y) = ā
∑

i,j

b̄ijyki y
l
j(t, x)

ykt + Ξk −
∑

i

ξiyki = a(t, x, u)





∑

i,j

b̄ijykij + 2
∑

i,j

b̄ij (ln ϕ̄)j y
k
i +

∑

i

b̄iyki −Bk/ā





Qϕ̄ =





∑

i,j

ab̄ijϕ̄ij +
∑

i

(

ab̄i + ξi
)

ϕ̄i − ϕ̄t



 v+

+





∑

i,j

ab̄ijψ̄ij +
∑

i

(

ab̄i + ξi
)

ψ̄i − ψ̄t



+ q
(

t, x, ϕ̄v + ψ̄
)

(3.9)

6. QPE ′′
1 is closed in QPE ′′ and in QPE ′

1, because QPE ′′ and QPE ′
1 are closed in QPE ′. QPE ′′

1

is closed in QPE ′′
0, because QPE ′′

0 is the subcategory of QPE ′′. �

7. Suppose A ∈ ObQPE ′′

1q
, and F : A → B is a morphism in QPE ′′

1. From the third equation of

(3.5) we get

Q(t, y, v) =




∑

i,j

bijϕ̄ij +
∑

i

biϕ̄i + q1(t, x)− ϕ̄t



 ϕ̄−1v +





∑

i,j

bijψ̄ij +
∑

i

biψ̄i + q0(t, x)− ψ̄t



 ϕ̄−1 =

Q1(t, x)v +Q0(t, x),

so Q1, Q0 are functions of (t, y), and B ∈ ObQPE ′′

1q
. Thus QPE ′′

1q is closed in QPE ′′
1. �

8. Suppose A ∈ ObQPE ′

n
, F : A → B is a morphism in QPE ′. For given (t0, y0) let us fix

arbitrary x0 such that y (t0, x0) = y0. Since a ∈ Anc(T ×X), from (3.6) we get

A (t0, y0, v) = a
(

t0, x0, ϕ̄ (t0, x0) v + ψ̄ (t0, x0)
)

ā (t0, x0) 6= const.

Finally, we obtain A ∈ Anc (T × Y ), and B ∈ ObQPE ′

n
, so QPE ′

n is closed in QPE ′. �

9. Suppose A ∈ ObQPE ′′

0n
, B ∈ ObQPE ′′

n
. Substituting ξi = 0 in the third equation of (3.9), we

get

ykt + Ξk(t, y) = a(t, x, u)





∑

i,j

b̄ijykij + 2
∑

i,j

b̄ij (ln ϕ̄)j y
k
i +

∑

i

b̄iyki −Bk/ā



 (t, x).

Since left hand side is independent of u and a ∈ Anc(T ×X), both sides of this equality vanish, and
we get

ykt = −Ξk(t, y) (3.10)

The function y(t, x) satisfies the ordinary differential equation (3.10) with smooth right hand side,
so for any t, t′ the equality y(t, x1) = y(t, x2) implies that y(t′, x1) = y(t′, x2). Let 1-parameter
transformation group gs : T × Y → T × Y be given by (t, y(t, x)) 7→ (t+ s, y(t+ s, x)). This group
is correctly defined when T = R; otherwise transformations gs are partially defined, nevertheless
reasoning below remains correct after small refinement.

The composition gsg−s is identity for every s , so gs is bijective. {gs} is the flow map of the
smooth vector field ∂t −

∑

k Ξ
k(t, y)∂yk , so transformations {gs} are smooth by both t and y.
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Define the map z(t, y) by the equality g−t(t, y) = (0, z(t, y)). Then the map G : T ×Y → T ×Y ,
(t, y) 7→ (t, z(t, y)) is an isomorphism in QPE ′′ such that z(t, y(t, x)) = z(0, y(0, x)) for every x, t.
Therefore G ◦ F ∈ HomQPE ′′

0
. �

10. Suppose A is an object of QPE ′′
c . Since X is compact, there exists a solution y : T ×X → X

of the linear PDE ∂yk /∂t =
∑

i ξ
i(t, x)∂yk

/

∂xi . Then the isomorphism (t, x, u) 7→ (t, y(t, x), u)
maps A to some object of QPE ′′

0. Thus QPE ′′
0c is closed in QPE ′′

c . �

Proof of Theorem 4

If a 6= const then QPE ′′
0a(a) is fully plentiful in QPE ′′

a(a) thanks to the part 9 of Theorem 3.
If a = const then QPE ′′

a(a) coincides with QPE ′′
1, which is closed in QPE ′′ by Theorem 3. So

QPE ′′
a(a) is fully plentiful in QPE ′′.

Suppose now that a 6= const, A ∈ ObQPE ′′

a(a)
, and F : A → B is a morphism in QPE ′′. Let us

see on equation (3.6) as a functional one:

a
(

ϕ̄(t, x)v + ψ̄ (t, x)
)

= A(t, y, v)ā(t, x). (3.11)

We have three cases:

Case 1. a(u) = Heλu, λ,H = const, and λ 6= 0. Substituting a(u) to (3.11), we get λϕ̄(t, x)v−
lnA(t, y, v) =

(

ln ā− λψ̄ − lnH
)

. The right hand side of this equality is a function of (t, x), so
ϕ̄ = ϕ̄(t, y), and the isomorphism (t, y, v) 7→ (t, y, ϕ̄(t, y)v) maps B to some object of QPE ′′

a(a).

Case 2. a(u) = H (u− u0)
λ, λ,H, u0 = const, and λ 6= 0. Substituting a(u) to (3.11), we get

(

v + ϕ̄−1(t, x)
(

ψ̄(t, x)− u0
))λ

= A(t, y, v)H−1ϕ̄−λā(t, x).

Thus ϕ̄−1
(

ψ̄ − u0
)

= q(t, y) for some function q, so the object B maps by the isomorphism (t, y, v) 7→
(t, y, v + q(t, y) + u0) to some object of QPE ′′

a(a).

Case 3. Suppose now that a(u) is neither Heλu nor H (u− u0)
λ. Denote x̄ = (t, x), ȳ = (t, y),

α = ln a. Fix arbitrary ȳ0 ∈ T × Y and denote Z = {x̄ : ȳ (x̄) = ȳ0} ⊂ T ×X. Since (3.11), for any
x̄0, x̄1 ∈ Z and ϕ̄i = ϕ̄ (x̄i), ψ̄i = ψ̄ (x̄i)) the value α

(

ϕ̄1z + ψ̄1

)

−α
(

ϕ̄0z + ψ̄0

)

is independent of v.
Let G = G (ȳ0) be the additive subgroup of R generated by the set {ln ϕ̄ (x̄)− ln ϕ̄ (x̄0) : x̄ ∈ Z}.

We have the following two subcases.

Case 3.1: G 6= {0}. Put Ĥ1 = ln ϕ̄1− ln ϕ̄0 ∈ G−{0}, u0 =
(

ψ̄0 − ψ̄1

)

/(ϕ̄1 − ϕ̄0) . Substituting

v =
(

w + u0 − ψ̄0

)

/ϕ̄0 , for any w we have α
(

eĤ1w + u0

)

− α (w + u0) = c = const. Consider the

function β (x) = α (ex + u0). Since β
(

x+ Ĥ1

)

= β(x) + c, for λ = c/Ĥ1 the function β (x)− λx is

Ĥ1-periodic. Therefore,
a(u) = (u− u0)

λH (ln (u− u0)) ,

where H is Ĥ1-periodic, H 6= const, since the case “H = const” have been considered above. Let
Ĥ > 0 be the smallest positive period of H. For all x̄ ∈ Z the number ln ϕ̄ (x̄)− ln ϕ̄0 is a multiple of

Ĥ, so ϕ̄ (x̄) ∈
{

ϕ̄0 exp
(

kĤ
)

: k ∈ Z

}

for any ȳ0. Since a(u) is independent of ȳ0, Ĥ is independent

of ȳ0 too.

Case 3.2: G = {0}, that is ϕ̄|Z ≡ ϕ̄0 = const. Here we have two possible subsubcases:

Case 3.2.a: ψ̄
∣

∣

Z
6= const, that is ∃x̄0, x̄1 ∈ Z : ψ̄ (x̄1) − ψ̄ (x̄0) = Ĥ1 6= 0. Then α

(

u+ Ĥ1

)

−

α(u) = const. By the same token as in case 3.1 we get a(u) = H(u)eλu, where λ = const and H
is a periodic function with the smallest period Ĥ > 0. Note that such a representation of a(u) is
unique. Substituting this to (3.11), we obtain that ∀ȳ ∀x̄0, x̄1 ∈ Zȳ the number ψ̄ (x̄1)− ψ̄ (x̄0) is a
multiple of Ĥ.
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Case 3.2.b: ψ̄
∣

∣

Z
= const for given ȳ0. We already considered the cases a(u) = H(u)eλu and

a(u) = (u− u0)
λH (ln (u− u0)), so we can assume now without loss of generality that a is not of

this form. Then for every ȳ0 we have ψ̄
∣

∣

Z
= const, ϕ̄ = ϕ̄ (ȳ), and ψ̄ = ψ̄ (ȳ). Thus the isomorphism

(t, y, v) →
(

t, y, ϕ̄(t, y)v + ψ̄ (t, y)
)

maps B to some object of QPE ′′
a (a).

The proof of the full density of QPE ′′
0ca(a) in QPE ′′

ca (a) is similar to the proof of part 10 in
Theorem 3. �

Proof of Theorem 5

1. QPE ′′ is closed in QPE , and SQPE is the subcategory of QPE . Therefore SQPE is closed
in SQPE . �

2. SQPEn is closed in SQPE for the same reason as in Part 1 of this Theorem. This implies
that SQPEn is closed in SQPE .

Suppose A is an object of SQPE0, F : A → B is a morphism in SQPE . Then Bk(t, y, v) =
A(t, y, v)ωk(t, x), where ωk is defined as in (3.7). Hence ωk is a function of (t, y), and B is an object
of SQPE0.

Suppose A is an object of SQPEb, F : A → B is a morphism in SQPE . From the first equation
of (3.5) we obtain

B̄kl

B̄11
(t, y) =

∑

i,j b̄
ijyki y

l
j

∑

i,j b̄
ijy1i y

1
j

(x).

The right hand side is independent of t, so it is a function of y; denote this function by B̄′kl(y).
Then AB̄kl = A′(t, y, v)B̄′kl(y), where A′ = AB11. It follows that B is an object of SQPEb, and
SQPEb is closed in SQPE . �

3. Let us recall that SQPE0n is closed in QPE ′′
0n. So it is sufficient to prove that any morphism

in QPE ′′
0n is also a morphism in SQPE0n. Suppose that F : A → B is a morphism in QPE ′′

0n. Then
ykt (t, x) = A(t, y, v)ωk(t, x), where

ωk = −B̄k + ā





∑

i,j

b̄ijykij + 2
∑

i,j

b̄ij (ln ϕ̄)j y
k
i +

∑

i,j

b̄iyki



 .

Since the left hand side of this equality is independent of v and A ∈ Anc(Y ), we conclude that
ωk = 0. Thus F is a morphism in SQPE0n. Finally, SQPE0n = QPE ′′

0n, is closed in QPE ′′
0 and is

fully dense in QPE ′′
n. �

4. QPE ′′
1 is closed in QPE , so SQPE1 is closed in SQPE and, consequently, is closed in SQPE0.

�

5. The proof is similar to the proof of part 1 of Theorem 4. �

Proof of Theorem 6

From (3.5)-(3.6) and the fact that SQPEb is closed in SQPE it follows that the map (t, x, u) 7→
(t, y, ϕu+ ψ) is a morphism in SQPE with the source from AQPE if and only if the following
conditions are satisfied:















































A(t, y, v) =a(x, u)ā(t, x)

B̄kl(y) =ā(t, x)∇yk∇yl

Bk(t, y, v) =A(t, y, v)B̄k(t, y) + Ck(t, y) =

=a(x, u)
(

∆yk + (η + 2∇ (ln ϕ̄))∇yk
)

+ ξ∇yk

Qϕ̄ =(a (∆ϕ̄+ η∇ϕ̄) + ξ∇ϕ̄− ϕ̄t) v+

+
(

a
(

∆ψ̄ + η∇ψ̄
)

+ ξ∇ψ̄ − ψ̄t

)

+ q
(

t, x, ϕ̄v + ψ̄
)

(3.12)
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1. Suppose F : A → B is a morphism in AQPE , A is an object of AQPE . From the second
equation of system (3.12) it follows that ā = ā(x). Using the first equation of (3.12) and taking
into account that ϕ̄, ψ̄ are independent of t, we see that A = A (y, v) is independent of t. It follows
from the third equation of (3.12) that Bk is independent of t, Bk(y, v) = A(y, v)B̄k(t, y)+Ck (t, y).
From this formula, by the same token as in the proof of part 4 of Theorem 3, we obtain existing of
functions Hk(y), Ξk(y) such that Bk = A(y, v)Hk(y) +Ξk(y). Substituting u = ϕ̄(x)v+ ψ̄(x) in the
last equation of (3.12), we obtain that Q is independent of t. This implies that the target B of the
morphism F has the form

vt = A(y, v)





∑

k,l

B̄kl(y)vkl +
∑

k

Hk(y)vk



+
∑

k

Ξk(y)vk +Q(y, v).

We prove so far that B has such a form only locally. Neverytheless we can lead it to an equation
of the same form but with globally defined function A(y, v), for example by the way described in
Remark 2. Then quadratic form B̄kl is defined on the whole manifold Y , so we can equip Y with a
Riemannian metric B̄kl and finally get B ∈ ObAQPE . �

2. AQPEn = AQPE ∩ SQPEn is closed in AQPE , because SQPEn is closed in SQPE .

Let F : A → B be a morphism in SQPEbn, and both source and target of F are objects of
AQPEn. Then ā is independent of t, and

a
(

x, ϕ̄(t, x)v + ψ̄ (t, x)
)

= A (y(x), v) ā(x). (3.13)

Let x = x0. Suppose that the set
{(

ϕ̄ (t, x0) , ψ̄ (t, x0)
)}

has more than one element, and consider
the intervals

I (v) =
{(

ϕ̄ (t, x0) v + ψ̄ (t, x0)
)

: t ∈ TA
}

⊆ R.

Then a (x0, u) is constant on any interval u ∈ I (v), because the right hand side of (3.13) is
independent of t. Note that I (v) is a continuous function of v in the Hausdorff metric, and
∀t ϕ̄ (t, x0) 6= 0. If at any v the interval I (v) does not collapses into a point, then a (x0, u) is
constant on

⋃

I (v). But this contradicts to the condition a ∈ Anc (X). Therefore I (v0) degenerates
into a point at some v0, ϕ̄ (t, x0) v0 + ψ̄ (t, x0) ≡ u0, so ϕ̄v + ψ̄ = ϕ̄ (t, x0) (v − v0) + u0. By the
assumption, card

{(

ϕ̄ (t, x0) , ψ̄ (t, x0)
)}

> 1, so the set {ϕ̄ (t, x0)} is non-degenerated interval.
Therefore, a (x0, u) is constant on the sets {u < u0} and {u > u0}. But this contradicts to the
condition a ∈ Anc(X) and continuity of a. This contradiction shows that for each x0 the functions
ϕ̄, ψ̄ are independent of t. Consequently F is a morphism in AQPE , and AQPEn is the full
subcategory of SQPEbn. �

3. Since SQPE0 and SQPE1 are closed in SQPE , the subcategories AQPE0 and AQPE1 are
closed in AQPE . �

4. If a /∈ Aexp ∪ Adeg then AQPEa(a) is plentiful in AQPE by the same arguments as used in
the proof of part 1 of Theorem 4, after replacement of x̄, ȳ to x, y respectively. �

5. Let F : A → B be a morphism in SQPEna(a), A be an object of AQPEna(a). Then

a
(

ϕ̄(t, x)v + ψ̄(t, x)
)

= A(v)ā(x).

As we proved in part 2, the functions ϕ̄, ψ̄ are independent of t, F is a morphism in AQPE , and

B ∈ ObAQPE ∩ObSQPEna(a) = ObAQPEna(a) .

Since AQPEna(a) is full in AQPEn, we see that F is a morphism in AQPEna(a). �
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1. EPE is closed in EPE , because AQPE is closed in AQPE . �

2. EPEn, EPE0, EPE1 are closed in EPE , because AQPEn, AQPE0, AQPE1 are closed in
AQPE . �

Suppose F : A → B is a morphism in EPE and A ∈ ObEPEa(a). Then the first equation of (3.5)

has the form A(y, u)B̄kl(y) = a(u)∇yk∇yl. Hence ∇yk∇yl = gkl(y) for some functions gkl. For
B̄kl = gkl(y) we have A(y, u) = a(u). So A is an object of EPEa(a), and EPEa(a) is closed in EPE .
�

3. The proof is similar to the proof of Theorem 3. �
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