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Abstract

We present two examples of the real materials, which show orbital-selective

behavior. In both compounds a part of the electrons is localized on the molecular

orbitals, which lead to a significant reduction of the magnetic moment on the

transition metal ion.
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1. Introduction

It was recently shown that there may exist so called orbital-selective state

in the dimerized systems with orbital degrees of freedom [1]. This is the state

in which different orbitals behave in different manners. All electrons (orbitals)

in the orbital-selective state are split on two qualitatively different groups. One5

part of the electrons occupy molecular orbitals and form spin singlets being

magnetically inactive, while other electrons are effectively decoupled from them

and have local magnetic moments (which can be ordered, i.e. lead to formation

of ferro- or antiferromagnetic states, or disordered, i.e. paramagnetic). As

a result one of the main features of the orbital-selective state is substantially10

reduced magnetic moment. Because of the formation of molecular orbitals this

moment turns out to be much smaller, than expected basing on the purely ionic

model consideration.

In the present paper we show that the orbital-selective state is realized in

two real materials: Y5Mo2O12 and ZnV2O4 (and also in CdV2O4, which is15
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iso-electronic and iso-structural to ZnV2O4).

2. Calculation details

We used the density functional theory within the generalized gradient ap-

proximation (GGA) [2] to study electronic properties of Y5Mo2O12. We used

full-potential WIEN2k code [3]. The radii of atomic spheres were set as follow-20

ing RY = 2.19 a.u., RMo = 1.88 a.u., and RO = 1.70 a.u. The Brillouin-zone

(BZ) integration in the course of the self-consistency was performed over a mesh

of 200 k-points. The parameter of the plane wave expansion was chosen to be

RMTKmax = 7, where RMT is the smallest atomic sphere radii and Kmax -

plane wave cut-off.25

3. Y5Mo2O12

The crystal structure of Y5Mo2O12 is formed by the edge sharing MoO6

chains, which are dimerized. These chains are separated by the Y ions, see Fig. 1.

The electronic configuration of Mo having formal valence 4.5+ is 4d1.5. Hence

one may expect that the local magnetic moment would be µloc = 1.5µB/Mo,30

while effective magnetic moment in the Curie-Weiss theory will be µeff =

2.29µB/Mo or µeff = 1.15µB/dimer. Experimentally, however, effective mo-

ment equals µeff = 1.7µB/Mo [4]. We attribute this feature to the fact that

this compound is actually in the orbital-selective state.

The total density of states obtained in the nonmagnetic GGA calculation35

is shown in Fig. 2. In the edge-shared geometry there are two types of the t2g

orbitals: σ-bonded xy orbitals (which look directly to each other) and π-bonded

yz and zx orbitals on different Mo centers (it is assumed that the local z axis is

perpendicular to the plane defined by the Mo-Mo bond and common edge for

two MoO6 octahedra). Direct overlap between the xy orbitals on two Mo sites40

leads to huge bonding-antibonding splitting ∼2.7 eV. Therefore one may gain

energy occupying bonding orbital with two electrons (total number of electron

is 3 per dimer). Remaining electron will provide net magnetic moment of the
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dimer, giving S = 1/2 per dimer. This yields µeff = 1.74µB/Mo, which agrees

with experimental data [4]. Resulting state is orbital-selective and is realized45

due to rather uncommon set of the parameters: one of the hopping parameter

txy/xy ∼ 1.35 eV is much larger both than intra-atomic Hund’s rule exchange

(which is estimated for early 4d transition metals to be ∼0.7 eV [5, 6]) and

hopping integrals between other orbitals (txz/xz, tyz/yz)� txy,xy.

4. CdV2O4 and ZnV2O450

The electronic and magnetic properties of the V spinels are thoroughly in-

vestigated last years. [7, 8] E.g. it was found that CdV2O4 is multiferroic below

TN =33 K [7]. The mechanism of the multiferroicity is the magnetostriction:

unconventional ↑↑↓↓↑↑ magnetic order results in the dimerization of the V ions

having the same spin projection (i.e. ↑↑). This in turn leads to the shift of the55

oxygen ions away from the high symmetry positions and onset of the sponta-

neous electric polarization [7]. The missing element in this microscopic model

is why the spins of V ions forming dimers show ferromagnetic order. We know

from the basics of the quantum mechanics that the spin singlet (i.e. antiferro

Figure 1: Left: the unit cell of Y5Mo2O12; Mo ions are shown in violet, O − in blue, and Y

− in grayish green. Right: main structural element of Y5Mo2O12 − dimerized Mo chain.
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Figure 2: Total density of states of the Y5Mo2O12, obtained in the nonmagnetic GGA

calculation.

ordering of the spins, as e.g. in the hydrogen molecule) is more typical for60

dimers.

We argue that it can be related with the orbital-selective physics. The

situation here is rather similar to Y5Mo2O12, since neighboring VO6 octahedra

also share their edges. There is again strong overlap between the xy orbitals.

Since V3+ has 3d2 electronic configuration, there are four d electrons per dimer.65

Two electrons may occupy molecular orbital of the xy symmetry, while other

two stay on the yz and zx local orbitals and provide S = 1 per V dimer, or

S = 1/2 per V. Corresponding exchange constant (added in the revised version

of the manuscript) in this short V-V pair in CdV2O4 is ferromagnetic and equals

J = 56 K as calculated in the LSDA+U method for U − JH=0.7 eV using the70

Green’s function formalism [9, 10].

The distortions of the crystal structure and type of the magnetic structure in

ZnV2O4 are the same as in CdV2O4 [8], but there is an additional information

about magnetic properties of ZnV2O4. The local magnetic moment on V was

found to be 0.66 µB in ZnV2O4 [11]. This qualitatively agrees with the model75

treatment presented above. In the ionic model this corresponds to the local spin

moment µ = gS = 1µB , but this value is further reduced due to hybridization
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Figure 3: Left: the pair of the xy orbitals in V dimer, which have the largest hopping param-

eters in the system. Right: sketch illustrating energy levels splitting in (Cd,Zn)V2O4.

effects, which are always exist in real materials.

5. Conclusions

In the present paper we show two examples of the orbital-selective behavior,80

which results in the suppression of the magnetic moment in (Cd,Zn)V2O4 and

Y5Mo2O12.
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