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Аннотация. We completely determine upper-modular, codistributive and
costandard elements in the lattice of all commutative semigroup varieties.
In particular, we prove that the properties of being upper-modular and
codistributive elements in the mentioned lattice are equivalent. Moreover,
in the nil-case the properties of being elements of all three types turn out
to be equivalent.

1. Introduction

A remarkable attention in the theory of lattices is devoted to special elements
of lattices. Recall definitions of several types of special elements. An element x
of the lattice 〈L;∨,∧〉 is called

distributive if ∀y, z ∈ L : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

standard if ∀y, z ∈ L : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

modular if ∀y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y;

upper-modular if ∀y, z ∈ L : y ≤ x −→ x ∧ (y ∨ z) = y ∨ (x ∧ z);

neutral if, for all y, z ∈ L, the elements x, y and z generate a distributive
sublattice of L. Codistributive, costandard and lower-modular elements are defined
dually to distributive, standard and upper-modular elements respectively.

Special elements play an important role in the general lattice theory (see [1,
Section III.2], for instance). In particular, one can say that neutral elements are
related with decompositions of a lattice into subdirect product of its intervals,
while [co]distributive elements are connected with homomorphisms of a lattice
into its principal filters [principal ideals]. Thus the knowledge of which elements
of a lattice are neutral or [co]distributive gives essential information on the
structure of the lattice as a whole.

There is a number of interrelations between the mentioned types of elements.
It is evident that a neutral element is both standard and costandard; a [co]standard
element is modular; a [co]distributive element is lower-modular [upper-modular].
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It is well known also that a [co]standard element is [co]distributive (see [1,
Theorem 253], for instance).

During last years, a number of articles appeared concerning special elements
of the above mentioned types in the lattice SEM of all semigroup varieties
and in certain its important sublattices, first of all, in the lattice Com of
all commutative semigroup varieties. Briefly speaking, these articles contain
complete descriptions of special elements of many types and essential information
about elements of other types (including strong necessary conditions and descriptions
in wide and important partial cases). These results are discussed in details in
the recent survey [9]. Special elements of the lattice Com are examined in the
articles [3, 4]. Results of these works give a complete description of neutral,
standard, distributive or lower-modular elements of Com and a considerable
information about its modular elements that reduces the problem of description
of such elements to the nil-case. However, practically anything was unknown so
far about costandard, codistributive or upper-modular elements of the lattice
Com. A unique exclusion is a description of elements of these three types
in the narrow and particular class of 0-reduced varieties that follows from [3,
Proposition 2.3 and Theorem 1.2]. In particular, it was unknown, whether the
lattice Com contains costandard but not neutral elements, as well as upper-
modular but not codistributive elements. Corresponding questions were formulated
in [9] (see Questions 4.11 and 4.12 there). For the sake of completeness, we
mention that there exist codistributive but not costandard elements in the lattice
Com. This fact can be easily deduced from results of [3] (see [9, Section 4.5]).

In this article, we completely determine costandard, codistributive or upper-
modular elements in the lattice Com. In particular, we answer on Questions 4.11
and 4.12 of [9]. Namely, we prove that, in this lattice, the properties of being
upper-modular and codistributive elements are equivalent, but the properties of
being costandard and neutral elements are not equivalent. Moreover, it turns out
that all three properties we consider are equivalent for commutative nil-varieties.
Note that these results extremely contrast with the situation in the lattice SEM

where the properties of being upper-modular and codistributive elements are not
equivalent (compare [6, Theorem 1.2] and [8, Theorem 1.2]) but the properties
of being costandard and neutral elements are equivalent [8, Theorem 1.3].

To formulate main results, we need some notation. We denote by T , SL
and COM the trivial variety, the variety of semilattices and the variety of all
commutative semigroups respectively. If Σ is a system of semigroup identities
then varΣ stands for the semigroup variety given by Σ. For a natural number
m, we put

Cm = var{xm = xm+1, xy = yx}.

In particular, C1 = SL. For brevity, we put also C0 = T . Note that a semigroup
S satisfies the identity system wx = xw = w where the letter x does not occur
in the word w if and only if S contains a zero element 0 and all values of w in
S equal 0. We adopt the usual convention of writing w = 0 as a short form of
such a system. The main results of the article are the following two theorems.

Theorem 1.1. For a commutative semigroup variety V, the following are equivalent:

a) V is an upper-modular element of the lattice Com;
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b) V is a codistributive element of the lattice Com;

c) one of the following holds:

(i) V = COM,

(ii) V = M∨N where M is one of the varieties T or SL, and N is a

commutative variety satisfying the identities

x2yz = 0,(1.1)

x2y = xy2,(1.2)

(iii) V = G ∨M∨N where G is an Abelian periodic group variety, M
is one of the varieties T , SL or C2, and N is a commutative variety

satisfying the identity

(1.3) x2y = 0.

Theorem 1.2. For a commutative semigroup variety V, the following are equivalent:

a) V is a modular and upper-modular element of the lattice Com;

b) V is a costandard element of the lattice Com;

c) one of the claims (i) or (ii) of Theorem 1.1 holds.

The article consists of four sections. In Section 2 we collect auxiliary results
used in what follows, Section 3 is devoted to the proof of Theorems 1.1 and 1.2,
and Section 4 contains several corollaries from the main results.

2. Preliminaries

We start with certain results about special elements in the lattice Com

obtained earlier.

Proposition 2.1 ([3, Theorem 1.2]). A commutative semigroup variety V is

a neutral element of the lattice Com if and only if V = M∨N where M is

one of the varieties T or SL, and N is a commutative variety satisfying the

identity (1.3). �

Proposition 2.2 ([4, Theorem 1.4]). If a commutative semigroup variety V is

a modular element of the lattice Com then V = M∨N where M is one of the

varieties T or SL, and N is a nil-variety. �

It is generally known that the variety SL is an atom of the lattice SEM

(and therefore, of the lattice Com). Proposition 2.1 implies that this variety
is neutral in Com. Combining these facts with [3, Corollary 2.1], we have the
following

Lemma 2.3. A commutative semigroup variety V is an upper-modular [costandard ]
element of the lattice Com if and only if the variety V ∨ SL has the same

property. �

The subvariety lattice of a variety X is denoted by L(X ). The following lemma
is generally known.

Lemma 2.4. If V is a semigroup variety with V + SL then the lattice L(V ∨ SL)
is isomorphic to the direct product of the lattices L(V) and L(SL). �
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We denote by F the free semigroup. The symbol ≡ stands for the equality
relation on F . If u ∈ F then we denote by c(u) the set of letters occurring
in u and by ℓ(u) the length of u. If u, v ∈ F then we write u ⊳ v whenever
v ≡ aξ(u)b for some (maybe empty) words a and b and some homomorphism
ξ of F . The first claim in the following lemma is evident, while the second one
follows from [10, Lemma 1.3(iii)].

Lemma 2.5. Let N be a nil-variety of semigroups.

(i) If N satisfies an identity u = v with c(u) 6= c(v) then N also satisfies

the identity u = 0.
(ii) If N is commutative and satisfies an identity u = v with u ⊳ v then N

also satisfies the identity u = 0. �

We need the following two technical corollaries from Lemma 2.5. Put W =
{x2y, xyx, yx2, y2x, yxy, xy2}.

Corollary 2.6. If a commutative nil-variety of semigroups N satisfies an identity

of the form u = v where u ∈ {x2y, xy2} and v /∈ W then N also satisfies the

identity (1.3).

Доказательство. Suppose at first that u ≡ x2y. If c(v) 6= {x, y} then N
satisfies the identity (1.3) by Lemma 2.5(i). Let now c(v) = {x, y}. If ℓ(v) < 3
then v ⊳ x2y and Lemma 2.5(ii) implies that N satisfies the identity (1.3) again.
If ℓ(v) = 3 then v ∈ W contradicting the hypothesis. Finally, if ℓ(v) > 3 then it
is easy to see that v equals in COM (and therefore, in N ) to a word v′ such that
x2y ⊳ v′. Now Lemma 2.5(ii) applies again, and we conclude that N satisfies
the identity (1.3) as well.

The case when u ≡ xy2 may be considered quite analogously with the
conclusion that N satisfies the identity xy2 = 0 that is equivalent to (1.3)
modulo the commutative law. �

Corollary 2.7. If a commutative nil-variety of semigroups N satisfies the

identity (1.2) then N also satisfies the identity (1.1).

Доказательство. Substituting yz to y in the identity (1.2), we obtain x2yz =
x(yz)2 = xy2z2. Since x2yz ⊳ xy2z2, it remains to refer to Lemma 2.5(ii). �

A semigroup variety V is called a variety of degree n if all nilsemigroups in
V are nilpotent of degree ≤ n and n is the least number with such property. A
variety is said to be a variety of finite degree if it has a degree n for some n;
otherwise, a variety is called a variety of infinite degree. The following lemma
follows from [6, Proposition 2.11] and [5, Theorem 2].

Lemma 2.8. A commutative semigroup variety V is a variety of degree ≤ n if

and only if it satisfies an identity of the form

(2.1) x1x2 · · · xn = (x1x2 · · · xn)
t+1

for some natural number t. �

If V is a variety of finite degree then we denote the degree of V by deg(V);
otherwise, we write deg(V) = ∞.
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Corollary 2.9. If X and Y are commutative semigroup varieties then

deg(X ∨ Y) = max
{

deg(X ),deg(Y)
}

.

Доказательство. If at least one of the varieties X or Y has infinite degree then

deg(X ∨ Y) = ∞ = max
{

deg(X ),deg(Y)
}

.

Let now deg(X ) = k and deg(Y) = m. Lemma 2.8 implies that the varieties X
and Y satisfy, respectively, the identities

x1x2 · · · xk = (x1x2 · · · xk)
r+1

and
x1x2 · · · xm = (x1x2 · · · xm)s+1

for some r and s. Suppose without loss of generality that k ≤ m. Substitute
xk · · · xm to xk in the first of the two mentioned identities. We have that X
satisfies the identity

x1x2 · · · xm = (x1x2 · · · xm)r+1.

Then X ∨ Y satisfies the identity

x1x2 · · · xm = (x1x2 · · · xm)rs+1.

Now Lemma 2.5(ii) applies with the conclusion that

deg(X ∨ Y) ≤ m = max
{

deg(X ),deg(Y)
}

.

Since the unequality max
{

deg(X ),deg(Y)
}

≤ deg(X ∨ Y) is evident, we are
done. �

The following statement follows from [12, Proposition 1] and results of the
article [2].

Lemma 2.10. If V is a commutative semigroup variety and V 6= COM then

V = G ∨ Cm ∨ N for some Abelian periodic group variety G, some m ≥ 0 and

some nil-variety N . �

It is well known that an arbitrary periodic semigroup variety V contains the
greatest group subvariety that we denote by Gr(V). A semigroup variety V is
called combinatorial if all groups in V are singletons.

Lemma 2.11. If G is a periodic group variety and F is a combinatorial semigroup

variety then Gr(G ∨ F) = G.

Доказательство. The inclusion G ⊆ Gr(G ∨ F) is evident. To verify the converse
inclusion, we suppose that the variety G satisfies the identity u = v. Being
combinatorial, the variety F satisfies the identity xn = xn+1 for some natural
n. Therefore G ∨ F satisfies the identity un+1vn = unvn+1. If we reduce it on
un from the left and on vn from the right, we obtain that the identity u = v
holds in Gr(G ∨ F). �

A semigroup is called combinatorial if all its subgroups are singletons. It
is easy to verify that the variety Cm is generated by the (m + 1)-element
combinatorial cyclic monoid. We will use this fact below without special references.
It may be easily checked that the join of all varieties of the form Cm coincides
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with the variety COM. Therefore, for a periodic semigroup variety X there
exists the largest number m ∈ N ∪ {0} with the property Cm ⊆ X . We denote
this number by m(X ).

Lemma 2.12. If G is a periodic group variety, m ≥ 0 and N is a nil-variety of

semigroups then m(G ∨ Cm ∨ N ) = m.

Доказательство. The varieties G and N satisfy, respectively, the identities x =
xr+1 and xn = 0 for some natural r and n. Whence the identity xmyn = xr+myn

holds in the variety G ∨Cm ∨N . Substituting 1 to y in this identity, we see that
every monoid in G ∨ Cm ∨ N satisfies the identity xm = xr+m. Clearly, any
combinatorial semigroup with this identity satisfies the identity xm = xm+1.
Since every cyclic semigroup is commutative, we have m(G ∨Cm∨N ) ≤ m. The
converse unequality is evident. �

Corollary 2.13. If X and Y are periodic commutative semigroup varieties then

m(X ∨ Y) = max
{

m(X ),m(Y)
}

.

Доказательство. Lemma 2.10 implies that X = G1 ∨ Cm1
∨ N1 and Y = G2 ∨

Cm2
∨N2 for some Abelian periodic group varieties G1 and G2, some m1,m2 ≥ 0

and some nil-varieties N1 and N2. Then m(X ) = m1 and m(Y) = m2 by
Lemma 2.12. We have

X ∨ Y = G1 ∨ G2 ∨ Cm1
∨ Cm2

∨N1 ∨N2 = G1 ∨ G2 ∨ Cmax{m1,m2} ∨N1 ∨N2.

Applying Lemma 2.12 one more time, we have

m(X ∨ Y) = max{m1,m2} = max
{

m(X ),m(Y)
}

.

Corollary is proved. �

3. Proofs of main results

To prove both theorems, it suffices to verify the implications a)−→ c) and
c)−→ b) because the implications b)−→ a) in both theorems are evident.

The implication a)−→ c) of Theorem 1.1. The article [6] contains, among
others, the proof of the following fact: if a periodic commutative semigroup
variety V is an upper-modular element of the lattice SEM then one of the
claims (ii) or (iii) of Theorem 1.1 holds. Almost all varieties that appear in
the corresponding fragment of [6] are commutative. The unique exclusion is
a periodic group variety G that appear in the verification of the following fact:
every nil-subvariety of V satisfies the identity (1.2). There are no the requirement
that the variety G is Abelian in [6]. But if we add this requirement to arguments
used in [6] then the proof will remains valid. Thus, in actual fact, it is verified
in [6] that if V is an upper-modular element of the lattice Com and V 6= COM
then V satisfies one of the claims (ii) or (iii) of Theorem 1.1.

The implication a)−→ c) of Theorem 1.2. Let V be a modular and upper-
modular element of the lattice Com and V 6= COM. Then we may apply Proposition 2.2
and conclude that V = M∨N where M is one of the varieties T or SL, and N
is a nil-variety. The variety N is an upper-modular element in the lattice Com

by Lemma 2.3. In view of the proved above implication a)−→ c) of Theorem 1.1,



UPPER-MODULAR ELEMENTS OF THE LATTICE OF COMMUTATIVE VARIETIES 7

we have that N satisfies the identities (1.1) and (1.2). Thus the claim (ii) of
Theorem 1.1 fullfills.

The implication c)−→ b) of Theorem 1.2. Let V = M∨N where M is one of
the varieties T or SL, and N is a commutative variety satisfying the identities (1.1)
and (1.2). We need to verify that V is costandard in Com. In view of Lemma 2.3,
it suffices to check that the variety N is costandard in Com. Let X and Y be
arbitrary commutative semigroup varieties. It suffices to verify that

(N ∨ Y) ∧ (X ∨ Y) ⊆ (N ∧ X ) ∨ Y

because the converse inclusion is evident. If at least one of the varieties X or Y
coincides with the variety COM then the desirable inclusion is evident. Thus we
may assume that the varieties X and Y are periodic. Let u = v be an arbitrary
identity that is satisfied by (N ∧ X ) ∨ Y. We need to verify that it holds in
(N ∨ Y) ∧ (X ∨ Y). By the hypothesis, the identity u = v holds in Y and there
exists a deduction of this identity from the identities of the varieties N and X .
Let the sequence of words

(3.1) u0 ≡ u, u1, . . . , uk ≡ v

be the shortest such deduction. If k = 1 then the identity u = v holds in one
of the varieties N or X . Then it is satisfied by one of the varieties N ∨ Y or
X ∨ Y, whence by the variety (N ∨ Y) ∧ (X ∨ Y). Thus we may assume that
k > 1. If the identity u = v holds in N then it holds in N ∨ Y and therefore, in
(N ∨ Y) ∧ (X ∨ Y). Thus we may assume that u = v fails in N . In particular,
at least one of the words u or v, say u, does not equal 0 in N . Since N satisfies
the identity (1.1), this means that u coincides with one of the words x1x2 · · · xn
for some n, x2, x3 or x2y. Further considerations are divided into three cases.

Case 1: u ≡ x1x2 · · · xn. If v ≡ x1πx2π · · · xnπ for some non-trivial permutation
π on the set {1, 2, . . . , n} then the identity u = v holds in the variety COM
and therefore, in the variety (N ∨ Y) ∧ (X ∨ Y). Otherwise, Lemma 2.5 applies
with the conclusion that every nilsemigroup in Y satisfies the identity

(3.2) x1x2 · · · xn = 0.

This means that Y is a variety of degree ≤ n. Now we may apply Lemma 2.8
and conclude that Y satisfies the identity

x1x2 · · · xn = (x1x2 · · · xn)
r+1

for some natural r and therefore, the identity

x1x2 · · · xn = (x1x2 · · · xn)
rℓ+1

for any natural ℓ. Thus the words x1x2 · · · xn, (x1x2 · · · xn)
rℓ+1 (for all ℓ) and v

pairwise equal each to other in the variety Y.
Further, one of the varieties N or X satisfies the identity x1x2 · · · xn = u1. If

v ≡ x1πx2π · · · xnπ for some non-trivial permutation π on the set {1, 2, . . . , n}
then the identity u = u1 holds in both varieties N and X . This contradicts
the claim that (3.1) is the shortest deduction of the identity u = v from the
identities of the varieties N and X . Repeating arguments from the previous
paragraph, we may conclude that there exists a natural s such that the words
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x1x2 · · · xn, (x1x2 · · · xn)
sℓ+1 (for all ℓ) and v pairwise equal each to other in

one of the varieties N or X . Then the words x1x2 · · · xn, (x1x2 · · · xn)
rs+1 and v

pairwise equal each to other in one of the varieties N ∨ Y or X ∨ Y and therefore,
in the variety (N ∨ Y) ∧ (X ∨ Y). In particular, the variety (N ∨ Y) ∧ (X ∨ Y)
satisfies the identity u = v.

Case 2: u ≡ x2 or u ≡ x3. One can verify the desirable statement in slightly
more general situation when u ≡ xn for some n. (In actual fact, this statement
is evident whenever n > 3 because the variety N satisfies the identity x4 = 0.
But our considerations below does not depend on n.) The identity xn = v holds
in Y. Then Lemma 2.5 implies that every nilsemigroup in Y satisfies the identity
xn = 0. Being periodic, the variety Y satisfies the identity xp = xq for some
natural p and q with p < q. Let p be the least number with such a property. In
view of Lemma 2.5, each nilsemigroup in Y satisfies the identity xp = 0. Clearly,
p is the least number with such a property. Therefore n ≥ p. Multiplying the
identity xp = xq on xn−p, we see that Y satisfies the identity xn = xn+r for
some r and therefore, the identity xn = xn+rℓ for every natural ℓ. Thus the
words xn, xn+rℓ (for all ℓ) and v pairwise equal each to other in the variety Y.

Further, one of the varieties N or X satisfies the identity xn = u1. The same
arguments as in the previous paragraph show that there exists a natural s such
that the words xn, xn+sℓ (for all ℓ) and v pairwise equal each to other in one
of the varieties N or X . Then the words xn, xn+rs and v pairwise equal each
to other in one of the varieties N ∨ Y or X ∨ Y and therefore, in the variety
(N ∨ Y) ∧ (X ∨ Y). In particular, the variety (N ∨ Y) ∧ (X ∨ Y) satisfies the
identity u = v.

Case 3: u ≡ x2y. It is well known that every periodic semigroup variety
W contains the greatest nil-subvariety. We denote this subvariety by Nil(W). In
view of Lemma 2.10, X = G1∨Cm1

∨N1 and Y = G2∨Cm2
∨N2 for some Abelian

periodic group varieties G1 and G2, some m1,m2 ≥ 0 and some nil-varieties N1

and N2. We may assume without loss of generality that N1 = Nil(X ) and
N2 = Nil(Y).

If the variety N satisfies the identity (1.3) then

(N ∧ X ) ∨ Y = (N ∨ Y) ∧ (X ∨ Y)

by Proposition 2.1, and we are done. Suppose now that the identity (1.3) fails
in N .

Recall that (3.1) is the shortest deduction of the identity u = v from the
identities of the varieties N and X . Hence, for every i = 0, 1, . . . , k − 1, the
identity ui = ui+1 is false in COM. This allows us to suppose that if ui is
a word of length 3 depending on letters x and y then ui ∈ {x2y, xy2}. Put
S = {x2y, xy2}. The words u0, u1, . . . , uk are pairwise distinct, whence at
most two of them lie in S. Recall that u0 ≡ x2y ∈ S. The identity u = u1
is satisfied by one of the varieties N or X . If it holds in N and u1 /∈ S then
Corollary 2.6 applies with the conclusion that N satisfies the identity (1.3). But
this is not the case. Further, if the identity u = u1 holds in X and u1 ∈ S
then the identity u1 = u2 holds in N and u2 /∈ S. Then Corollary 2.6 applies
again and we conclude that the variety N satisfies the identity (1.3). As we have
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already noted, this is not the case. Thus either the identity u = u1 holds in N
and u1 ∈ S or this identity holds in X and u1 /∈ S. Note that u2 /∈ S in the
first case because u0, u1 ∈ S here. In both the cases, there exists an identity
of the form w1 = w2 such that w1 ∈ S, w2 /∈ S and the identity holds in X
(namely, the identity u1 = u2 in the first case, and the identity u = u1 in the
second one). Corollary 2.6 shows that N1 satisfies the identity (1.3). According
to Proposition 2.1, this implies that the variety N1 is neutral in Com. We use
this fact below without special references.

By the hypothesis, the identity x2y = v holds in the variety Y. Then Corollary 2.6
implies that either the variety N2 satisfies the identity (1.3) or v ∈ W . In
the second case, the identity x2y = v is equivalent to (1.2) because it fails
in the variety COM. Thus either N2 satisfies the identity (1.3) or Y satisfies
the identity (1.2). Consider the second case. Corollary 2.7 implies that the
identity (1.1) holds in N2 in this case. Besides that, substituting 1 to y in (1.2),
we have that every monoid in Y is a band (in particular, each group in Y is
singleton). We see that G2 = T and m2 ≤ 1 in the considerable case. Thus either
N2 satisfies the identity (1.3) or Y = M∨N 2 where M is one of the varieties
T or SL.

Put Z1 = (N ∧ X ) ∨ Y and Z2 = (N ∨ Y) ∧ (X ∨ Y). In view of Lemma 2.10,
it suffices to verify that Gr(Z1) = Gr(Z2), m(Z1) = m(Z2) and Nil(Z1) =
Nil(Z2). Clearly, the variety Cm ∨ U is combinatorial whenever m ≥ 0 and U is
an arbitrary nil-variety. Using Lemma 2.11, we have

Gr(Z1) = Gr
(

G2 ∨ Cm2
∨ N2 ∨ (N ∧ X )

)

= G
2
,

Gr(Z2) = Gr
(

(N ∨ Y) ∧ (X ∨ Y)
)

= Gr(N ∨ Y) ∧Gr(X ∨ Y)

= Gr(G2 ∨ Cm2
∨ N2 ∨ N ) ∧Gr(G1 ∨ G2 ∨ Cm1

∨ Cm2
∨ N1 ∨ N2)

= G2 ∧ (G1 ∨ G2) = G2.

Thus Gr(Z1) = Gr(Z2). Further, using Lemma 2.12, we have

m(Z1) = m
(

(N ∧ X ) ∨ Y
)

= m
(

G2 ∨ Cm2
∨N2 ∨ (N ∧ X )

)

= m2,

m(Z2) = m
(

(N ∨ Y) ∧ (X ∨ Y)
)

= min
{

m(N ∨ Y),m(X ∨ Y)
}

= min
{

m(G2 ∨ Cm2
∨ N2 ∨ N ),m(G1 ∨ G2 ∨ Cm1

∨ Cm2
∨ N1 ∨ N2)

}

= min
{

m(G2 ∨ Cm2
∨ N2 ∨ N ),m(G1 ∨ G2 ∨ Cmax{m1,m2} ∨ N1 ∨ N2)

}

= min
{

m2,max{m1,m2}
}

= m2.

Thus m(Z1) = m(Z2).
It remains to check that Nil(Z1) = Nil(Z2). Put

I = var{x2y = xy2, x2yz = 0, xy = yx}.

As we have seen above, the varieties N1 and N2 satisfy the identity (1.2) and
therefore, the identity (1.1) (see Corollary 2.7). In other words, N1,N2 ⊆ I .
Simple calculations based on Lemma 2.5 show that proper subvarieties of the



10 B.M.VERNIKOV

variety I are exhausted by the following varieties:

In = var{x2yz = x1x2 · · · xn = 0, x2y = xy2, xy = yx} where n ≥ 4,

J = var{x2yz = x3 = 0, x2y = xy2, xy = yx},

Jn = var{x2yz = x3 = x1x2 · · · xn = 0, x2y = xy2, xy = yx} where n ≥ 4,

K = var{x2y = 0, xy = yx},

Kn = var{x2y = x1x2 · · · xn = 0, xy = yx} where n ≥ 3,

L = var{x2 = 0, xy = yx},

Ln = var{x2 = x1x2 · · · xn = 0, xy = yx} where n ∈ N.

This implies that the lattice L(I) has the form shown on Fig. 1.

✑
✑
✑
✑✑

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

♣
♣
♣

♣
♣
♣

♣

♣
♣
♣

♣
♣
♣
♣

♣
♣
♣

♣
♣
♣
♣

♣
♣
♣

♣
♣
♣
♣

I

I4

In

In+1

J

J4

Jn

Jn+1

K

K3

K4

Kn

Kn+1

L

L1 = T

L2

L3

L4

Ln

Ln+1

Рис. 1. The lattice L(I)

Identities of the form w = 0 are called 0-reduced. For a commutative nil-
variety of semigroups V, we denote by ZR(V) the variety given by the commutative
law and all 0-reduced identities that hold in V. The exponent of a periodic group
variety H is denoted by exp(H). To verify the equality Nil(Z1) = Nil(Z2), we
need two auxiliary facts.

Lemma 3.1. Let G be a periodic group variety and U be a nil-variety of semigroups

with U ⊆ I and U ⊇ Nil(Cm) for some m ≤ 2. Then

a) Nil(G ∨ Cm ∨ U) ⊆ ZR(U);
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b) if U ⊆ K then Nil(G ∨ Cm ∨ U) = U .

Доказательство. a) Put Z = G ∨ Cm∨U . Let w = 0 be an arbitrary 0-reduced
identity that holds in the variety U . Because U ⊆ I , we have that w is one of
the words x2yz, x2y, x3, x2 or x1x2 · · · xn for some natural n (see Fig. 1). Put
r = exp(G). If w ∈ {x2yz, x2y, x3, x2} then the variety Z satisfies the identity
xrw = w. Then Lemma 2.5(ii) applies with the conclusion that the identity w =
0 holds in the variety Nil(Z). Suppose now that w ≡ x1x2 · · · xn. In other words,
U satisfies the identity (3.2). Because Nil(Z) ⊇ Nil(Cm) and the variety Nil(Cm)
with m > 1 does not satisfy the identity (3.2), we have that m ≤ 1 in this
case. Then the variety Z satisfies the identity x1x2 · · · xn = xr+1

1
x2 · · · xn. Using

Lemma 2.5(ii) again, we have that the variety Nil(Z) satisfies the identity (3.2).
We see that if a 0-reduced identity holds in U then it holds in Nil(Z) as well.
We prove that Nil(Z) ⊆ ZR(U).

b) Let now U ⊆ K. All subvarieties of the variety K is given within COM by
0-reduced identities only (see Fig. 1). Therefore ZR(U) = U . Now the claim a)
implies that Nil(G ∨ Cm ∨ U) ⊆ U . The converse inclusion is evident. �

Lemma 3.2. If U1,U2 ⊆ I then ZR(U1) ∧ U2 = U1 ∧ U2.

Доказательство. Put Q = var{x2y = xy2, xy = yx}. Then U1 = Q ∧ ZR(U
1
)

(see Fig. 1) and U2 ⊆ I ⊆ Q. Therefore U1 ∧U2 = Q∧ ZR(U
1
)∧U2 = ZR(U1)∧

U2. �

Now we start with the proof of the equality Nil(Z1) = Nil(Z2). Note that
if m > 2 then the variety Nil(Cm) = var{xm = 0, xy = yx} does not satisfy
the identity (1.1). Since Nil(Cm1

) ⊆ N1 ⊆ X and Nil(Cm2
) ⊆ N2 ⊆ Y, we have

m1,m2 ≤ 2. Below we use this fact without special references.
Further, we note that N ∧ X = N ∧Nil(X ) = N ∧N

1
, whence

(3.3) Z1 = (N ∧N
1
) ∨ Y.

Suppose at first that the variety N2 satisfies the identity (1.3). Using the equality (3.3),
we have

Z1 = (N ∧N
1
) ∨ Y = (N ∧N

1
) ∨ N2 ∨ G2 ∨ Cm2

where m2 ≤ 2. Recall that N1 satisfies the identity (1.3). Now Lemma 3.1b)
with U = (N ∧N

1
)∨N2, G = G2 and m = m2 applies with the conclusion that

(3.4) Nil(Z1) = (N ∧N 1) ∨N2.

Applying Proposition 2.1, we have

(3.5) Nil(Z1) = (N ∨N 2) ∧ (N1 ∨ N2).

One can consider the variety Nil(Z2) now. Since Z2 = (N ∨ Y) ∧ (X ∨ Y), we
have

(3.6) Nil(Z2) = Nil(N ∨ Y) ∧Nil(X ∨ Y).

Further, Nil(N ∨ Y) = Nil(N ∨N
2
∨G2∨Cm2

). Now we may apply Lemma 3.1a)
with U = N ∨N 2, G = G2 and m = m2, and conclude that

Nil(N ∨ Y) ⊆ ZR(N ∨N
2
).
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On the other hand,

X ∨ Y = G1 ∨ G2 ∨ Cm1
∨ Cm2

∨N1 ∨N2 = G1 ∨ G2 ∨ Cmax{m1,m2} ∨N1 ∨N2.

Now Lemma 3.1b) with U = N 1 ∨ N2, G = G1 ∨ G2 and m = max{m1,m2}
applies with the conclusion that Nil(X ∨ Y) = N

1
∨ N2. Thus

Nil(Z2) = Nil(N ∨ Y) ∧Nil(X ∨ Y) ⊆ ZR(N ∨N
2
) ∧ (N1 ∨ N2).

By the hypothesis, N ⊆ I . Now Lemma 3.2 with U1 = N ∨N 2 and U2 = N1∨N2

may be applied with the conclusion that

Nil(Z2) ⊆ (N ∨N 2) ∧ (N1 ∨ N2).

Because the converse inclusion is evident, we have

(3.7) Nil(Z2) = (N ∨N 2) ∧ (N1 ∨ N2).

The equalities (3.5) and (3.7) imply that Nil(Z1) = Nil(Z2).
It remains to consider the case when N2 does not satisfy the identity (1.3).

Recall that Y = M∨N 2 where M is one of the varieties T or SL in this case.
The equality (3.3) implies that

Z1 = (N ∧N
1
) ∨ Y = (N ∧N

1
) ∨ N2 ∨M

where M has the just mentioned sense. Lemma 2.4 implies that the equality (3.4)
holds. This equality and Proposition 2.1 show that the equality (3.5) is true.
Besides that, the equality (3.6) holds. Suppose that M = SL. Proposition 2.1
shows that

(N ∨ Y) ∧ (X ∨ Y) = (N ∨N 2 ∨ SL) ∧ (X ∨N
2
∨ SL)

=
(

(N ∨N 2) ∧ (X ∨N 2)
)

∨ SL.

Now we may apply Lemma 2.4 and conclude that

Nil(Z2) = Nil
(

(N ∨N 2) ∧ (X ∨N 2)
)

.

Clearly, this equality holds whenever M = T too. Thus it is valid always. Note
that

X ∨N 2 = G1 ∨ Cm1
∨ N1 ∨ N2.

Using Lemma 3.1a) with U = N 1 ∨ N2, G = G1 and m = m1, we have

Nil(X ∨N 2) ⊆ ZR(N1 ∨ N2).

Since N ∨N 2 is a nil-variety, we have

Nil(Z2) = Nil
(

(N ∨N 2) ∧ (X ∨N 2)
)

= (N ∨N 2) ∧Nil(X ∨N 2)

⊆ (N ∨N 2) ∧ ZR(N1 ∨ N2).

Now we may apply Lemma 3.2 with U1 = N1 ∨ N2 and U2 = N ∨N 2 and
conclude that the equality (3.7) holds. Because we prove above that the equality (3.5)
is true, we have Nil(Z1) = Nil(Z2).

We complete the proof of Theorem 1.2. �

The implication c)−→ b) of Theorem 1.1. It is evident that the variety COM
is codistributive in Com. If the variety V satisfies the claim (ii) of Theorem 1.1
then Theorem 1.2 applies with the conclusion that V is costandard and therefore,
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is codistributive in Com. It remains to consider the case when V satisfies the
claim (iii) of Theorem 1.1. So, let V = G ∨M∨N where G is an Abelian periodic
group variety, M is one of the varieties T , SL or C2, and N is a commutative
variety satisfying the identity (1.3).

Let X and Y be arbitrary commutative semigroup varieties. It remains to
verify that V ∧ (X ∨ Y) ⊆ (V ∧ X ) ∨ (V ∧ Y) because the converse inclusion is
evident. If at least one of the varieties X or Y coincides with the variety COM
then the desirable inclusion is evident. Thus we may assume that the varieties
X and Y are periodic. Put Z1 = V ∧ (X ∨ Y) and Z2 = (V ∧ X ) ∨ (V ∧ Y). The
varieties Z1 and Z2 are periodic. In view of Lemma 2.10, Z1 = G1 ∨ Cm1

∨ N1

and Z2 = G2 ∨ Cm2
∨ N2 for some Abelian periodic group varieties G1 and G2,

some m1,m2 ≥ 0 and some nil-varieties N1 and N2. We may assume without
loss of generality that Gi = Gr(Zi) and Ni = Nil(Zi) for i = 1, 2. If m > 2 then
the variety Nil(Cm) does not satisfy the identity (1.3). Therefore m1,m2 ≤ 2.

Clearly, it suffices to verify that G1 = G2, m(Z1) = m(Z2) and N1 ⊆ N2. Put
q = exp

(

Gr(V)
)

, r = exp
(

Gr(X )
)

and s = exp
(

Gr(Y)
)

. Then

exp(G1) = gcd
(

q, lcm(r, s)
)

and exp(G2) = lcm
(

gcd(q, r), gcd(q, s)
)

.

Since the lattice of all natural numbers with the operations gcd and lcm is
distributive, we have that exp(G1) = exp(G2). This implies that G1 = G2 because
the varieties G1 and G2 are Abelian.

Put m(V) = k, m(X ) = ℓ and m(Y) = m. It is clear that

m(E ∧ F) = min
{

m(E),m(F)
}

for arbitrary periodic varieties E and F . Combining this observation with Corollary 2.13,
we have that

m(Z1) = min
{

k,max{ℓ,m}
}

and m(Z2) = max
{

min{k, ℓ},min{k,m}
}

.

This implies that m(Z1) = m(Z2).
It remains to verify that N1 ⊆ N2. It is evident that N1,N2 ⊆ Nil(V). The

variety V is commutative and satisfies the identity x2y = xr+2y where r =
exp(G). Lemma 2.5(ii) implies now that N1 and N2 satisfy the identity (1.3).
This means that N1,N2 ⊆ K. Every subvariety of the variety K is given within
K either by the identity

(3.8) x2 = 0

or by the identity (3.2) for some n or by these two identities simultaneously (see
Fig. 1). Thus it suffices to verify that deg(Z1) = deg(Z2) and the identity (3.8)
holds in the variety N1 whenever it holds in N2.

Put deg(V) = k, deg(X ) = ℓ and deg(Y) = m. It is evident that

deg(E ∧ F) = min
{

deg(E),deg(F)
}

for arbitrary semigroup varieties E and F . Combining this observation with
Corollary 2.9, we have that

deg(Z1) = min
{

k,max{ℓ,m}
}

and deg(Z2) = max
{

min{k, ℓ},min{k,m}
}

.

This implies that deg(Z1) = deg(Z2).
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Suppose now that N2 satisfies the identity (3.8). Being periodic, the variety
Z2 satisfies the identity xn = xm for some natural numbers n and m with m > n.
Let n be the least number with such property. Then Lemma 2.5(ii) implies that
the variety N2 = Nil(Z2) satisfies the identity xn = 0 and n is the least number
with such a property. Hence n ≤ 2. Thus the variety Z2 = (V ∧ X ) ∨ (V ∧ Y)
satisfies the identity x2 = xm for some m > 2. In particular, this identity holds
in the variety V ∨ X . Therefore there exists a deduction of this identity from
the identities of the varieties V and X . In particular, one of these varieties
satisfies a non-trivial identity of the form x2 = w. Now Lemma 2.5 implies
that one of the varieties Nil(V) or Nil(X ) satisfies the identity (3.8). If this
identity holds in Nil(V) then it holds in the variety Nil

(

V ∧ (X ∨ Y)
)

= N
1

too.
Thus we may assume that the identity (3.8) is satisfied by the variety Nil(X ).
Analogously, using a deduction of the identity x2 = xm from the identities of
the varieties V and Y, we may reduce our considerations to the case when the
identity (3.8) holds in Nil(Y). The same arguments as we use at the beginning of
this paragraph allows us to check that the varieties X and Y satisfy, respectively,
the identities x2 = xq+2 and x2 = xr+2 for some natural numbers q and r.
Therefore X ∨ Y satisfies the identity x2 = xqr+2. Then Lemma 2.5(ii) implies
that the variety Nil(X ∨ Y) satisfies the identity (3.8). Then it holds in the
variety Nil

(

V ∧ (X ∨ Y)
)

= N
1

too.
We complete the proof of Theorem 1.1. �

4. Corollaries

One can give several corollaries of main results. Theorem 1.1 and [6, Theorem 1.2]
imply

Corollary 4.1. A commutative semigroup variety V with V 6= COM is an

upper-modular element of the lattice Com if and only if it is an upper-modular

element of the lattice SEM. �

Comparing Theorems 1.1 and 1.2, we have

Corollary 4.2. For a commutative nil-variety of semigroups V, the following

are equivalent:

a) V is an upper-modular element of the lattice Com;

b) V is a codistributive element of the lattice Com;

c) V is a costandard element of the lattice Com;

d) V satisfies the identities (1.1) and (1.2). �

Theorem 1.1 implies

Corollary 4.3. If a commutative semigroup variety V is an upper-modular

element of the lattice Com and V 6= COM then every subvariety of the variety

V is an upper-modular element of the lattice Com. �

Note that the analog of this assertion for the lattice SEM is the case (see [7,
Corollary 3]). Theorem 1.1 and results of the article [13] imply

Corollary 4.4. If a commutative semigroup variety V is an upper-modular

element of the lattice Com and V 6= COM then the lattice L(V) is distributive.

�
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We does not know, whether the analog of this fact in the lattice SEM is true.
It is verified in [7, Corollary 2] that the following weaker statement is the case:
if a variety V is an upper-modular element of the lattice SEM and V is not the
variety of all semigroups then the lattice L(V) is modular.
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