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Аннотация. We survey results concerning special elements of eight types
(namely, modular, lower-modular, upper-modular, distributive, codistributive,
standard, costandard and neutral elements) in the lattice of all semigroup
varieties and three of its sublattices, namely, the lattices of commutative
varieties, of permutative varieties and of overcommutative ones. These results
are due to Ježek, McKenzie, Shaprynskǐı, Volkov and the author. No proofs
are included but mainn ideas of proofs are briefly discussed. Several open
questions are formulated.

1. Introduction

The collection of all semigroup varieties forms a lattice with respect to class-
theoretical inclusion. This lattice will be denoted by SEM. The lattice SEM

has been intensively studied since the beginning of 1960s. A systematic overview
of the material accumulated here is given in the survey [19].

The lattice SEM has an extremely complicated structure. In particular, it
contains an anti-isomorphic copy of the partition lattice over a countably infinite
set [1,5], and therefore does not satisfy any non-trivial lattice identity. Identities
in subvariety lattices of semigroup varieties were intensively examined in many
articles. These articles contain a number of interesting and deep results (see [19,
Section 11]). The next natural step is to consider varieties that guarantee, so to
speak, ‘nice lattice behaviour’ in their neighborhood. Specifically, our attention
is to study special elements of different types in the lattice SEM.

We will consider eight types of special elements: modular, lower-modular,
upper-modular, distributive, codistributive, standard, costandard and neutral
elements. Recall the corresponding definitions. An element x of a lattice 〈L;∨,∧〉
is called

modular if ∀ y, z ∈ L : y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y;

lower-modular if ∀ y, z ∈ L : x ≤ y −→ x ∨ (y ∧ z) = y ∧ (x ∨ z);
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distributive if ∀ y, z ∈ L : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

standard if ∀ y, z ∈ L : (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z);

neutral if, for all y, z ∈ L, the sublattice of L generated by x, y and z is
distributive. It is well known (see [4, Theorem 254 on p. 226], for instance) that
an element x ∈ L is neutral if and only if

∀ y, z ∈ L : (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

Upper-modular, codistributive and costandard elements are defined dually to
lower-modular, distributive and standard ones respectively.

Special elements play an important role in the general lattice theory (see [4,
Section III.2], for instance). In particular, it is well known that if a is a neutral
element in a lattice L then L is decomposable into a subdirect product of the
principal ideal and the principal filter of L generated by a (see [4, Theorem 254
on p. 226], for instance). Thus the knowledge of which elements of a lattice are
neutral gives essential information on the structure of the lattice as a whole.

There is a number of interrelations between types of elements we consider. It
is evident that a neutral element is both standard and costandard; a standard
or costandard element is modular; a [co]distributive element is lower-modular
[upper-modular]. It is well known also that a [co]standard element is [co]distributive
(see [4, Theorem 253 on p. 224], for instance). These interrelations between types
of elements in abstract lattices are shown in Fig. 1.

neutral

standard costandard

modular

distributive codistributive

lower-modular upper-modular

Рис. 1. Interrelations between types of elements in abstract lattices

First results about special elements in the lattice SEM were obtained in
the articles [7, 31] where these results play an auxiliary role. A systematic
examination of special elements in SEM is the objective of the articles [14,
15,17,22–27,29,32,36]; see also [19, Section 14]. Briefly speaking, the mentioned
articles contain complete descriptions of lower-modular, distributive, standard,
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costandard and neutral elements of the lattice SEM1 and essential information
about modular, upper-modular and codistributive elements of this lattice (including
strong necessary conditions and descriptions in wide and important partial
cases). In particular, it turns out that there are some interrelations between
special elements of different types in SEM that do not hold in abstract lattices.
Namely, an element of SEM is standard if and only if it is distributive; is
costandard if and only if it is neutral; is modular whenever it is lower-modular.
Interrelations between types of elements in the lattice SEM are shown in Fig. 2.
Note that there are no other interrelations between types of elements under
consideration. Corresponding examples will be given below.

neutral = costandard

standard = distributive

lower-modular

modular

codistributive

upper-modular

Рис. 2. Interrelations between types of elements in SEM

The lattice SEM contains a number of wide and important sublattices (see [19,
Section 1 and Chapter 2]). It is natural to examine special elements in these
sublattices. One of the most important sublattices of SEM is the lattice Com of
all commutative semigroup varieties. It follows from results of [2] that this lattice
contains an isomorphic copy of any finite lattice, and therefore does not satisfy
any non-trivial lattice identity. On the other hand, the lattice Com is known to
be countably infinite [10] and can be characterized [8] (see also [19, Section 8]).
Special elements in the lattice Com are examined in [13, 14] where lower-
modular, distributive, standard and neutral elements of Com are completely
determined and an essential information about modular elements of this lattice
is obtained. As in the case of the lattice SEM, it turns out that an element
of Com is standard if and only if it is distributive; is modular whenever it is
lower-modular. Interrelations between types of elements in the lattice Com are
shown in Fig. 3. Two dotted arrows in this figure correspond to interrelations
for which it is unknown whether they hold or not. No interrelations between

1To prevent a possible confusion, we note that the description of standard elements of SEM

is not formulated explicitly anywhere but readily follows from results of [29], see a comment
to Theorem 3.3 below.
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types of elements in Com not specified in Fig. 3 hold. Corresponding examples
will be given below.

neutral

standard = distributive

lower-modular
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?
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Рис. 3. Interrelations between types of elements in Com

Recall that a semigroup variety is called permutative if it satisfies a permutational

identity, that is, an identity of the type

(1) x1x2 · · · xn = x1πx2π · · · xnπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}. The collection of
all permutative varieties forms a sublattice Perm of the lattice SEM. This
lattice is located between SEM and Com. It seems quite natural to examine
special elements in Perm. There are no published results here so far. Recently,
Shaprynskǐı has obtained some information about modular and lower-modular
elements in the lattice Perm.

The ‘antipode’ of the lattice Com is the lattice OC of all overcommutative

semigroup varieties (that is, varieties containing the variety of all commutative
semigroups). It is well known that the lattice SEM is the disjoint union of OC

and the lattice of all periodic semigroup varieties (that is, varieties consisting of
periodic semigroups). Results of the papers [7,23,25] imply that if a semigroup
variety V different from the variety of all semigroups belongs to one of the
eight types mentioned above (with respect to SEM), then V is periodic (a
somewhat more general fact is proved in [15], see Proposition 3.1 below). Thus an
examination of special elements of all mentioned types in SEM a priori can not
give any information about the lattice OC. Note that the lattice OC contains
an isomorphic copy of any finite lattice [35], whence it does not satisfy any non-
trivial lattice identity. Overcommutative varieties whose lattice of overcommutative
subvarieties satisfies a particular lattice identity were intensively studied (see [19,
Subsection 5.2] and the recent article [16]). All these arguments make the
examination of special elements of OC very natural. Such an examination has
been started in the article [21]. It is proved there that the properties of being
a distributive, a codistributive, a standard, a costandard and a neutral element
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of the lattice OC are equivalent, and a certain description of corresponding
overcommutative varieties is proposed. But this description turns out to be
incorrect (while the result that the five mentioned conditions are equivalent is
true). The correct description of distributive, codistributive, standard, costandard
and neutral elements of the lattice OC is contained in the article [18]. Interrelations
between types of elements in the lattice OC are shown in Fig. 4.

neutral = standard = costandard = distributive = codistributive

lower-modular modular upper-modular

Рис. 4. Interrelations between types of elements in OC

This survey consists of six sections. In Section 2, we provide some preliminary
results about special elements in abstract lattices, lattices of equivalence relations,
congruence lattices of G-sets and the lattices SEM and Com. These preliminary
results play an important role in the proofs of the results that we survey in
Sections 3–6. In Sections 3 and 4, we overview results about special elements
in the lattices SEM and Com respectively. Section 5 contains results about
modular and lower-modular elements in lattices located between SEM and
Com, namely in subvariety lattice of overcommutative varieties and in the
lattice Perm. Sections 3–5 also contain several open questions. Finally, Section 6
is devoted to special elements in the lattice OC.

2. Preliminary results

2.1. ε-elements and Id-elements of lattices. All types of special elements
introduced above are defined by the same scheme. Namely, we take a particular
identity and consider it as an open formula. Then, one of the variables is left free
while all the others are subjected to a universal quantifier2. One can generalize
this approach to an arbitrary lattice identity. This seems to be natural a priori
and turns out to be quite fruitful a posteriori.

Let ε be a lattice identity of the form s = t where terms s and t depend on
an ordered set of variables x0, x1, . . . , xn. An element x of a lattice L is called
an ε-element of L if

∀x1, . . . , xn ∈ L : s(x, x1, . . . , xn) = t(x, x1, . . . , xn).

Note that we consider here two copies of the same identity with different orderings
of its variables as distinct identities. An element of a lattice L is called an Id-
element of L if it is an ε-element of L for some non-trivial identity ε.

2Formally speaking, the definitions of modular, lower-modular and upper-modular elements
are based on a lattice quasiidentity rather than an identity. But we give such definitions for
the sake of brevity and convenience only. It is fairly easy to redefine these types of elements
in the language of lattice identities.
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For an element a of a lattice L, we put (a] = {x ∈ L | x ≤ a}. If a ∈ L and
the lattice (a] satisfies the identity p(x1, . . . , xn) = q(x1, . . . , xn) then

p(a ∧ x1, . . . , a ∧ xn) = q(a ∧ x1, . . . , a ∧ xn)

for all x1, . . . , xn ∈ L because a∧x1, . . . , a∧xn ∈ (a]. Therefore, in this situation,
a is an ε-element of L with the following identity ε:

p(x0 ∧ x1, . . . , x0 ∧ xn) = q(x0 ∧ x1, . . . , x0 ∧ xn).

So, we have the following

Observation 2.1. If a is an element of a lattice L and the ideal (a] of L satisfies

some non-trivial lattice identity then a is an Id-element of L.

The subvariety lattice of a variety V is denoted by L(V). A semigroup variety
V is called an Id-variety if it is an Id-element of the lattice SEM. The following
assertion is a specialization of Observation 2.1 for the lattice SEM.

Corollary 2.2. If V is a semigroup variety and the lattice L(V) satisfies some

non-trivial lattice identity then V is an Id-variety.

The following fact turns out to be very helpful.

Proposition 2.3 ([13, Corollary 2.1]). Let a be an atom and a neutral element

of a lattice L and ε a lattice identity that holds in the 2-element lattice. An

element x ∈ L is an ε-element of the lattice L if and only if the element x ∨ a

has the same property.

We denote by varΣ the semigroup variety given by the identity system Σ. Put
SL = var{x2 = x, xy = yx}. It is well known that SL is an atom of the lattice
SEM (see [19, Section 1], for instance) and a neutral element of this lattice
(see [36, Proposition 4.1] or Theorem 3.4 below). Moreover, SL is a neutral
atom of Com. Thus Proposition 2.3 implies the following

Corollary 2.4. Let ε be a lattice identity that holds in the 2-element lattice. A

[commutative] semigroup variety V is an ε-element of the lattice SEM [respectively
Com] if and only if the variety V ∨ SL has the same property.

Note that a number of partial cases of Proposition 2.3 and Corollary 2.4 for
special elements of different concrete types were proved earlier in [23,27,29,32,
36].

2.2. Modular and upper-modular elements in lattices of equivalence

relations. If S is a set then Eq(S) stands for the lattice of equivalence relations
on S.

Proposition 2.5. Let S be a non-empty set. For an equivalence relation α on

S, the following are equivalent:

a) α is a modular element of the lattice Eq(S);
b) α is an upper-modular element of the lattice Eq(S);
c) α has at most one non-singleton class.



SPECIAL ELEMENTS IN LATTICES OF SEMIGROUP VARIETIES 7

The equivalence of the claims a) and c) of this proposition was proved in [6,
Proposition 2.2], while the equivalence of the claims b) and c) was verified
in [31, Proposition 3].

Proposition 2.5 turns out to be very helpful for the examination of modular
and lower-modular elements in varietal lattices. In order to explain how this
proposition can be applied, we need some new definitions and notation. Note
that a semigroup S satisfies the identity system wx = xw = w where the letter
x does not occur in the word w if and only if S contains a zero element 0 and
all values of w in S equal to 0. We adopt the usual convention of writing w = 0
as a short form of such a system and referring to the expression w = 0 as to a
single identity. Identities of the form w = 0 are called 0-reduced. Further, let X
be a semigroup variety, V a subvariety of X , F the X -free object and ν the fully
invariant congruence on F corresponding to V. It is clear that if V may be given
within X by 0-reduced identities then ν has only one non-singleton class (the
one that contains the equivalence classes modulo X that correspond to the left
sides of those 0-reduced identities). Now recall the generally known fact that the
lattice L(X ) is anti-isomorphic to the lattice of all fully invariant congruences
on F . Therefore, the lattice Eq(F ) contains an anti-isomorphic copy of L(X ).
Combining all these observations with Proposition 2.5, we have the following

Corollary 2.6. Let X be a semigroup variety and V its subvariety. If V is

defined within X by 0-reduced identities then V is a modular and lower-modular

element of the lattice L(X ).

This statement permits to obtain an important information about modular
and lower-modular elements of the lattices SEM and Com (see Subsections 3.2, 3.6, 4.1
and 4.4 below).

2.3. Special elements in congruence lattices of G-sets. A unary algebra
with the carrier A and the set of (unary) operations G is called a G-set if G is
equipped by a structure of a group and this group structure on G is compatible
with the unary structure on A (this means that if g, h ∈ G, x ∈ A and e is the
unit element of G then g

(
h(x)

)
= (gh)(x) and e(x) = x). Our interest to G-sets

is explained by the fact that the lattice OC admits a concise and transparent
description in terms of congruence lattices of G-sets. More precisely, OC is anti-
isomorphic to a subdirect product of congruence lattices of countably infinite
series of certain G-sets (see [35] or [19, Subsection 5.1]). To apply this result for
examination of special elements in OC, some information about special elements
in congruence lattices of G-sets is required.

A G-set A is said to be transitive if, for all a, b ∈ A, there exists g ∈ G such
that g(a) = b. If A is a G-set and a ∈ A then we put

StabA(a) =
{
g ∈ G | g(a) = a

}
.

Clearly, StabA(a) is a subgroup in G. This subgroup is called a stabilizer of an
element a in A. The congruence lattice of a G-set A is denoted by Con(A).

Proposition 2.7 ([21, Theorem 1]). Let A be a non-transitive G-set such that

StabA(x) = StabA(y) for all elements x, y ∈ A. For a congruence α on A, the

following are equivalent:
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a) α is a distributive element of the lattice Con(A);
b) α is a codistributive element of the lattice Con(A);
c) α is a standard element of the lattice Con(A);
d) α is a costandard element of the lattice Con(A);
e) α is a neutral element of the lattice Con(A);
f) α is either the universal relation or the equality relation on A.

G-sets that appear in [35] in the description of the lattice OC have the
property that the stabilizer of any element in these G-sets is the trivial group.
Thus, the application of Proposition 2.7 is not hindered by the hypothesis that
stabilizers of all elements in A coincide. It is presently unknown if the proposition
holds without this hypothesis.

2.4. Upper-modular and codistributive elements: interrelations between

lattice identities and a hereditary property. The following easy observation
turns out to be helpful.

Observation 2.8. Let L be a lattice. If an element a ∈ L is upper-modular

[codistributive] in L and the lattice (a] is modular [distributive] then every

element of (a] is upper-modular [codistributive] in L.

This claim was noted in [25, Lemma 2.1] for upper-modular elements and
in [27, Lemma 2.2] for codistributive ones.

Observation 2.8 immediately implies the following

Corollary 2.9. Let Lat be one of the lattices SEM or Com. If a semigroup

variety V is an upper-modular [codistributive] element of the lattice Lat and the

lattice L(V) is modular [distributive] then every subvariety of V is upper-modular

[codistributive] element of the lattice Lat.

3. The lattice SEM

For convenience, we call a semigroup variety modular if it is a modular element
of the lattice SEM and adopt analogous convention for all other types of special
elements. The main results of this section provide:

• a complete classification of lower-modular, distributive, standard, costandard
or neutral varieties (Theorems 3.2, 3.3 and 3.4),
• a classification of modular, upper-modular or codistributive varieties in

some wide partial cases (Theorems 3.10, 3.11, 3.18 and 3.26),
• strong necessary conditions for a semigroup variety to be modular, upper-

modular or codistributive (Theorems 3.6, 3.7, 3.12 and 3.25),
• a sufficient condition for a semigroup variety to be modular (Theorem 3.8).

One can mention also Proposition 3.1 that gives an important information about
Id-varieties.

3.1. Id-varieties. We denote by SEM the variety of all semigroups. A semigroup
variety V is called proper if V 6= SEM.

The class of Id-varieties includes all varieties with non-trivial identities in
subvariety lattices (see Corollary 2.2). It follows from results of [2] that a
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semigroup variety V is periodic whenever the lattice L(V) satisfies some non-
trivial identity. As we have already mentioned in Section 1, results of the
articles [7, 23, 25] imply that if a proper variety V belongs to one of the eight
considered types in SEM then it is periodic too. All these statements are
generalized by the following

Proposition 3.1 ( [15, Theorem 1]). A proper Id-variety of semigroups is

periodic.

On the other hand, it is verified in [15, Theorem 2] that there are periodic
varieties (moreover, nil-varieties) that are not Id-varieties.

3.2. Lower-modular varieties. Varieties that may be given by 0-reduced
identities only are called 0-reduced. We denote by T the trivial semigroup variety.
A number of partial results concerning lower-modular varieties were obtained
in [23, 24, 31]. All of them are covered by the following

Theorem 3.2. A semigroup variety V is lower-modular if and only if either

V = SEM or V =M∨N where M is one of the varieties T or SL and N is

a 0-reduced variety.

This theorem was verified for the first time in [17, Theorem 1.1] and was
reproved in a simpler and shorter way in [14]. The proof of Theorem 3.2 given
in [14] is based on Theorem 5.1 below. Note that the ‘if’ part of Theorem 3.2
immediately follows from Corollaries 2.6 (with X = SEM) and 2.4.

Neutral, standard and distributive varieties are lower-modular. In view of
Theorem 3.2, a description of varieties of these three types should look as follows:

A semigroup variety V is distributive [standard, neutral ] if and only if either

V = SEM or V =M∨N whereM is one of the varieties T or SL and N is a

0-reduced variety such that . . . (with some additional restriction to N depending
on the type of element we consider).

Exact formulations of corresponding results are given in the following two
subsections.

3.3. Distributive and standard varieties. Put

Q = var{x2y = xyx = yx2 = 0},

Qn = var{x2y = xyx = yx2 = x1x2 · · · xn = 0},

R = var{x2 = xyx = 0},

Rn = var{x2 = xyx = x1x2 · · · xn = 0}

where n is a natural number. It is easy to see that varieties of these four types are
precisely all 0-reduced varieties satisfying the identities x2y = xyx = yx2 = 0.

Theorem 3.3. For a semigroup variety V, the following are equivalent:

a) V is distributive;

b) V is standard;

c) either V = SEM or V =M∨N where M is one of the varieties T or

SL and N is one of the varieties Q, Qn, R or Rn.
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The equivalence of the claims a) and c) of this theorem is proved in [29,
Theorem 1.1]. Note that the proof of the implication a)−→ c) given in [29]
may be essentially simplified by using Theorem 3.2. The implication b)−→ a)
is evident. To verify the implication a)−→ b), we need two ingredients. First,
it is verified in [29, Corollary 1.2] that a distributive element of the lattice
SEM is a modular element of this lattice3. Second, it is fairly easy to check
that an element of a lattice is standard whenever it is both distributive and
modular (see [13, Lemma 2.2], for instance). Note that the former statement is
strengthened by Corollary 3.9 below.

3.4. Costandard and neutral varieties. Put ZM = var{xy = 0}. It is well
known that ZM is an atom of the lattice SEM.

The following statement is a compilation of several published results.

Theorem 3.4. For a semigroup variety V, the following are equivalent:

a) V is both lower-modular and upper-modular;

b) V is both distributive and codistributive;

c) V is costandard;

d) V is neutral;

e) V is one of the varieties T , SL, ZM, SL ∨ ZM or SEM.

Clearly, the claim e) of this theorem may be reformulated in the manner
specified in Subsection 3.2: either V = SEM or V =M∨N whereM is one of
the varieties T or SL and N is a 0-reduced variety such that xy = 0 in N .

We do not include in Theorem 3.4 the claim that V is both standard and
costandard because it is well known that an element of arbitrary lattice is both
standard and costandard if and only if it is neutral (see [4, Theorem 255 on
p. 228], for instance). The equivalence of the claims a) and e) of Theorem 3.4
was verified in [24, Corollary 3.5], the equivalence of c) and e) was checked in [27,
Theorem 1.3], the equivalence of d) and e) was proved in [36, Proposition 4.1],
while the implications d)−→ b)−→ a) are evident.

Since a neutral element of a lattice is standard, Theorem 3.4 implies the
following

Corollary 3.5 ( [27, Corollary 1.1]). Every costandard semigroup variety is

standard.

3.5. An application to definable varieties. Here we discuss an interesting
application of results overviewed above. We need some new definitions. A subset
A of a lattice 〈L;∨,∧〉 is called definable in L if there exists a first-order formula
Φ(x) with one free variable x in the language of lattice operations ∨ and ∧ which
defines A in L. This means that, for an element a ∈ L, the sentence Φ(a) is
true if and only if a ∈ A. If A consists of a single element, then we talk about
definability of this element. A set X of semigroup varieties (or a single semigroup
variety X ) is said to be definable if it is definable in SEM. In this situation we
will say that the corresponding first-order formula defines the set X or the
variety X .

3This immediately follows from the implication a)−→ c) of Theorem 3.3 and Corollaries 2.6
(with X = SEM) and 2.4.
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A number of deep results about definable varieties and sets of varieties of
semigroups have been obtained in [7] by Ježek and McKenzie4. It has been
conjectured there that every finitely based semigroup variety is definable up
to duality. The conjecture is confirmed in [7] for locally finite finitely based
varieties. On their way to obtaining this fundamental result, Ježek and McKenzie
proved the definability of several important sets of semigroup varieties such as
the sets of all finitely based, all locally finite, all finitely generated and all 0-
reduced semigroup varieties. But the article [7] contains no explicit first-order
formulas that define any of these sets of varieties. The task of writing an explicit
formula that defines the set of all finitely based or the set of all locally finite or
the set of all finitely generated varieties seems to be extremely difficult. On the
other hand, the set of all 0-reduced varieties can be defined by a quite simple
first-order formula based on descriptions of lower-modular and neutral varieties.

Indeed, Theorem 3.2 shows that a semigroup variety is 0-reduced if and only
if it is lower-modular and does not contain the variety SL. It remains to define
the variety SL. Theorem 3.4 together with the well-known description of atoms
of the lattice SEM (see [19, Section 1], for instance) imply that this lattice
contains exactly two neutral atoms, namely the varieties SL and ZM. Recall
that a semigroup variety V is called chain if the lattice L(V) is a chain. It is
well known that the variety ZM is properly contained in some chain variety,
while the variety SL is not (see [28], for instance, for more details). Combining
the mentioned observations, we see that the class of all 0-reduced varieties may
be defined as the class K of semigroup varieties with the following properties:

(i) every member of K is a lower-modular variety;
(ii) if V ∈ K and V contains some neutral atom A then A is properly

contained in some chain variety.

It is evident that properties (i) and (ii) may be written by simple first-order
formulas with one free variable.

An explicit formula that defines the class of all 0-reduced varieties is written
in [28, Section 3]. Note that the description of distributive semigroup varieties
given by Theorem 3.3 may also be applied to define some interesting varieties
(see [28, Section 6]).

3.6. Modular varieties. The problem of description of modular semigroup
varieties is open so far. Here we provide some partial results concerning this
problem.

Recall that a semigroup variety is called a nil-variety if it consists of nilsemigroups
or, equivalently, satisfies an identity of the form xn = 0 for some natural n.
Clearly, every 0-reduced variety is a nil-variety. The following theorem gives a
strong necessary condition for a semigroup variety to be modular.

Theorem 3.6. If V is a modular semigroup variety then either V = SEM or

V =M∨N where M is one of the varieties T or SL and N is a nil-variety.

4Note that paper [7] deals with the lattice of equational theories of semigroups, that is,
the dual of SEM rather than the lattice SEM itself. When reproducing results from [7], we
adapt them to the terminology of the present article.
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This theorem readily follows from [7, Proposition 1.6]. A deduction of Theorem 3.6
from [7, Proposition 1.6] is given explicitly in [22, Proposition 2.1]. A direct
and transparent proof of Theorem 3.6 is given in [14]. This proof is based on
Theorem 5.1 below.

Theorem 3.6 and Corollary 2.4 completely reduce the examination of modular
varieties to nil-varieties. There is a strong necessary condition for a nil-variety
to be modular. To formulate this result, we need some additional definitions.

We call an identity u = v substitutive if the words u and v depend on the
same letters and v may be obtained from u by renaming of letters. In [6],
Ježek describes modular elements of the lattice of all varieties (more precisely,
all equational theories) of any given type. In particular, it follows from [6,
Lemma 6.3] that if a nil-variety of semigroups V is a modular element of
the lattice of all groupoid varieties then V may be given by 0-reduced and
substitutive identities only. This does not imply directly the same conclusion
for modular nil-varieties because a modular element of SEM need not be
a modular element of the lattice of all groupoid varieties. Nevertheless, the
following assertion shows that the ‘semigroup analogue’ of the mentioned result
of Ježek holds true.

Theorem 3.7 ([22, Proposition 2.2]). A modular nil-variety of semigroups may

be given by 0-reduced and substitutive identities only.

Corollary 2.6 with X = SEM immediately implies the following

Theorem 3.8. Every 0-reduced semigroup variety is modular.

This fact was noted for the first time in [31, Corollary 3] and rediscovered (in
different terminology) in [7, Proposition 1.1].

Theorems 3.7 and 3.8 provide a necessary and a sufficient condition for a
nil-variety to be modular respectively. The gap between these conditions seems
to be not very large. But the necessary condition is not a sufficient one, while
the sufficient condition is not a necessary one (this follows from Theorem 3.10
below).

Theorems 3.2 and 3.8 and Corollary 2.4 immediately imply the following

Corollary 3.9 ([17, Corollary 1.2]). Every lower-modular semigroup variety is

modular.

By the way, neither of the five other possible interrelations between properties
of being a modular variety, a lower-modular variety and an upper-modular
variety holds. For instance:

• the variety var{x2 = 0, xy = yx} is modular (by Theorem 3.10 below)
but not lower-modular (by Theorem 3.2);
• the variety var{xyz = 0} is modular and lower-modular (by Corollary 2.6

with X = SEM) but not upper-modular (by Theorem 3.11 below);
• an arbirary abelian periodic group variety is upper-modular (by Theorem 3.11

below) but neither modular nor lower-modular (by Theorems 3.6 and 3.2
respectively).

Theorems 3.7 and 3.8 show that in order to describe modular nil-varieties
(and therefore all modular varieties) we need to examine nil-varieties satisfying
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substitutive identities. A natural partial case of substitutive identities are permutational
ones, while the strongest permutational identity is the commutative law. Modular
varieties satisfying this law are completely classified by the following

Theorem 3.10 ( [22, Theorem 3.1]). A commutative semigroup variety V is

modular if and only if V =M∨N where M is one of the varieties T or SL
and N satisfies the identity

(2) x2y = 0.

3.7. Upper-modular varieties. The problem of description of upper-modular
semigroup varieties is open so far. Here we provide some partial results concerning
this problem. The first result classifies upper-modular varieties in some wide
class of varieties. To formulate this statement we need some additional definitions
and notation.

A semigroup variety V is called a variety of finite degree [a variety of degree n]
if all nilsemigroups in V are nilpotent [if nilpotency degrees of nilsemigroups in
V are bounded by the number n and n is the least number with this property].
We say that a semigroup variety is a variety of degree > n if it is either a variety
of a finite degree m with m > n or not a variety of finite degree. Put

An = var{xny = y, xy = yx} where n ≥ 1,

C = var{x2 = x3, xy = yx}.

In particular, A1 = T . Note that An is the variety of all Abelian groups whose
exponent divides n.

Theorem 3.11 ( [26, Theorem 1]). A semigroup variety V of degree > 2 is

upper-modular if and only if one of the following holds:

(i) V = SEM;

(ii) V =M∨N where M is one of the varieties T or SL and N is a nil-

variety satisfying the identities x2y = xy2 and xy = yx;

(iii) V = An ∨M∨N where n ≥ 1, M is one of the varieties T , SL or C
and N is a commutative variety satisfying the identity (2).

We note that Theorem 3.11 readily implies a necessary condition for a semigroup
variety to be upper-modular given by [25, Theorem 1.1] and a description of
upper-modular nil-varieties obtained in [32, Theorem 2].

Theorem 3.11 reduces the examination of upper-modular varieties to varieties
of degree ≤ 2. To formulate a result concerning this case, we need some new
definitions and notation. Recall that a semigroup variety is called completely

regular if it consists of completely regular semigroups — unions of groups. A
semigroup variety V is called a variety of semigroups with completely regular

square if, for any member S of V, the semigroup S2 is completely regular. Put

LZ = var{xy = x},

RZ = var{xy = y},

P = var{xy = x2y, x2y2 = y2x2},
←−
P = var{xy = xy2, x2y2 = y2x2}.

All we know about upper-modular varieties of degree ≤ 2 is the following
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Theorem 3.12 ([26, Theorem 2]). If V is an upper-modular semigroup variety

of degree ≤ 2 then one of the following holds:

(i) V is a variety of semigroups with completely regular square;

(ii) V = K ∨ P where K is a completely regular semigroup variety such that

RZ * K;

(iii) V = K∨
←−
P where K is a completely regular semigroup variety such that

LZ * K.

We do not know any example of a non-upper-modular variety that satisfies one
of the claims (i)–(iii) of Theorem 3.12. This inspires the following two questions.

Question 3.13. Is it true that every variety of semigroups with completely

regular square is upper-modular?

Question 3.14. Is it true that every semigroup variety satisfying one of the

claims (ii) or (iii) of Theorem 3.12 is upper-modular?

A natural weaker version of Question 3.13 is the following

Question 3.15. Is it true that every completely regular semigroup variety is

upper-modular?

Although Theorems 3.11 and 3.12 do not provide a classification of all upper-
modular varieties, they permit the deduction of some important and surprising
properties of such varieties. Theorems 3.11 and 3.12, together with results of
the articles [34, 37], imply the following

Corollary 3.16 ([26, Corollary 2]). A proper upper-modular semigroup variety

has a modular subvariety lattice.

Corollaries 3.16 and 2.9 imply the following

Corollary 3.17 ( [26, Corollary 3]). If a proper semigroup variety is upper-

modular then every its subvariety is also upper-modular.

Now we describe upper-modular varieties in one more class of varieties. A
semigroup variety is called strongly permutative if it satisfies an identity of the
form (1) with 1π 6= 1 and nπ 6= n.

Theorem 3.18. A strongly permutative semigroup variety V is upper-modular

if and only if it satisfies one of the claims (ii) or (iii) of Theorem 3.11.

A partial case of this statement concerning commutative varieties is proved
in [25, Theorem 1.2]. Theorem 3.18 may be easily deduced from the proof of
this partial case. A scheme of this deduction is provided in [24].

As we have seen above (see Corollary 3.16), the subvariety lattice of arbitrary
proper upper-modular variety is modular. It turns out that such a lattice is even
distributive in several wide classes of varieties. So, Theorem 3.11, together with
results of the paper [33], implies the following

Corollary 3.19 ([26, Corollary 1]). A proper upper-modular semigroup variety

of degree > 2 has a distributive subvariety lattice.

Theorem 3.18, together with results of [33], implies the following
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Corollary 3.20. A strongly permutative upper-modular semigroup variety has

a distributive subvariety lattice.

The special case of this claim dealing with commutative varieties was mentioned
in [25, Corollary 4.4].

Theorem 3.12, together with results of the articles [11] and [34], readily implies
the following

Corollary 3.21 ([26, Corollary 4]). Let V be a proper upper-modular semigroup

variety that is not a variety of semigroups with completely regular square and

let ε be a non-trivial lattice identity. The lattice L(V) satisfies the identity ε

(in particular, is distributive) if and only if the subvariety lattice of any group

subvariety of V has the same property.

Further, a semigroup variety V is called combinatorial if all groups in V are
trivial. Corollary 3.21, together with the result of the paper [3], readily implies
the following

Corollary 3.22 ([26, Corollary 5]). A combinatorial upper-modular semigroup

variety has a distributive subvariety lattice.

Corollaries 3.19–3.22 inspire the following open

Question 3.23. Is it true that the subvariety lattice of every proper upper-

modular semigroup variety is distributive?

All proper upper-modular varieties that appeared above are varieties mentioned
in Theorem 3.11. These varieties are commutative. Based on this observation,
one can conjecture that any proper upper-modular variety is commutative. But
this is not the case. Evident counter-examples are the varieties LZ and RZ.
The claim that these two varieties are upper-modular immediately follows from
the fact that they are atoms of the lattice SEM. Two more examples of proper

non-commutative upper-modular varieties are the varieties P and
←−
P . Indeed,

it is well known that if a variety V is properly contained in one of these two
varieties then V ⊆ SL ∨ ZM, whence V is lower-modular by Theorem 3.2. This

readily implies that P and
←−
P are upper-modular.

3.8. Varieties that are both modular and upper-modular. It is interesting
to examine varieties that satisfy different combinations of the properties we
consider. Corollary 3.9 implies that a variety is both modular and lower-modular
if and only if it is lower-modular. So, Theorem 3.2 gives, in fact, a complete
description of varieties that are both modular and lower-modular (this result
was obtained for the first time in [36, Theorem 3.1]). A description of varieties
that both are lower-modular and upper-modular as well as varieties that are both
distributive and codistributive is given in Theorem 3.4. The following assertion
classifies varieties that are both modular and upper-modular.

Proposition 3.24 ([32, Theorem 1]). A semigroup variety V is both modular

and upper-modular if and only if either V = SEM or V =M∨N where M is

one of the varieties T or SL and N is a commutative variety satisfying the

identity (2).
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3.9. Codistributive varieties. The problem of description of codistributive
semigroup varieties is open so far. Here we provide some partial results concerning
this problem. The following theorem gives a strong necessary condition for a
semigroup variety to be codistributive.

Theorem 3.25 ([27, Theorem 1.1]). If a semigroup variety V is codistributive

then either V = SEM or V is a variety of semigroups with completely regular

square.

Note that Theorems 3.11 and 3.12 are crucial in the proof of Theorem 3.25.
It is easy to see that a variety of semigroups with completely regular square

is a variety of degree ≤ 2 (this readily follows from [12, Lemma 1] or [25,
Proposition 2.11]). Therefore, Theorem 3.25 implies that a proper codistributive
variety has degree≤ 2. The following assertion shows that, for strongly permutative
varieties, the converse statement holds as well.

Theorem 3.26 ( [27, Theorem 1.2]). For a strongly permutative semigroup

variety V, the following are equivalent:

a) V is codistributive;

b) V is a variety of degree ≤ 2;
c) V = An ∨ X where n ≥ 1 and X is one of the varieties T , SL, ZM or

SL ∨ ZM.

Clearly, every costandard variety is codistributive, while every codistributive
variety is upper-modular. But the reverse statements do not hold. For instance:

• the variety An with n > 1 is codistributive (by Theorem 3.26) but not
costandard (by Theorem 3.4);
• the variety C is upper-modular (by Theorem 3.11) but not codistributive

(by Theorem 3.25).

It is easy to see that there exist non-codistributive varieties of semigroups
with completely regular square and moreover, non-codistributive periodic group
varieties. Indeed, the lattice of periodic group varieties is modular but not
distributive. Therefore it contains the 5-element modular non-distributive sublattice.
It is evident that all three pairwise non-comparable elements of this sublattice
are non-codistributive periodic group varieties. We see that the problem of
description of codistributive varieties is closely related to the problem of description
of periodic group varieties with distributive subvariety lattice. The latter problem
seems to be extremely difficult (see [19, Subsection 11.2] for more detailed
comments), whence the former problem is extremely difficult too.

However, we do not know any examples of non-codistributive varieties of
semigroups with completely regular square except ones mentioned in the previous
paragraph. This inspires us to eliminate an examination of codistributive varieties
with non-trivial groups. In other words, it seems natural to consider combinatorial
codistributive varieties only. It is easy to see that if V is a combinatorial variety of
semigroups with completely regular square then, for every S ∈ V, the semigroups
S2 is a band. A variety with the last property is called a variety of semigroups

with idempotent square. In view of Theorem 3.25, every combinatorial codistributive
variety is a variety of semigroups with idempotent square. Thus the following
question seems to be natural.
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Question 3.27. Is it true that an arbitrary variety of semigroups with idempotent

square is codistributive?

A natural weaker version of this question is the following

Question 3.28. Is it true that an arbitrary variety of bands is codistributive?

Clearly, every variety of semigroups with idempotent square satisfies the
identity xy = (xy)2. Put

IS = var
{
xy = (xy)2

}
,

BAND = var{x = x2}.

It is verified in [3] that the lattice L(IS) is distributive. Then Corollary 2.9 shows
that Question 3.27 is equivalent to the following: is the variety IS codistributive?
Analogously, Question 3.28 is equivalent to asking whether the variety BAND
is codistributive or not, that is, whether the equality

BAND ∧ (X ∨ Y) = (BAND ∧ X ) ∨ (BAND ∧ Y)

holds for arbitrary varieties X and Y or not. It is verified in [9, Corollary 5.9]
that this is the case whenever the varieties X and Y are locally finite.

A strongly permutative codistributive variety has a distribitive subvariety
lattice (this follows from Corollary 3.20 and may be easily deduced from Theorem 3.26).
Combinatorial codistributive varieties also have a distribitive subvariety lattice
(here it suffices to refer to either Corollary 3.22 or Theorem 3.25 and the
mentioned result of [3]). We do not know any example of proper codistributive
variety with non-distributive subvariety lattice. This inspires the following

Question 3.29. Is it true that the subvariety lattice of an arbitrary proper

codistributive semigroup variety is distributive?

This question is closely related to the following

Question 3.30. Is it true that every subvariety of an arbitrary proper codistributive

semigroup variety is codistributive?

Corollary 2.9 shows that the affirmative answer to Question 3.29 would imply
the affirmative answer to Question 3.30.

All proper codistributive varieties appeared above are varieties mentioned in
Theorem 3.26. These varieties are commutative. Based on this observation, one
can conjecture that any proper codistributive variety is commutative. But this
is not the case. To provide a corresponding example, we formulate the following

Remark 3.31 ([27, Remark 4.1]). If V1, V2, . . . , Vk are atoms of the lattice

SEM then the variety
k∨

i=1
Vi is codistributive.

In particular, non-commutative varieties LZ and RZ are codistributive. In
connection with Questions 3.29 and 3.30, we note that if V1, V2, . . . , Vk are

atoms of the lattice SEM and V =
k∨

i=1
Vi then:

(i) the lattice L(V) is distributive (in fact, L(V) is a direct product of k

copies of 2-element chains),
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(ii) if X ⊆ V then X is the join of those of the atoms V1, V2, . . . , Vk that
are contained in V, and therefore X is codistributive by Remark 3.31.

The claim (i) is a part of [30, Proposition 1], while the statement (ii) follows
from (i).

4. The lattice Com

For convenience, we call a commutative semigroup variety Com-modular if
it is a modular element of the lattice Com and adopt analogous convention for
all other types of special elements. The main results of this section provide:

• a complete classification of Com-lower-modular, Com-distributive, Com-
standard or Com-neutral varieties (Theorems 4.1, 4.2 and 4.3),
• necessary conditions for a commutative semigroup variety to be Com-

modular (Theorems 4.6 and 4.7),
• a sufficient condition for a commutative semigroup variety to be Com-

modular (Theorem 4.8).

4.1. Com-lower-modular varieties. We denote by COM the variety of all
commutative semigroups. A commutative semigroup variety is called Com-0-
reduced if it may be given by the commutative law and some non-empty set of
0-reduced identities only. Some partial information about Com-lower-modular
varieties was obtained in [13]. It is covered by the following ‘commutative
analogue’ of Theorem 3.2.

Theorem 4.1 ([14, Theorem 1.6]). A commutative semigroup variety V is Com-

lower-modular if and only if either V = COM or V =M∨N where M is one

of the varieties T or SL and N is a Com-0-reduced variety.

Note that the ‘if’ part of Theorem 4.1 immediately follows from Corollaries 2.6
(with X = COM) and 2.4. The proof of the ‘only if’ part given in [14] is based
on Theorem 5.1 below.

As in the case of the lattice SEM (see Subsection 3.2), Theorem 4.1 implies
that a description of Com-distributive, Com-standard and Com-neutral varieties
should look as follows:

A commutative semigroup variety V is Com-distributive [Com-standard,

Com-neutral ] if and only if either V = COM or V =M∨N where M is one

of the varieties T or SL and N is a Com-0-reduced variety such that . . . (with
some additional restriction to N depending on the type of element we consider).

Exact formulations of corresponding results are given in the following two
subsections.

4.2. Com-distributive and Com-standard varieties. The following statement
is the ‘commutative analogue’ of Theorem 3.3.

Theorem 4.2 ([13, Theorem 1.1]). For a commutative semigroup variety V,
the following are equivalent:

a) V is Com-distributive;

b) V is Com-standard;
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c) either V = COM or V =M∨N where M is one of the varieties T
or SL and N is a Com-0-reduced variety that satisfies the identities

x3yz = x2y2z = 0 and either satisfies both the identities x3 = 0 and

x2y2 = 0 or does not satisfy any of them.

It is verified in [13, Corollary 1.1] that a Com-distributive variety is Com-
modular. This statement also follows from Corollary 4.9 below.

4.3. Com-neutral varieties. A complete description of Com-neutral varieties
is given by the following partial analogue of Theorem 3.4.

Theorem 4.3. For a commutative semigroup variety V, the following are equivalent:

a) V is both Com-upper-modular and Com-lower-modular;

b) V is both Com-distributive and Com-codistributive;

c) V is Com-neutral;

d) either V = COM or V =M∨N where M is one of the varieties T or

SL and the variety N satisfies the identity (2).

The equivalence of the claims b)–d) of this theorem is verified in [13, Theorem 1.2],
while the equivalence of the claims a) and c) is proved in [14, Corollary 4.2].

Theorem 4.3, together with results of [33], implies the following

Corollary 4.4. If V is a Com-neutral commutative semigroup variety and

V 6= COM then the lattice L(V) is distributive.

Theorem 4.3 also implies the following

Corollary 4.5. If V is a Com-neutral commutative semigroup variety and

V 6= COM then every subvariety of V is Com-neutral.

It is interesting to compare Theorems 4.3 and 3.10. We see that a commutative
semigroup variety V with V 6= COM is Com-neutral if and only if it is modular.

4.4. Com-modular varieties. The problem of description of Com-modular
semigroup varieties is open so far. Here we provide some partial results concerning
this problem. Note that these results are ‘commutative analogues’ of Theorems 3.6, 3.7
and 3.8.

First of all, the following necessary condition for a commutative semigroup
variety to be Com-modular is true.

Theorem 4.6 ([14, Theorem 1.4]). If V is a Com-modular commutative semigroup

variety then either V = COM or V =M∨N where M is one of the varieties

T or SL and N is a nil-variety.

In fact, this theorem readily follows from Theorem 5.1 below. Theorem 4.6
and Corollary 2.4 completely reduce an examination of Com-modular varieties
to the nil-case. The following theorem is yet another analogue of the result of
Ježek [6] (see Theorem 3.7 and the paragraph before this theorem).

Theorem 4.7 ([14, Theorem 1.5]). A Com-modular commutative nil-variety of

semigroups may be given within the variety COM by 0-reduced and substitutive

identities only.
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Corollary 2.6 with X = COM immediately implies the following

Theorem 4.8 ([13, Proposition 2.1]). Every Com-0-reduced commutative semigroup

variety is Com-modular.

Theorems 4.7 and 4.8 provide, respectively, a necessary and a sufficient condition
for a commutative nil-variety to be Com-modular. The gap between these
conditions does not seem to be very large. But the necessary condition is not
a sufficient one, while the sufficient condition is not a necessary one. Indeed, it
may be checked that:

• the variety var{xyzt = x3 = 0, x2y = y2x, xy = yx} is Com-modular
although it is not Com-0-reduced,
• the variety var{x5 = 0, x3y2 = y3x2, xy = yx} is not Com-modular

although it is given within COM by 0-reduced and substitutive identities
only

(Shaprynskǐı, private communication).
Theorems 4.1 and 4.8 and Corollary 2.4 imply the following ‘commutative

analogue’ of Corollary 3.9.

Corollary 4.9 ([14, Corollary 4.1]). Every Com-lower-modular commutative

semigroup variety is Com-modular.

We note that neither of the five other possible interrelations between properties
of being a Com-modular, a Com-lower-modular and a Com-upper-modular
variety holds. For instance:

• the variety var{xyzt = x3 = 0, x2y = y2x, xy = yx} is Com-modular
(as we have already mentioned above) but not Com-lower-modular (by
Theorem 4.1);
• the variety var{x3 = 0, xy = yx} is Com-modular and Com-lower-

modular (by Corollary 2.6 with X = COM) but not Com-upper-modu-
lar (by Proposition 4.10 below);
• the variety Ap with p prime is Com-upper-modular (because this variety

is an atom of Com) but neither Com-modular nor Com-lower-modular
(by Theorems 4.6 and 4.1 respectively).

4.5. Com-upper-modular, Com-codistributive and Com-costandard varieties.

The problems of description of these three types of varieties are open so far. The
only partial result here is the following

Proposition 4.10. For a Com-0-rediced commutative semigroup variety V, the

following are equivalent:

a) V is Com-upper-modular;

b) V is Com-codistributive;

c) V is Com-costandard;

d) V is Com-neutral;

e) V satisfies the identity (2).

The implication a)−→ e) of this proposition (as well as the reverse implication)
is verified in [13, Proposition 2.3], the implication e)−→ d) follows from Theorem 4.3,
while the implications d)−→ c)−→ b)−→ a) are evident.
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At the conclusion of Section 4, we discuss interrelations between properties
to be a Com-neutral, a Com-costandard and a Com-upper-modular variety.
It is easy to see that there exist Com-codistributive but not Com-costandard
varieties. Indeed, the variety Ap with a prime p is codistributive by Remark 3.31,
and moreover is Com-codistributive. But this variety is not Com-modular by
Theorem 4.6, whence it is not Com-costandard. The following two questions
are open so far.

Question 4.11. Is it true that an arbitrary Com-costandard commutative semigroup

variety is Com-neutral?

Question 4.12. Is it true that an arbitrary Com-upper-modular commutative

semigroup variety is Com-codistributive?

5. Lattices located between SEM and Com

In this section, we examine modular and lower-modular elements only. It turns
out that properties of such elements in the lattices SEM and Com discussed in
Subsections 3.2, 3.6, 4.1 and 4.4 may be partially extended to some sublattices
of SEM that contain Com. More precisely, we have in mind subvariety lattices
of overcommutative semigroup varieties and the lattice Perm.

5.1. Subvariety lattices of overcommutative varieties. As we have seen
in Subsections 4.1 and 4.4, there are numerous parallels between results about
modular and lower-modular elements in the lattices SEM and Com. The following
result partially explains these parallels and permits us to give unified proofs of
several results about [lower-]modular elements in SEM and Com.

Theorem 5.1 ([14, Proposition 3.3]). Let X be an overcommutative semigroup

variety and V a periodic subvariety of X . If V is either a modular or a lower-

modular element of the lattice L(X ) then V =M∨N where M is one of the

varieties T or SL and N is a nil-variety.

Applying this theorem with X = SEM [respectively X = COM], we obtain
an important information about [Com-]modular and [Com-]lower-modular varieties.
After that, only some simple additional arguments are needed to verify Theorems 3.8
and 4.8, as well as the ‘if’ parts of Theorems 3.2 and 4.1. One can speculate if
it is possible to eliminate these additional arguments altogether. To do this,
we should verify an analogue of Theorem 5.1 without the assumption that
the variety V is periodic. Unfortunately, it turns out that this is impossible.
Indeed, it is verified in [20] that every proper semigroup variety is covered
in SEM by some other variety (see also [19, Subsection 3.1]). It is evident
that if an overcommutative variety V is covered by a variety X then X is
overcommutative and V is a lower-modular element of the lattice L(X ). Thus,
the ‘lower-modular half’ of Theorem 5.1 would be false if we eliminate the
assumption that V is periodic. The same is true for the ‘modular half’ of this
theorem. For example, the variety COM is a modular element in the lattice
L(W) whereW = var{xyz = yzx = zyx} (Shaprynskǐı, private communication).
Note that COM is also a lower-modular element in L(W) because W covers
COM.
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5.2. The lattice Perm. By analogy with the commutative case, we call a
permutative semigroup variety Perm-[lower-]modular if it is a [lower-]modular
element of the lattice Perm. The following assertion is proved recently by
Shaprynskǐı (unpublished).

Theorem 5.2. If a permutative semigroup variety V is either Perm-modular

or Perm-lower-modular then V =M∨N where M is one of the varieties T
or SL and N is a nil-variety.

This result does not give any information about Perm-modular or Perm-
lower-modular nil-varieties. Recall that:

(i) by Theorems 3.7 and 4.7, every [Com-]modular nil-variety may be given
[within Com] by substitutive and 0-reduced identities only;

(ii) by Theorems 3.2 and 4.1, every [Com-]lower-modular nil-variety is [Com-
]0-reduced;

(iii) by Corollary 2.6, every [Com-]0-reduced variety is both [Com-]modular
and [Com-]lower-modular.

Note that we cannot use Corollary 2.6 to obtain a ‘permutational analogue’ of
the claim (iii) because the class of all permutative semigroups does not form a
variety.

We do not know whether a ‘permutational analogue’ of the claim (i) true. So,
we formulate the following

Question 5.3. Is it true that an arbitrary Perm-modular permutative nil-

variety of semigroups may be given by substitutive and 0-reduced identities only?

As to ‘permutational analogues’ of claims (ii) and (iii), they do not hold. For
instance:

• the variety var{xyzt = 0, x2y = xyx} is Perm-lower-modular although
it may not be given by permutational and 0-reduced identities only;
• the variety var{x1x2x3x4x5 = 0, xy = yx} is neither Perm-modular

nor Perm-lower-modular although it is permutative and is given by
permutational and 0-reduced identities only

(Shaprynskǐı, private communication).

6. The lattice OC

For convenience, we call an overcommutative semigroup variety OC-modular

if it is a modular element of the lattice OC and adopt analogous convention for
all other types of special elements.

The problems of description of OC-modular, OC-lower-modular and OC-
upper-modular varieties are open so far. Moreover, any essential information
about varieties of these three types is absent. On the other hand, OC-distributive,
OC-codistributive, OC-standard, OC-costandard and OC-neutral varieties are
completely determined. To formulate their description, we need some new definitions
and notation.
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Let m and n be positive integers with 2 ≤ m ≤ n. A sequence of positive
integers (ℓ1, ℓ2, . . . , ℓm) is called a partition of n into m parts if

m∑

i=1

ℓi = n and ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓm.

The set of all partitions of n into m parts is denoted by Λn,m. Let λ = (ℓ1, ℓ2, . . . , ℓm) ∈
Λn,m. We define numbers q(λ), r(λ) and s(λ) as follows:

q(λ) is the number of ℓi’s with ℓi = 1;
r(λ) = n− q(λ) (in other words, r(λ) is the sum of all ℓi’s with ℓi > 1);
s(λ) = max

{
r(λ)− q(λ)− δ, 0

}
where

δ =

{

0 if n = 3, m = 2 and λ = (2, 1),

1 otherwise.

If k ≥ 0 then λ(k) stands for the following partition of n+ k into m+ k parts:

λ(k) = (ℓ1, ℓ2, . . . , ℓm, 1, . . . , 1
︸ ︷︷ ︸

k times

)

(in particular, λ(0) = λ). If µ = (m1,m2, . . . ,ms) ∈ Λr,s then Wr,s,µ stands for
the set of all words u such that:

• the length of u equals r;
• u depends on the letters x1, x2, . . . , xs;
• for every i = 1, 2, . . . , s, the number of occurrences of xi in u equals mi.

For a partition λ = (ℓ1, ℓ2, . . . , ℓm) ∈ Λn,m, we put

Sλ = var
{
u = v | there is i ∈

{
0, 1, . . . , s(λ)

}
such that u, v ∈Wn+i,m+i,λ(i)

}
.

We call sets of the form Wn,m,λ transversals. We say that an overcommutative
variety V reduces [collapses] a transversal Wn,m,λ if V satisfies some non-trivial
identity [all identities] of the form u = v with u, v ∈Wn,m,λ. An overcommutative
variety V is said to be greedy if it collapses any transversal it reduces.

Theorem 6.1. For an overcommutative semigroup variety V, the following are

equivalent:

a) V is OC-distributive;

b) V is OC-codistributive;

c) V is OC-standard;

d) V is OC-costandard;

e) V is OC-neutral;

f) V is greedy;

g) either V = SEM or V =
k∧

i=1
Sλi

for some partitions λ1, λ2, . . . , λk.

The equivalence of claims a)–f) of this theorem was proved in [21] (claim f)
was not mentioned in [21] explicitly but the fact that this claim is equivalent
to each of the claims a)–e) readily follows from the proofs in [21]). The results
of paper [35] and Proposition 2.7 play crucial role in this part of the proof of
Theorem 6.1. The equivalence of claims f) and g) is verified in [18].
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[13] V.Yu.Shaprynskǐı, Distributive and neutral elements of the lattice of commutative

semigroup varieties, Izvestiya VUZ. Matematika, No. 7 (2011), 67–79 [Russian; Engl.
translation: Russ. Math. Izv. VUZ, 55, No. 7 (2011), 56–67].
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[15] V.Yu.Shaprynskǐı, Periodicity of special elements of the lattice of semigroup varieties,

Proc. Institute of Math. and Mechan. of the Ural Branch of the Russ. Acad. Sci., 18,
No. 3 (2012), 282—286 [Russian].
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[17] V.Yu.Shaprynskǐı and B.M. Vernikov, Lower-modular elements of the lattice of

semigroup varieties. III, Acta Sci. Math. (Szeged), 76 (2010), 371–382.
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