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a b s t r a c t

Magnetization distributions and energy of 180-degrees domain walls in a stripe-film were investigated
over a wide film thickness range. Three-dimensional numerical simulations are performed. Two kinds of
transitions between stable domain wall configurations were obtained: from Néel walls to cross-tie walls
and from cross-tie walls to asymmetric Bloch (C-shaped) walls. The latter kind of transition was
investigated for the first time. The transition from the two-dimensional cross-tie structure to the three-
dimensional one during the rise of the film thickness was demonstrated.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Researchers have been paying a great attention to magnetic
films with in-plane anisotropy and low quality factor Q ¼ K=2πM2

S
(MS is the film saturation magnetization and K is the anisotropy
constant). Information storage devices were developed based
on those films evaporated on cylindrical surfaces with a small
radius [1]. Nowadays interest increases in those films investiga-
tion. That is accounted for by both development of new film-based
memory types with the extra high capacity, for instance “racetrack
memory” [2,3], and a hope to reveal new physical properties. The
hope is related to the new methods of films production and
experimental investigation, and the theoretical numerical meth-
ods great development.

The film thickness was found to influence on the micromag-
netic structures and thus on the film magnetization reversal.
It was established long ago [4] that decreasing the film thickness
results in arising a new type of domain wall: the Néel one. The
situation was initially described as follows. At the film thickness
b4bN one-dimensional (the magnetization vector M direction
depends on one coordinate) Bloch walls were assumed to exist
with the magnetization directed normally to the film surface in
the wall center. At bobN one-dimensional Néel walls are stable
with the magnetization always parallel to the film surface. Both
the one-dimensional walls possess symmetric structure relative to

the wall center surface, with that surface being a plane. A domain
wall center surface is the level surface mz¼0 if the z axis is
directed along the easy axis, where m¼M=MS is a normalized
magnetization. Thus the walls mentioned will be referred to as
symmetric Néel and symmetric Bloch walls. The value bN has been
named as a Bloch–Néel transition thickness.

However Huber, Smith and Goodenough [5] observed the
completely new cross-tie domain wall using the powder method.
Later the cross-tie walls were also observed using the electron
microscopy methods [6]. A cross-tie wall has the complicated
structure with alternating vortexes and antivortexes on the film
surface. Its energy was calculated to be lower than a Néel wall one
in [7] but it was the case for all b values and the two different walls
energies ratio was always equal to 0.6 independent on the film
material parameters. That made the results of [7] strange. Not-
withstanding many observations appeared of both Néel and cross-
tie walls existing in the same conditions (see, for example, [8] and
the references there). Attempts to improve the results of [7] using
the more accurate (for that time) computation methods failed to
clarify the matter thought gave new details about Néel walls
[9–11]. There were also numerical simulations of a cross-tie wall
structure [12,13] at a fixed b value.

Theoretical investigations [14–16] were more successful to
reveal two points on the film thickness axis (instead of one bN as
in the previous theoretical concepts) where transitions occur
between the different domain wall types. That agreed with the
experimental results [17]. Let’s refer the points mentioned as bL
and bR (left and right, given the thickness increases while moving
along the axis from left to right). bL corresponds to the transition
from Néel walls to cross-tie ones, and was obtained to be much
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smaller than bN. The thickness bR was initially interpreted as
the thickness above which symmetric Bloch walls became ener-
getically favorable as compared with cross-tie ones. Thus cross-tie
walls are stable at bA bL; bRð Þ. However bR determination in
[14–16] has to be confessed incorrect now, because no one-
dimensional symmetric Bloch walls exist in magnetically soft films
according to the results of more recent numerical calculations [18–20].
Instead asymmetric Bloch walls (also referred to as C-shaped walls)
and asymmetric Néel walls exist. The transition from the asymmetric
domain walls to cross-tie walls was investigated in [19] but it was
obtained that without applying a magnetic field the cross-tie wall
energy was always smaller than the Néel wall one as it was in [7]. That
again disagreed with the experimental data [8,17], and perhaps related
to insufficiency of the Ritz method or of the trial functions used in [19].

There is one more point to be mentioned. On the one hand the
one-dimensional model seems to be sufficient to study Néel walls
in films much thinner than bR. On the other hand according to [21]
such walls can possess non-one-dimensional structure. Although
the difference may be small at large computational cells number
(see the next section), making no allowance for that may lead
to unstable results. In this connection remember that according
to [22] all one-dimensional magnetization distributions are
unstable (see also [23], p. 163–164).

According to the mentioned above a clear picture of a one or
another stable or metastable domain wall type existence at the
different film thicknesses has not been obtained yet. We insist on
that it is necessary to use the same calculation method for all the
domain wall types to obtain such a picture. Nowadays three-
dimensional calculation is available with making allowance for all
necessary interactions including the long-range dipole–dipole one.
The transition corresponding to bL had already been investigated
in such a way [24]. Here the results of the domain walls structure
numerical investigations in the wider thickness range will be
reported including the transition corresponding to bR. This three-
dimensional calculation results will be compared with the experi-
mental observations of the cross-tie structure period dependence
on the film thickness [25] (p. 424), and bL and bR values depen-
dence onMS and K [17]. At last it will be shown that the vortex and
antivortex magnetization distributions cross-cutting the film in
cross-tie walls became non-cross-cutting in asymmetric Bloch
walls. This result has not been obtained yet theoretically or
experimentally.

2. Simulation details

The simulations were performed using the OOMMF micromag-
netic package [26]. A stripe-film fragment in the form of a
parallelepiped is considered. The film surface is parallel to the xz
plane and the easy axis is directed along the z axis (see Fig. 1). Thus
let’s denote the film width, thickness and length as a, b and c. The
film magnetic state corresponds to two domains separated by a
180-degrees domain wall. To obtain the wall magnetization dis-
tribution the film energy minimization is performed with the
condition for the magnetization vector Mj j ¼MS. The total energy
has the following form:

E¼
Z a

0
dx

Z b

0
dy

Z c

0
dz

A

M2
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∇2Mþ K

M2
S

M2
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where the first, second and third terms in the integrand are the
exchange, anisotropy and dipole–dipole interactions energy den-
sities correspondingly. A is the exchange parameter and the stray
field HðmÞ is determined as follows:

HðmÞ ¼ �∇φ; φðx; y; zÞ ¼
Z a

0
dx0

Z b

0
dy0

Z c

0
dz0M x0; y0; z0ð Þ

∇0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q : ð2Þ

The features of implementing (2) in numerical calculations like
performed here can be found in [27–29]. In brief, the computa-
tional region is divided by a grid into cubic cells, with each cell
magnetization being considered uniform. After that the stray field
is expressed as a convolution of the cells magnetization array with
an interaction matrix determined by the grid and fast Fourier
transforms are used to accelerate the calculation. If not stated
otherwise, the following material parameters values are used:
A¼ 1:3� 10�6 erg/cm, MS¼800 G, K ¼ 103 erg/cm3. The compu-
tational cells are cubic in shape, with an edge dimension equal to
5 nm.

The approach to cross-tie walls investigation is analogous to
the one used in [24]. Cross-tie walls tend to possess periodic
structure according to the existent experimental data and theore-
tic conceptions. Bearing that in mind one can use periodic
boundary conditions applied along the easy axis direction (the z
axis) to decrease the cells number and exclude the film edges
effect. The periodic boundary conditions presence alters the
exchange and magnetostatic energy calculation, namely, the
magnetostatic interaction matrix is calculated in the different
way [29]. Minimizing the energy of the initial M distribution
roughly resembling a cross-tie wall structure one can obtain a
stable equilibrium configuration for the fixed period c value. The
initial distributions were created in such a way that the simulation
region contains one vortex–antivortex pair (see Fig. 2). It is
convenient to consider a domain wall energy surface density
γm ¼ Em=b� c. Here Em is the equilibrium value of E and the
energy is divided by b because as a rule all the interactions
energies grow with increasing the film thickness and it is impos-
sible to judge from Em values how an interaction relative impact
changes with the thickness change. With increasing the period c a
cross-tie wall dependence γmðcÞ converges asymptotically to the
value corresponding to the Néel wall with the M distribution
homogeneous along z. At small c values the wall energy density
grows sharply due to the exchange energy increasing. In the
intermediate c region the γm cð Þ curve can have a minimum and
that really takes place for the film thickness b larger than a certain
value. This thickness value is bL. The c value corresponding to the
minimum mentioned is the “natural” cross-tie wall structure
period T. The cross-tie wall would have this period in a film
without any pinning centers and far from the film edges along the
easy axis. The reader is referred to [24] for more details about T
determination. One must obtain a new T value each time solving
the problem with new parameters (the film thickness, material
parameters, etc). If not stated otherwise, the data reported below
corresponds to c¼T. At bo bL the γm cð Þ curve does not possess a
minimum at any c value. In this case it is concluded that a pure
Néel wall is stable at that film thickness.

As already mentioned the other domain wall types can
exist in thicker films, namely asymmetric Bloch and Néel walls.

Fig. 1. Geometry of the problem. The considered stripe-film fragment and the
domains magnetization directions are shown. The z axis is the easy magnetization
axis and the y axis is directed normally to the film surface. The magnetization
distribution M is treated as a function of the all three coordinates.
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Performing the simulations to compare those walls energy with
the cross-tie wall one, we assumed the asymmetric Bloch and Néel
walls structure to be homogeneous along z. It was found (see for
example [30]) that inhomogeneities in asymmetric Bloch wall
structure along the easy axis (Bloch lines or singular points)
increase the wall energy.

3. Results and discussion

Figs. 2 and 3 illustrate the M distribution in the cross-tie wall at
the film thickness b¼20 nm. Only one period along the z axis is
shown containing one vortex and one antivortex on the film
surface. In fact the wall core consists of the alternating Néel
segments with the opposite magnetization rotation directions.
This periodic structure leads to decreasing the magnetostatic
energy as compared to a pure Néel wall, as Néel walls cores are
sources of magnetostatic poles. That is seen clearly in Fig. 2b
where divm is depicted. However vortex and antivortex M
distributions (Fig. 2c) are formed necessarily at the Néel segments
junctions. Antivortexes increase the magnetostatic energy and
long cross-ties are formed near them to offset the increase slightly.
These cross-ties are in fact domain walls perpendicular to the main
wall. The cross-ties possess 90-degrees M rotation near the
junction with the main wall core, and vanish gradually while
moving into the domains. These ideas were reported yet in [5], and
[24] contains their detailed and clear analysis and verification
based on three-dimensional numerical simulation. The cross-tie in
Fig. 2 is also a Néel wall as m rotates in the film plane.

The cross-tie wall structure period T is set by the magnetostatic
and exchange interactions balance as decreasing (increasing) T
leads exchange (magnetostatic) energy to grow. At bobL the

exchange interaction plays more important role than the magne-
tostatic one and a pure Néel wall becomes energetically favorable
(the reader is referred to [24] for the details). Transition between
the two domain walls types mentioned occurs by the way of
increasing T with decreasing b as seen in Fig. 4. Our T calculations
at the thicknesses closed to bL are in a very good agreement
with [24] despite we included the anisotropy interaction in the
simulation. The obtained dependence T(b) also agrees qualitatively

Fig. 2. Structure of the cross-tie domain wall on the film top surface. The film dimensions: a¼1000 nm, b¼20 nm, c¼1000 nm (the “natural” cross-tie wall structure period
T). The full magnetization distribution (a) and the zoomed vortex and antivortex (c) are shown, with the background color change from black to white corresponding to my

change from �1 to þ1. Given the background color corresponds to divm (the black/white one to the negative/positive value) the cross-tie is clearly seen (b).

Fig. 3. Structure of the cross-tie domain wall in the z¼const planes. The film
dimensions are the same as in Fig. 2. The m distributions fragments at z¼200 nm (a),
z¼245 nm (b), z¼250 nm (c), z¼260 nm (d), z¼300 nm (e) are shown. The back-
ground color change from black to white corresponds to mz change from �1 to þ1.
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with the experimental data [25]. Unfortunately a quantitative
comparison cannot be performed as the films used in [25] had
the widths more than 20 μm. In the present work the maximal
stripe-film fragment width a¼2 μm because of our current com-
putational power. However the calculated dependence T(a) (see
Fig. 4) allows to make a suggestion about the T value approaching
the experimental one with further increasing a.

Alternating vortexes and antivortexes on the film surface are
probably the most unique cross-tie wall feature. Yet in the first
cross-tie wall model [5] the vortexes and antivortexes cores were
supposed to be magnetized normally to the film surface. Now that
was confirmed experimentally [31,32]. Interesting that vortex core
perpendicular magnetization was found firstly in permalloy
dots [33] and then in films though for the latter ones the theoretical
predictions had been made long before (see, for example, [14]). The
significant delay in the experimental confirmation is accounted for
by the small vortex core sizes (Fig. 2c). If the small core was not
magnetized normally to the ferromagnetic vortex (antivortex)
plane, prohibitive increasing the exchange energy would take place.

There is one more effect of varying the film thickness on a
cross-tie wall structure besides change of T. The structure in Fig. 2
is almost uniform along the y axis. Only near the vortex and

antivortex M shows slight dependence on y as was noted in [24].
According to our simulations the M distribution inhomogeneity
through the film thickness enhances with increasing b as seen in
Figs. 5 and 6. This structure has been obtained for the first time
using three-dimensional simulation. The wall center line mz¼0 is
strongly bent on the film surfaces as seen analyzing Fig. 6.
Alternating Néel segments of the cross-tie wall now possess
asymmetric structure similar to the asymmetric Néel walls
obtained using two-dimensional simulations (see, for example,
[19,20]). The difference is that according to the simulation results
uniform along z asymmetric Néel walls possess two vortexes in the
xy plane at the same film thickness and the other parameters (this
M distribution is also called S-shaped wall). Described complica-
tion of the cross-tie wall structure is accounted for by the
magnetostatic interaction role enhancement with increasing b
along with that more inhomogeneous M distributions can
be formed in thicker films without prohibitive increasing the
exchange energy.

Fig. 7 illustrates the calculated dependences γm bð Þ for the all
domain walls types obtained at the given film parameters, namely:
symmetric and asymmetric Néel walls, asymmetric Bloch walls
(C-shaped), cross-tie walls. Any other domain wall types were not
obtained. In Fig. 7 bA ½5;120� nm, nevertheless the film thick-
nesses up to 500 nm were considered. All the points on the cross-
tie walls γm bð Þ curve are obtained at c¼T(b). This film length value
was also used while simulating the walls of the other types to
verify their stability to transition into the cross-tie wall. The three-
dimensional simulations give two transitions between stable
domain wall configurations: bL (from symmetric Néel walls to
cross-tie ones) and bR (from cross-tie walls to asymmetric Bloch
ones). Of course, transitions between the metastable states can
occur. For instance, C-shaped walls can exist also at the certain
thickness range below bR (see Fig. 7), up to about 40 nm. As well at
b4bL symmetric Néel walls exist as metastable ones, gradually
turning into asymmetric Néel walls. That is clearly seen from the
corresponding curve γm bð Þ starting to decrease with increasing b.
To understand the reasons for that decrease let’s take a look at
Fig. 8 where the exchange and magnetostatic components of γm
are shown as functions of b (the anisotropy component is not

Fig. 4. Dependence of a cross-tie wall period T on the film thickness b for the
different film width values. The points correspond to numerical results and the
curves are a guide to an eye.

Fig. 5. Structure of the cross-tie domain wall. The film dimensions: a¼1000 nm, b¼70 nm, c¼500 nm (the “natural” cross-tie wall structure period T). The full
magnetization distributions on the film bottom (a) and top (b) surfaces and at the section x¼500 nm (c) are shown. The background color change from black to white
corresponds to my change from �1 to þ1 (a) and (b) and to mx change from �1 to þ1 (c).
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shown because it is always two orders of magnitude lower than
the others). Asymmetric wall structure changes gradually with
increasing b leading to a better magnetic flux closing and thus

decreasing the magnetostatic component of γm. That decreases γm
despite the exchange component of γm increases as a Néel wall
becomes asymmetric and especially as the vortex magnetization
distributions form in the xy-plane (compare Figs. 7 and 8). The
similar behavior of the cross-tie walls γm bð Þ curve is also
accounted for by turning the symmetric Néel fragments of the
wall into the asymmetric ones.

Finally the exchange energy densities corresponding to asym-
metric Bloch and Néel walls start to decrease with increasing b. On
the contrary cross-tie walls exchange energy density increases
because of decreasing T and finally at b490 nm cross-tie walls
become unstable. Asymmetric Bloch and Néel walls exist up to the
largest thickness considered. The metastable configurations have a
good stability and can exist really depending on the film magnetic
history. We conclude that the metastable configurations existence
is the reason for the different domain walls types observations at
the seemingly identical conditions (see, for example, [8]). The
value of bL obtained (approximately 10 nm) is in a good agreement
with [24]. The experimental bL values are some higher (about
20 nm [17,25]). Reasons for that are still to be investigated. We
suppose they may correspond to the large cross-tie structure
period values for small film thicknesses.

The film width a value also exercises great influence on the
different domainwalls stability. In [24] decreasing the filmwidth was
found to increase bL. According to our simulation decreasing a also
leads to decreasing bR as seen in Fig. 9a. Thus the smaller the film
width a the narrower the thickness range of cross-tie walls stability
(see Fig. 9b). The evident reason for that is cross-ties length
limitation with the film narrowing along the x direction. With
increasing the film width bR approaches the value close to the
experimental ones (about 90 nm [17,25]). One can see also in
Fig. 9b that asymmetric Néel walls become unstable at the certain
thickness of the film with a¼200 nm. The structure with two
vortexes in the xy-plane does not exist in this case despite it would
decrease the magnetostatic energy due to a magnetic flux closing. In
the narrow film where the wall cannot expand these energy savings
would be less than the offset by increasing the exchange energy.

Fig. 7. Dependences of γm on the film thickness b for symmetric Néel walls (a), asymmetric Neel walls (b) and (c), asymmetric Bloch walls (d) and cross-tie walls (e). The film
width a¼1000 nm. The points correspond to numerical results and the curves are a guide to an eye.

Fig. 6. Structure of the cross-tie domain wall in the z¼const planes. The film
dimensions are the same as in Fig. 5. The m distributions fragments at z¼50 nm (a),
z¼110 nm (b), z¼125 nm (c), z¼140 nm (d), z¼180 nm (e) z¼375 nm (f) are shown.
The background color change from black towhite corresponds tomz change from �1
to þ1.
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The bL and bR values dependences on the material parameters
MS and Kwere calculated. The saturation magnetization was found
to influence on the transition thicknesses values. It is seen in
Fig. 10 that bR (bL) deviates slightly from the linear function of
1=MS ð1=M2

S Þ. That is in a qualitative agreement with that reported
in [17]. It was found also that varying the anisotropy constant
value K from 103 to 104 erg/cm3 exercises negligible influence on
bL, bR. On the other hand in [17] linear dependence of bL on

ffiffiffiffi
K

p
=M2

S
was reported on. Obviously the reason for that discrepancy is that
the authors of [17] could not consider the dependences bL Kð Þ and

bL MSð Þ separately because of the films available, and clearly had an
aim to fit their curves with Middelhoek’s theory [7]. Also the
difficulties in experimental measurement of bL, bR should be taken
into account.

Finally let’s turn our attention again to Figs. 2 and 5. The cross-
tie walls vortexes and antivortexes on the film surface are cross-
cutting the film. In other words, magnetization distribution has
the vortex (antivortex) structure in the all film sections normal to
the y-direction. Asymmetric Bloch-walls stable at b4bR can also
possess vortex and antivortex M distributions on the film surfaces.
That takes place at the junction of two asymmetric Bloch wall
segments leading to a so-called Néel cap switch on the film
surfaces (see, for example, [33]). A Néel cap switch is an attribute
of Bloch-lines emerging when the two C-shaped wall segments
possess the different xy-plane-vortex magnetization rotation
directions and the vortexes on the same side of the mz¼0 level
surface; or the different xy-plane-vortex magnetization rotation
directions and the vortexes on the opposite sides of the mz¼0
level surface. The latter case is shown in Fig. 11.

In this case vortex or antivortex M distributions are also formed
inevitably on the film surface, but they are non-cross-cutting. On
the contrary in Fig. 11 the vortex on the top film surface
corresponds to the antivortex on the bottom surface. The evident
reason for that is the opposite M rotation directions in the top and
bottom Néel fragments of an asymmetric Bloch wall. Thus one can
come to conclusion that with increasing b the film surface vortexes
and antivortexes changes their structure from the cross-cutting
one to the non-cross-cutting one. Note that the described Bloch-

Fig. 10. Dependences bR 1=MS
� �

and bLð1=M2
S Þ. The points correspond to numerical results. The straight lines are drawn to compare the numerical data with the linear

dependences reported in [7,17].

Fig. 9. Dependence of bR on the filmwidth (a). Dependences of the magnetostatic (solid symbols) and exchange (open symbols) components of γm on the film thickness b for
the same domain walls types as in Fig. 8 (the same symbols refer to the same types of walls) at the film width a¼200 nm (b). The points correspond to numerical results and
the curves are a guide to an eye.

Fig. 8. Dependences of the magnetostatic (solid symbols) and exchange (open
symbols) components of γm on the film thickness b for symmetric and asymmetric
Néel walls (triangles), asymmetric Bloch walls (circles) and cross-tie walls
(squares). The film width a¼1000 nm. The points correspond to numerical results
and the curves are a guide to an eye.
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lines on asymmetric Bloch walls are always metastable [31] but
their existence is verified experimentally [25]. Fig. 11 contains also
several cross-sections giving more information about the structure
with a non-cross-cutting surface vortex/antivortex.

4. Conclusion

The energies and stability of the main domain walls types
existing in magnetically soft films with in-plane anisotropy were
investigated as a function of the film thickness b. Three-
dimensional micromagnetic simulation was used. The main results
obtained are the following ones:

Up to the very small thicknesses the only stable domain walls
types in the films considered are cross-tie walls and asymmetric

Bloch walls. Néel walls (symmetric and asymmetric) are meta-
stable except at bobL (about 10 nm depending on the film
parameters).

There are two thicknesses corresponding to transitions
between the stable domain wall types: from symmetric Néel walls
to cross-tie ones (bL) and then to asymmetric Bloch ones (bR). The
latter transition was investigated for the first time using three-
dimensional simulation.

At any film thickness Bloch lines existence leads to formation of
vortexes and antivortexes on the film surfaces. With increasing b
those vortexes/antivortexes structures turn from cross-cutting to
non-cross-cutting.

A qualitative agreement of cross-tie walls structure period T
dependence on the film width and thickness; bL and bR depen-
dence on MS with the experimental data was obtained.

Cross-tie walls structure becomes three-dimensional with
increasing b.
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Fig. 11. Structure of the C-shaped domain wall with two vertical Bloch-lines. The
film dimensions: a¼400 nm, b¼100 nm, c¼750 nm. The full magnetization dis-
tributions on the film bottom (a) and top (b) surfaces and the m distributions
fragments in the planes z¼0 (c), z¼188 nm (d), z¼375 nm (e) are shown. The
background color change from black to white corresponds to my change from �1
to þ1 (a) and (b) and to mz change from �1 to þ1 (c)–(e).
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