MapSets: Visualizing Embedded and Clustered Graphs

Alon Efrat, Yifan Hu, Stephen G. Kobourov, and Sergey Pupyrev

Department of Computer Science, University of Arizona, Tucson, AZ, USA

Abstract. We describe MapSets, a method for visualizing embedded and clus-
tered graphs. The proposed method relies on a theoretically sound geometric
algorithm which guarantees the contiguity and disjointness of the regions rep-
resenting the clusters, and also optimizes the convexity of the regions. A fully
functional implementation is available online and is used in a comparison with
related earlier methods.

1 Introduction

In many real-world examples of relational datasets, groups of objects (clusters) are an
inherent and important part of the input. For example, scientists belong to specific re-
search communities, politicians are affiliated with specific parties, and living organisms
are divided into biological species in the tree of life. Such clusters are often visual-
ized with regions in the plane that enclose related objects. By explicitly defining the
boundary and coloring the regions, the cluster information becomes evident. In many
instances the data objects are often associated with fixed or relative positions in the
plane. In geo-referenced data, for example, the positions of the objects might be based
on their geographic coordinates. Thus a natural problem arises: how to best visualize
graphs in which vertices are divided into clusters and embedded with fixed positions in
the plane?

Several existing visualization approaches seem suitable. For example, methods for
visualizing set relations over existing embedded pointsets, such as BubbleSets [[/] and
LineSets [2] use colored shapes to connect objects that belong to the same set. Alter-
natively, a geographic map metaphor can be used to represent such data. With self-
organizing maps [22] or geometry-based GMaps [11], objects become cities and cluster
information is captured by uniquely colored countries. While both approaches can pro-
duce compelling visualizations, we argue that neither is perfectly suited to the problem
of visualizing embedded and clustered graphs.

As the number of sets increases, set-based methods generate very complex and
sometimes ambiguous results. More recent methods such as KelpDiagrams [8] and
KelpFusion [16] reduce visual clutter and guarantee unambiguous visualization. But
more importantly, all of these methods result in overlapping regions for the sets, even
when the input sets are disjoint. This unnecessarily increases visual complexity and
might mislead the viewer about the disjointness of the sets. The geographic map ap-
proach suffers from a different problem. A country in the map, that represents a given
cluster of vertices, might not be a contiguous region in the plane. Even though each
cluster is colored with a unique color, such fragmented maps are difficult to read as
human perception of color changes based on surrounding colors [[19] and can be misin-
terpreted [[13]].

Fig. 1: (a) An embedded and clustered (red/blue) pointset. (b-c) Two different ways to construct
contiguous shapes bounding points of the same color.

We want to combine the advantages of both methods, while attempting to avoid their
problems. That is, we are interested in visualizing embedded and clustered graphs with
non-fragmented and non-overlapping regions. While constructing such representations
is easy in theory, in practice the regions may still have high visual complexity; see
Fig. |1} Ideally the regions should be as convex as possible, as the convex hull best
captures cohesive grouping according to Gestalt theory [14]].

With this in mind, we describe MapSets, method for creating non-fragmented, non-
overlapping regions that are as convex as possible, from a given embedded and clus-
tered graph. We consider several criteria for measuring convexity of a given shape,
and propose a novel geometric problem aiming at optimizing convexity. We include a
theoretical analysis of the problem in Section [3] including a computational hardness
and an approximation algorithm. Next, in Section[d we provide a practical method for
visualizing clustered graphs, which relies on the theoretical algorithm and guarantees
contiguity and disjointness of the regions, and also optimizes the convexity of the re-
gions. A fully functional implementation is available in an online system and is used in
a comparison with existing techniques, which we present in Section 5]

2 Related Work

We review work related to the practical and theoretical aspects of the problem of visu-
alizing embedded and clustered graphs.

Set Visualization: Graph clusters can be viewed as sets over graph vertices. In Venn
diagrams and their generalization, Euler diagrams, closed curves correspond to (possi-
bly overlapping) sets, and overlaps between the curves indicate intersections. Simon-
etto et al. [21] automatically generate Euler-like diagrams, by allowing disconnected
regions, which can be complex and non-convex. Riche and Dwyer [20] propose a way
to avoid the visual complexity problem by drawing simplified rectangular Euler-like
diagrams, that do not depict the intersections between the sets explicitly, by duplicat-
ing objects that belong to multiple sets. In a user study, they found that it is beneficial
to show intersections using simple set regions and strict containment, enabled by the
duplication. For the setting where the positions of the objects is fixed, Collins et al. [7]
present BubbleSets, a method based on isocontours to overlay such an arrangement
with enclosing set regions. The readability of these visualizations suffer when they are
many overlapping regions. LineSets [2]] aim to improve the readability of complex set
intersections and to minimize the overall visual clutter by reducing set regions to simple
curved lines drawn through set elements. KelpDiagrams [8] incorporate classic graph-
drawing “bubble and stick™ style graph or tree spanners over the member points in a

set. KelpFusion [16] adds filled-in regions to provide a stronger sense of grouping for
close elements. A significant limitation of all these set visualization techniques is that
they produce overlapping regions even when the sets are disjoint.

Visualizing Graphs as Maps: The geographic map metaphor is utilized as visual inter-
face for relational data, where objects, relations between objects, and clustering are cap-
tured by cities, roads, and countries. Using maps to visualize non-cartographic data has
been considered in the context of spatialization by Fabrikant et al. [10]. Self-organizing
maps, coupled with geographic information systems, render 2D maps of textual doc-
uments [23]], which provide an adaptable set of tools for spatial visualization of large
document collections. Maps of science showing groups of scientific disciplines are used
by a wide range of professionals to grasp developments in science and technology [3].
One drawback is that self-organizing maps are very computationally expensive.

The geographic map metaphor is used in the Graph-to-Map approach (GMap) [11].
GMap combines graph layout and graph clustering, together with appropriate coloring
of the clusters and creating boundaries based on clusters and connectivity in the original
graph. However, since layout and clustering are two separate steps, a region represent-
ing a cluster may often be fragmented; see Fig. Such fragmentation makes it dif-
ficult to identify the correct regions and can result in misinterpretation of the map [13]].
Colored Spanning Trees: From an algorithmic perspective, our geometric approach
of optimizing convexity of regions that cover points in the plane is related to several
computational geometry problems. In many problems the input is a multicolored point
set, like red-blue intersection, separation, and connection problems [113]. Also related
is the group Steiner tree problem where, for a graph with colored vertices, the objective
is to find a minimum weight subtree covering all colors [17]]. Also related is the problem
of computing spanning graphs for multicolored point set [12]. The problem is motivated
by optimizing the amount of “ink” needed to connect monochromatic points that arise
when visualizing sets using the KelpFusion technique. These trees cannot be directly
used as “skeletons” of regions in the plane as they can result in overlapping regions.

3 Constructing Contiguous Non-Overlapping Regions

We assume that the input instance consists of a set of objects P with fixed positions
p; € R? for all i € P, for example, cities and their geographic locations. In practical
applications labels are often associated with the objects. In this case, we assume that
non-overlapping bounding boxes for every label are given. The input also specifies a
clustering C = {C1,...,C} of the objects with U¥_;C; = P and C; N C; = 0 for
i # j. We wish to enclose all objects of the same cluster by a single contiguous region
so that regions corresponding to different clusters do not overlap.

On one hand, simply overlaying each cluster with a convex region (e.g., bounding
box or convex hull) is not always a valid solution, as it might cover elements in other
clusters. On the other hand, representing clusters by some minimal regions (e.g., span-
ning or Steiner trees) is also not always valid, as it might result in intersecting regions.

We require regions that are contiguous and disjoint, and it is not difficult to see that
such regions can be easily computed. We can begin by computing a crossing-free span-
ning tree of points belonging to some cluster. Once the tree is constructed, its vertices
and edges become “obstacles” that should be avoided by subsequent trees. Note that all

(a) (©)
Fig. 2: Convexity measures for a shape S enclosing red points. (a) Solid segments are within S,
while dashed ones are not. (b) A shape and its convex hull (dashed). (c) Area-based measure
ignores boundary defects. (d-e) Ink needed to connect the points is much bigger than the length
of the minimum spanning tree. The shape is enclosed in solid black, while the tree is dashed red.

the clusters will be processed as the trees do not separate the plane into more than one
region. Finally, contiguous non-overlapping regions can be grown, starting from these
disjoint trees. However, this procedure often generates “octopus’-like shapes that are
neither aesthetically pleasant nor practically useful for visualization; see Fig.|1| Hence,
we require a method for creating regions that are as convex as possible. In order to de-
sign such a method, a quality criterion for measuring the convexity of regions is needed.
Next we review and formalize several convexity measures.

3.1 Convexity Measures

A shape S is said to be convex if it has the following property: If points p, ¢ € R belong
to S then all points from the line segment [pq] belong to .S as well. The definition allows
for many different ways to measure the convexity of non-convex shapes.

Point Visibility: For a given shape S, this convexity measure is defined as the prob-
ability that for points p and ¢, chosen uniformly at random from S, all points from the
line segment [pq] also belong to S [25]]. The result is a real number from [0, 1], with 1
corresponding to convex shapes.

A problem with this definition is that it is difficult to compute, even if S is a polygon.
Therefore, we consider its discrete variant, taking into account that the input of our
problem specifies points in the plane; see Fig.

Vertex Visibility: This measure takes into account how many segments [pg| are

completely in S for pairs of input points p,q € P of the cluster corresponding to .S.

. , é(p,
The measure is defined as w, where the sum is over all pairs of input points

P and §(p,q) = 1 if [pq] lies inside S and §(p, q) = 0, otherwise. The result is a real
number from [0, 1], with 1 corresponding to convex shapes.

Convex Hull Area/Perimeter: Recall that the smallest convex set which includes a

shape S is called the convex hull CH(S) of S; see Fig. The area-based convexity

measure is defined as #‘%; it is frequently used and appears in textbooks [24].

The result is a real number from [0, 1], with 1 corresponding to convex shapes. Unlike
visibility-based measures, the convex hull-based one is very easy to calculate efficiently
and is robust with respect to noise. However, the definition does not allow to detect
defects on boundary that have a relatively small impact on the shape area; see Fig.

The perimeter-based definition attempts to remedy this: #%.

(a) (b)

Fig. 3: (a) An input for CST with n = 10 points and & = 3 colors. (b) An optimal solution with
minimum ink containing Steiner points.

If a shape S is convex, then there exists a minimum spanning tree on the given point
set such that every edge of the tree lies completely in S. On the other hand, non-convex
shapes do not necessarily admit such a spanning tree. Hence, the length of a shortest
curve that belongs to .S and connects all the input points is an indicator of convexity of
S. In the following measure, we compare the length of such a curve (or equivalently,
the amount of “ink” needed to connect all the points) with the length of a minimum
spanning tree on the same point set; see Figs.

Minimum Ink: Let INK(P) be the length of the shortest curve connecting all ver-
tices of V' lying in S, and let MST(P) be the length of the minimum spanning tree of
V. The measure is defined as %. Here, 1 indicates the best possible value (though,
it does not always correspond to a convex shape), while smaller values are worse.

Note that there are advantages and disadvantages of all of the proposed convexity
measures, and there are also many other ways to define convexity of shapes or poly-
gons. In an attempt to balance theoretical and practical considerations, we focus on
visibility-based and the ink-based measures. Note that similar ink-based criteria are
used to measure the “simplicity” of shapes used for constructing LineSets and Kelp-
Diagrams. By minimizing the ink needed for drawing, all of these techniques aim to
reduce visual clutter and increase the readability of the representation.

3.2 Algorithm for Ink Minimization

Here we study a problem motivated by computing contiguous regions with minimum
ink. The input consists of n points in the plane, and each point is associated with one of
k colors. The CST (COLORED SPANNING TREES) problem is to connect points of the
same color by mutually non-intersecting curves of shortest total length. It is easy to see
that in an optimal solution each curve forms a tree spanning points of the corresponding
color. In general, the trees may use additional (Steiner) points that do not belong to the
original pointset; see Fig.

Computing an optimal solution for CST is NP-hard. This follows directly from the
observation that the known NP-complete MINIMUM STEINER TREE problem is a spe-
cial case of CST, in which the input consists of monochromatic points. Next we present
a heuristic for CST and prove that it is an approximation algorithm in the theoretical
sense, and hence produces solutions guaranteed to be close to the optimum.

We refer to the minimum spanning tree of a set of points P as MST(P). The min-
imum Steiner tree of the points is referred to as SMT(P). Slightly abusing notation,
the lengths of the trees are also denoted by MST(P) and SMT(P). We use the Steiner
ratio, denoted by p, which is the supremum of the ratio of the total length of a mini-
mum spanning tree to the total length of a minimum Steiner tree. It is conjectured that

(a) (b) (© (d)

Fig. 4: Steps of the algorithm for the CST problem. (a) An input with n = 10 points and k£ = 3.
(b) Computing minimum spanning trees. (¢) Bounding the tree having the shortest length, and
removing red-green crossings. (d) Merging with the blue tree.

p= % ~ 1.15, but the conjecture is still open. Chung and Graham [6] showed a bound
of ~ 1.21, which is the best-known upper bound on p.

We begin with description of our algorithm in the setting when the input consists
of blue and red points. In the first step, we compute a minimum spanning tree of the
blue points (ignoring the red ones), and a minimum spanning tree of the red points;
see Figli(b)| If the trees do not intersect, then they form a solution for CST. Other-
wise, we create a red “shell” bounding the blue tree; see Fig Note that now all
red-blue crossings appear inside the constructed shell. To eliminate the crossings, we
remove all portions of the red tree inside the shell; the operation clearly keeps the red
tree connected. Finally, the red curve, consisting of the original spanning tree and the
constructed shell, can be transformed to a tree by disconnecting its cycles; see Fig[d(d)]

The general algorithm works in the following steps. First, create a minimum tree
MST(C;) spanning the set of points C; for 1 < ¢ < k, ignoring points of the other
colors. Sort the colors with respect to the length of the corresponding spanning trees.
Without loss of generality, we may assume that the resulting order is C, ..., Cy and
MST(Cy) < --- < MST(C}). Then the resulting curve for C is the tree MST(C1). A
curve for each successive color C; is constructed by adding a “shell” bounding the curve
corresponding to C;_1. Note that the length of the shell is exactly 23, _, MST(C}),
since it bounds all the spanning trees corresponding to already processed colors; see
Fig. [l The length of a curve for C; is then MST(C;) +2 37, MST(Cj).

In order to analyze the algorithm, we denote the amount of ink in the optimal solu-
tion by OPT, and the total length in the constructed solution by ALG. It is easy to see
that an optimal solution induces a curve connecting all points of the same cluster, that
is, the solution is a Steiner tree for the set of points (but not necessarily the minimum
one). Hence, OPT > . SMT(C}). On the other hand,

k
ALG <) (MST(C;) +2 > MST(C))) = Y _(2k — 2i + 1) MST(C;).
i j<i i=1
Hence, we have

ALG _ Zle(mz — 2i 4 1) MST(C})

OPT >iz1 MST(Cy)/p
SoWRI 9k — 2i + 1) MST(Cy) + 3215721 (20 — 1) MST(Ch_i41)

’ YL, MST(C))

Hence, our algorithm is a (kp)-approximation for the CST problem for any k > 1.

< kp.

— —|
— .3

 —
(a) Input (b) Tree Construction (c) Force-directed Adjustment

(d) Edge Augmentation (e) Adding Auxiliary Points (f) Computing Map Regions

Fig. 5: Algorithmic pipeline of MapSets.

4 MapSets

Here we describe MapSets, starting with a high-level overview; see Fig.[5] We assume
that the input is a set of rectangular shapes (bounding boxes of labels) embedded in
the plane along with a clustering. In the first step, we compute spanning mutually non-
crossing trees interconnecting centers of rectangles corresponding to the same cluster,
while minimizing the total ink needed to draw the trees. In the second step, we modify
the trees by adding buffers of free space around the segments of the trees, using a force-
directed heuristic. In the third step, we try to optimize the convexity of the resulting
regions based on the vertex visibility measure, by adding edges between vertices in the
same cluster, while ensuring that edges of different clusters do not cross. In the fourth
step, we use the modified trees and added edges to build contiguous non-overlapping
boundaries for all clusters.

Tree Construction: In order to construct the trees, we use the approximation al-
gorithm described in Section [3.2] For each cluster, we first compute a minimum tree
spanning the set of rectangle centers, ignoring other clusters. The clusters are then
sorted in non-decreasing order by the length of the computed trees and processed in
this order. At each step we consider all the precomputed trees as obstacles that should
be avoided when constructing the current tree. The rectangles are also treated as obsta-
cles. We compute a sparse visibility graph on the set of obstacles, where the vertices
are all the centers and corners of the rectangles, and there is an edge between two ver-
tices if one can draw a straight-line segment without crossing the obstacles. The sparse
visibility graph (unlike the full visibility graph) has a linear number of edges and can
be constructed efficiently [9]. We then compute shortest paths (of the visibility graph)
between every pair of rectangles of the current cluster. From these shortest paths, we
compute a minimum spanning tree for the current cluster. We add the tree to the set of
obstacles and proceed with the next cluster.

Force-directed Adjustment: This step improves the constructed trees. Our goal
is to provide some free space around the edges of the trees so as to avoid (1) narrow

channels between parts of the same country and (2) country borders lying too close to
the input vertex labels. To accomplish this, we consider an adjustment graph H in which
vertices are the end points and bends of the constructed trees and edges are maximal
straight-line segments of the trees. We then build a force system moving the vertices of
H that correspond to the bends of the tree. The system relies on the following forces.

— Vertex-vertex attraction. We would like to keep the ink of the drawing low. There-
fore, for every vertex of H, there is a force pushing the vertex towards its neighbor
vertices in H.

— Edge-edge repulsion. This repulsive force attempts to push the edges of H apart
to provide enough space to draw the regions. In order to compute the force, it is
convenient to replace edges of H with cylinders of a specified thickness. Then, if
two cylinders corresponding to different trees intersect, the force repels them away
from each other. This force also ensures that the trees do not overlap and do not
intersect during the adjustment process.

— Edge-label repulsion. This force prevents edges from being routed too close to
the input text labels. Again, it is convenient to consider the edges of H as cylin-
ders. If a cylinder occludes a label, then we introduce a repulsive force moving the
corresponding vertices of H away from the label.

We use iterative refinement similar to that used in drawing graphs with edge bun-
dles [4]] to adjust the positions of the vertices of H under these three forces: repulsive
forces have equal priorities, and the attractive force is weaker. In our experiments, the
force system provides the desired buffer of free space around the trees and converges
quickly; see Fig.[§]

Edge Augmentation: In this step we try to optimize the convexity of the regions us-
ing the vertex visibility metric. Consider all possible straight-line segments connecting
centers of rectangles corresponding to the same cluster. Our goal is to select and add as
many of these segments as possible, subject to the condition that they do not cross each
other. To this end, we construct a graph H in which vertices are the straight-line seg-
ments. A segment is added to H only if it does not intersect the trees found in the previ-
ous step. Two vertices of H are connected by an edge if the corresponding straight-line
segments cross each other. Notice that now the problem reduces to the problem of find-
ing a maximum non-crossing (independent) set of segments in the plane. The problem
can be solved optimally in polynomial time for two clusters, that is, if & = 2. Indeed,
in this setting the graph H is bipartite, and the size of a maximum independent set in a
bipartite graph equals to the number of edges in a minimum edge covering by Konig’s
theorem. The latter can be found using a maximum matching algorithm. Unfortunately,
the general variant is NP-hard even for & = 3 [[15]. Therefore, unless £ = 2, we use
a greedy strategy to solve the problem. At every step, we choose the minimum degree
vertex in H and remove its neighbors. It is well-known that this strategy guarantees an
approximation ratio of (A + 2)/3 on graphs with maximum degree A.

Adding Auxiliary Points and Computing Map Regions: Given the initial place-
ment of the labels and curves connecting the labels from the previous steps, we want to
create a map: that is we need explicit regions grouping together labels and curves in the
same cluster. A naive method is to form the constrained Voronoi diagram of the labels
and computed curves. However, this often results in sharp corners and angular outer

boundaries of the constructed regions. Hence, we generate more natural boundaries by
adding dummy points to the current embedding, as in the GMap framework [[L1]. There
are three types of the dummy points. First, random points, sufficiently far away from
the set of the input labels, lead to more rounded and thus more realistic region bound-
aries. Second, random points along bounding boxes of the labels help ensure that the
labels are drawn inside the countries. Finally, auxiliary points are added along all the
edges constructed on the previous step. These points are important in our algorithm, as
they keep the regions connected. The distance between consecutive points on an edge is
chosen to be less than the distance to any other point of a different color. After adding
the dummy points, we compute the Voronoi diagram of the set of all points. Voronoi
cells that belong to the points of the same color are merged together to produce the final
map.

Time Complexity

Now we discuss the complexity of our algorithm on an input with n points and & clus-
ters, assuming we can compute distances and intersections between geometric prim-
itives (points, line-segments, rectangles) in constant time. The sparse visibility graph
can be constructed in O(nlogn) time and it contains O(n) edges [9]]. Therefore, com-
puting all pairwise distances takes O(n?) time and finding a minimum spanning tree for
one cluster takes O(n? + nlogn) time. Summing over all clusters, we get O(kn?). In
the iterative force-directed heuristic we compute forces between pairs of edges, which
can take O(n?) in the worst case. Hence, the time complexity of the force-directed
heuristic is O(cn?), where c is the maximum number of iterations in the adjustment
(¢ = 10 in our implementation). The complexity of the edge augmentation step is
O(n?), as we may add quadratic number of edges in the greedy process. Finally, com-
puting the boundaries takes O(nlogn) time. Therefore, the overall time complexity is
O(kn? + n3). More details and actual running times are given in the next section.

S Experiments

Here we compare our new algorithm MapSets with the existing approaches for map-like
visualizations: GMap [11]], BubbleSets [7], and KelpFusion [16]]. A fully functional
implementation of MapSets, GMap, and BubbleSets is available in an online system
athttp://gmap.cs.arizona.edu; see more details in Appendix Bl The draw-
ings of KelpFusion are courtesy of the authors [16].

Our first example is the senator voting graph; see Fig.[6] The vertices in the graph
are the U.S. senators in 2010 positioned according to their home-cities in the U.S. The
clustering is based on the political party they represent, red for republicans and blue for
democrats. Clearly, both clustering and geographic information of the vertices are fixed
and cannot be changed. One can see that GMap produces fragmented clusters, while
BubbleSets and KelpFusion compute overlapping regions. On the other hand, the result
of MapSets is contiguous and non-overlapping, which makes it easier to analyze the
distribution of senators over the map.

The second example shows the population structure within Europe [18]]. The origi-
nal points correspond to genetic data from 1, 387 Europeans (but we sampled only 50
vertices corresponding to Eastern Europe for illustration purposes). The positions of the

http://gmap.cs.arizona.edu

(a) MapSets (b) GMap (c) BubbleSets (d) KelpFusion

Fig. 6: The senator voting graph (the part of the U.S. west of Mississippi). The vertices are sena-
tors (red republicans and blue democrats) positioned according to their home-cities.

(a) MapSets (b) GMap (c) BubbleSets (d) KelpFusion

Fig.7: The graph of genetic similarities between 50 individuals in Europe. The layout is com-
puted using the principal component analysis, while the clusters correspond to the countries of
origin of the individuals.

vertices come from the original principal component analysis, based on the similarity
matrix. As the authors point out, the PCA plot (appropriately rotated) closely matches
the geographic outlines of Europe; hence, it is undesirable to change the node positions.
The clusters are extracted independently and corresponds to the countries of origin of
the individuals. Again, only MapSets constructs non-fragmented disjoint regions; see
Fig. |7} Arguably, this is easier to analyze than the overlapping regions produced by
BubbleSets and KelpFusion; see more examples in Appendix [A]

We next analyze the performance of our ink minimization heuristic. To this end,
we utilize a collection of 9 real-world networks, that are embedded and clustered using
the GMap tool with the default setting [L1]. Table |1| gives details about the graphs
and measurements of our ink saving algorithm; see Appendix [B| for more details on
the datasets. Here, ALG shows the ratio of the total ink of the computed trees to the
total length of the minimum spanning trees computed individually for every cluster. In
other words, this is an approximation factor achieved by our algorithm on the test cases.
Although we can only guarantee factor kp, in practice the algorithm performs very well,
always producing a solution at most 1.6 times worse than the optimal. Our experiments
indicate that ink minimization strategy often results in aesthetically more pleasant map
visualizations; see Fig.[9](in Appendix) for a comparison.

Similarly, ALG ¢4 indicates the utilized ink after the force-directed adjustments. As
expected, the ink increases after the step, but the increase is not significant. On the
other hand, the adjustments improve the quality of the resulting regions. Fig. [I0] (in
Appendix) provides an example of the maps computed with and without the heuristic;
notice the narrow channels in the figure computed without the adjustments.

10

graph |P| k ALG ALGyq

Colors 50 6 1.002 1.012

GD 506 23 1.582 1.612 @ Tree Construction
Recipes 381 15 1.356 L1502 g7 B o Ao tanoment
Trade 211 8 1.101 1.259 -

Universities 161 8 1.366 1.443 Ew-

SODA 316 11 1.204 1.296 2

IPL 33 11 1.337 1.414 § 5

SOCG 500 11 1492 1.601 I Dl HI Dl
TARJAN 252 16 1.150 1.197 O T o TrearsT T Do)
ALGO 500 5 1.547 1.650 graph

Fig.8: Running times of the different
steps of MapSets on some of the test
cases.

Table 1: Measurements of MapSets on test cases:
ALG and ALG 4 stand for the ratio between the to-
tal ink of the drawing and the total length of the min-
imum spanning trees after the steps Tree Construc-
tion and Force-directed Adjustment, respectively.

We use a machine with Intel i5 3.2GHz and 8GB RAM for measuring running time;
see Fig.[8] The algorithm is implemented in C++. Note that the last two steps, Adding
Auxiliary Points and Computing Regions, are very efficient taking few milliseconds for
the largest graphs, and hence are not included in the chart. The first step, Tree Con-
struction, is usually the most time consuming; it is more efficient for nearly contiguous
clusters (e.g, Colors) and less efficient for graphs with many fragments (e.g., GD). Al-
though Edge Augmentation theoretically has cubic time complexity, it among the fastest
steps in practice, because there are usually not many edges added. Overall, our algo-
rithm processed all graphs (most with hundreds of vertices) in less than a minute. This is
slower than the GMap and LineSets but comparable to BubbleSets. Since our algorithm
extensively utilizes many primitive geometric operations (e.g., testing for segment in-
tersections), using a specialized geometric library will likely improve the performance.

6 Conclusion and Future Work

We designed and implemented a new approach for visualizing embedded and clus-
tered graphs Unlike existing techniques, our MapSets method always produces con-
tiguous and non-overlapping regions. Results of the initial evaluations seem promising.
We also presented a simple approximation algorithm for the geometric problem of ink
minimization motivated by the method. A natural future direction is to improve the ap-
proximation factor. It would be also worthwhile to carefully evaluate different convexity
measures and select one that offers the best balance between ease of computation and
visual quality of the resulting regions.

Acknowledgements. We are grateful to W. Meulemans for providing visualizations
constructed by KelpFusion. We thank the authors of [18]] for the DNA dataset.

11

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

Agarwal, PK., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning
trees and bichromatic closest pairs. Discrete & Comput. Geom. 6(1), 407-422 (1991)
Alper, B., Riche, N.H., Ramos, G., Czerwinski, M.: Design study of linesets, a novel set
visualization technique. IEEE Trans. Vis. Comput. Graphics 17(12), 2259-2267 (2011)

. Arora, S., Chang, K.: Approximation schemes for degree-restricted mst and red-blue sepa-

ration problems. Algorithmica 40(3), 189-210 (2004)

. Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Edge routing with ordered bundles.

Arxiv report http://arxiv.org/abs/1209.4227(2012)

. Boyack, K.W., Klavans, R., Borner, K.: Mapping the backbone of science. Scientometrics

64, 351-374 (2005)

. Chung, F., Graham, R.: A new bound for Euclidean Steiner minimal trees. Annals of the New

York Academy of Sciences 440(1), 328-346 (1985)

. Collins, C., Penn, G., Carpendale, S.: Bubble sets: Revealing set relations with isocontours

over existing visualizations. IEEE Trans. Vis. Comput. Graphics 15(6), 1009-1016 (2009)

. Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams: Point set

membership visualization. In: Comput. Graph. Forum. vol. 31, pp. 875-884 (2012)

. Dwyer, T., Nachmanson, L.: Fast edge-routing for large graphs. In: Eppstein, D., Gansner,

E. (eds.) GD. LNCS, vol. 5849, pp. 147-158. Springer (2010)

Fabrikant, S., Monteilo, D., Mark, D.M.: The distance-similarity metaphor in region-display
spatializations. IEEE Comput. Graphics and Appl. 26(4), 34—44 (2006)

Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps. IEEE Com-
put. Graphics and Appl. 30(6), 54-66 (2010)

Hurtado, F., Korman, M., Kreveld, M., Lffler, M., Sacristn, V., Silveira, R., Speckmann, B.:
Colored spanning graphs for set visualization. In: Wismath, S., Wolff, A. (eds.) GD. LNCS,
vol. 8242, pp. 280-291. Springer (2013)

Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on node-link
diagrams: an evaluation. IEEE Trans. Vis. Comput. Graphics (2014), to appear

Kanizsa, G., Gerbino, W.: Convexity and symmetry in figure-ground organization. Vision
and Artifact pp. 25-32 (1976)

Kratochvil, J., NeSettil, J.: Independent set and clique problems in intersection-defined
classes of graphs. Commentationes Math. Univ. Carolinae 31(1), 85-93 (1990)

Meulemans, W., Riche, N., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: A hybrid set
visualization technique. IEEE Trans. Vis. Comput. Graphics 19(11), 1846-1858 (2013)
Mitchell, J.S.: Geometric shortest paths and network optimization. Handbook of computa-
tional geometry 334, 633-702 (2000)

Novembre, et al.: Genes mirror geography within europe. Nature 456(7218), 98-101 (2008)
Purves, D., Lotto, R.B.: Why we see what we do: An empirical theory of vision. Sinauer
Associates (2003)

Riche, N.H., Dwyer, T.: Untangling euler diagrams. IEEE Trans. Vis. Comput. Graphics
16(6), 1090-1099 (2010)

Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of overlapping sets.
In: Comput. Graph. Forum. vol. 28, pp. 967-974 (2009)

Skupin, A., Fabrikant, S.I.: Spatialization methods: a cartographic research agenda for non-
geographic information visualization. Cartogr. Geogr. Inform. 30, 95-119 (2003)

Skupin, A.: A cartographic approach to visualizing conference abstracts. IEEE Comput.
Graphics and Appl. 22(1), 50-58 (2002)

Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision.
Thomson-Engineering (2007)

Zunic, J., Rosin, PL.: A convexity measurement for polygons. IEEE Trans. Pattern Anal.
Mach. Intell. 26, 173-182 (2002)

12

http://arxiv.org/abs/1209.4227

A Appendix: Additional Figures

]

Fig. 9: The effect of ink minimization in MapSets. The results computed for the trees of total ink:
(a) 6658 units (ALG = 1.06) and (b) 6021 units (ALG = 1.172).

(2) (b)

Fig. 10: The effect of the Force-directed Adjustment step in MapSets: (a) without the adjustments
and (b) with the adjustments. The very thin connection between two blue components is almost
invisible without the force-directed adjustments.

13

=
— — =
= =
o =
= =
—/ =
o
= X ",
=
= =
= = = = =
\ —
- — =1
—/ -
=
=
=
i

Fig. 11: The graph is constructed using the 50 most common monitor colors. The edge-weights
are defined by the distance in the RGB space between corresponding pairs. The layout is created
using multidimensional scaling, clustering is done using the modularity optimization algorithm.
(a) Computed non-intersected trees. (b) The final MapSets results. The image is zoomable and
has high resolution.

14

Fig. 12: The Universities graph: network of the U.S. universities and their average SAT scores.
The vertices are universities and edges are constructed based on similarities in admissions. The
layout is computed using the force-directed algorithm, clustering is constructed by modularity
optimization. (a) Fragmented map computed by GMap. (b) The contiguous MapSets result. The
image is zoomable and has high resolution.

15

B Appendix: Online System

A fully functional implementation of MapSets, GMap, and BubbleSets is available in
an online system at http://gmap.cs.arizona.edul In order to draw a graph,
paste the graph in the dot format, press “Show Advanced Options”, then choose an ap-
propriate visualization type and clutstering/layout algorithm, and press “Create Map”.
We implemented and made available the following visualization techniques:

— Node-Link Diagrams — the classical method for visualizing graphs;

— GMap — the Graph-to-Map algorithm for creating map-like visualizations [L1];
BubbleSets — the method suggested by Collins et al. [[7]], which is based on isocon-
tours to overlay an arrangement of objects with enclosing set regions;

LineSets — the set visualization technique by Alper et al. [2]], that uses a simple
curve traversing all of the elements of each set;

MapSets — our new algorithm for visualizing embedded clustered graph.

We provide several classical graph layout algorithms (force-directed algorithm, mul-
tidimensional scaling) and clustering algorithms (modularity clustering, K-means, hi-
erarchical clustering). The system supports the semantic zoom feature and interactive
browsing, once can also save the image in a variety of formats; see Fig.[I3] Source code
for the entire system and all algorithms is available on GitHub.

Graph Dataset Real-world graphs used in our experiments can be downloaded from
http://gmap.cs.arizona.edu/datasetsl ALGO, IPL, SOCG, SODA, and
TARJAN describe topics of research papers and contain the prominent words and phrases
extracted from the titles of the papers. The edges represent similarities between the top-
ics computed based on their co-occurrence in titles. GD is the co-authorship graph
for the Graph Drawing Symposium; the vertices represent the authors and the edge
represent papers published together. Recipes contain ingredients extracted from cook-
ing recipes. Trade describes trade relationships between countries. The Universities
dataset is based on average SAT scores in the U.S. universities.

%@ =

« - € [1 gmapcsarizonaedu/map/1020

Home Description Datasets

Edge Opacitv: Save as dot svg png pdf

45 | > g cones Rice
University of Virginia e 760,780
700,720 ’

L niversity. Washington Universi
7 750,780

mmmmmmmmm

s College.

80

Franklin W. Olin Wellesley
790,800 750,730

~ operin
: Stanford
740710 .
o 760,790 750780
uuc
670,740

snta Lawrsnce College
<}

Williams
760,760

Swarthmore
780,760

Hew College of Florida
750870

Fig. 13: The interface of our interactive system for visualizing clustered graphs.

16

http://gmap.cs.arizona.edu
http://gmap.cs.arizona.edu/datasets

	MapSets: Visualizing Embedded and Clustered Graphs

