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Abstract. In this paper, we study balanced circle packings and circle-contact
representations for planar graphs, where the ratio of the largest circle’s diameter
to the smallest circle’s diameter is polynomial in the number of circles. We pro-
vide a number of positive and negative results for the existence of such balanced
configurations.

1 Introduction

Circle packings are a frequently used and important tool in graph drawing [1,4,5,11,12,
19, 21, 24, 26]. In this application, they can be formalized using the notion of a circle-
contact representation for a graph G = (V,E); this is a collection C of interior-disjoint
circles in R2, corresponding one-for-one with the vertices of G, such that each two ver-
tices v and w inG are adjacent if and only if their corresponding two circles are tangent
to each other [16, 17]. Graphs with circle-contact representations are also known as
“coin graphs” [27]. In a classic paper, Koebe [20] proved that every triangulated planar
graph has a circle-contact representation, and this has been subsequently re-proved sev-
eral times. Generalizing this, every planar graph has a circle-contact representation: we
can triangulate the graph by adding “dummy” vertices connected to the existing vertices
within each face, produce a circle-contact representation for this augmented graph, and
then remove the circles corresponding to dummy vertices. It is not always possible to
describe a circle-contact representation for a given graph by a symbolic formula involv-
ing radicals [3, 7], but they can nevertheless be constructed numerically and efficiently
by polynomial-time iterative schemes [8, 23].

One of the drawbacks of some of these constructions, however, is that the sizes of
the circles in some of these configurations may vary exponentially, leading to drawings
with very high area or with portions that are so small that they are below the resolution
of the display; see Figure 1(a). For this reason, we are interested in this paper in bal-
anced circle packings and circle-contact representations for planar graphs, where the
ratio of the maximum and minimum diameters for the set of circles is polynomial in
the number of vertices in the graph. Such drawings could be drawn with polynomial
area, for instance, where the smallest circle determines the minimum resolution; see
Figure 1(b).

1.1 Related Work

There is a large body of work about representing planar graphs as contact graphs, where
vertices are represented by geometrical objects and edges corresponding to two objects
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Fig. 1. Two graphs with 9 vertices and possible circle-contact representations: (a) a representation
that is not optimally balanced; (b) a perfectly balanced representation

touching in some pre-specified fashion. For example, Hliněný [16, 17] studies contact
representations using curves and line segments as objects. Several authors have consid-
ered contact graphs of triangles of various types: de Fraysseix et al. [13] show that ev-
ery planar graph has a triangle-contact representation, Badent et al. [2] show that partial
planar 3-trees and some series-parallel graphs have contact representations with homo-
thetic triangles, and Gonçalves et al. [15] prove that every 3-connected planar graph and
its dual can be simultaneously represented by touching triangles (and they point out that
4-connected planar graphs also have contact representations with homothetic triangles).
Also, Duncan et al. [10] show that every planar graph has a contact representation with
convex hexagons all of whose sides have one of three possible slopes, and that six sides
are necessary, if convexity is required.

With respect to balanced circle-contact representations, Breu and Kirkpatrick [6]
show that it is NP-complete to test whether a graph has a perfectly-balanced circle-
contact representation, in which every circle is the same size. Circle-contact graphs
are related to disk graphs [18], which represent a graph by intersecting disks; unlike for
circle contact graphs, the interiors of the disks are not required to be disjoint. Regarding
the resolution of disk graphs, McDiarmid and Müller [22] show that there are n-vertex
graphs such that in every realization by disks with integer radii, at least one coordinate
or radius is 22

Ω(n)

, and they also show that every disk graph can be realized by disks
with integer coordinates and radii that are at most 22

O(n)

.

1.2 Our Contribution

In this paper, we provide a number of positive and negative results regarding balanced
circle-contact representations for planar graphs:

– Every planar graph G with bounded maximum vertex degree and logarithmic out-
erplanarity admits a balanced circle-contact representation.

– There exist planar graphs with bounded maximum degree and linear outerplanarity,
or with linear maximum degree and bounded outerplanarity, that do not admit a
balanced circle-contact representation.
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– Every tree admits a balanced circle-contact representation.
– Evey outerpath admits a balanced circle-contact representation.
– Every cactus graph admits a balanced circle-contact representation.
– Every planar graph with bounded tree-depth has a balanced circle-contact repre-

sentation.

2 Bounded Degree and Logarithmic Outerplanarity

A plane graph (that is, a combinatorially fixed planar embedding of a planar graph) is
outerplanar if all of its vertices are on the outer face. A k-outerplanar graph is defined
recursively. As a base case, if a plane graph is outerplanar, then it is a 1-outerplanar
graph. A plane graph is k-outerplanar, for k > 1, if the removal of all the outer vertices
(and their incident edges) yields a graph such that each of the remaining components is
(k− 1)-outerplanar. The outerplanarity of a plane graph G is the minimum value for k
such that G is k-outerplanar.

In this section, we show that every n-vertex plane graph with bounded maximum
degree and O(log n) outerplanarity admits a balanced circle-contact representation. We
also show that these two restrictions are necessary, by demonstrating examples of planar
graphs where either of these restrictions are violated and there is no balanced circle-
contact representation.

Balanced Circle-Contact Representations. We begin with the following theorem.

Theorem 1. Any n-vertex k-outerplanar graph with maximum degree, ∆, admits a
circle-contact representation where the ratio of the maximum and the minimum diame-
ter is at most f(∆)k+logn, for some positive function f . In particular, when∆ is a fixed
constant and k is O(log n), this ratio is polynomial in n.

In order to prove the theorem, we need the following result from [21]; see also [19].

Lemma 1 (Malitz-Papakostas). The vertices of every triangulated planar graph G
with maximum degree ∆ can be represented by nonoverlapping disks in the plane so
that two disks are tangent to each other if and only if the corresponding vertices are
adjacent, and the ratio of the radii of each two disks that are tangent to each other is at
least α∆−2 with α = 1

3+2
√
3
≈ 0.15.

Thus, every maximal planar graph having maximum degree∆ = O(1) and diameter
d = O(log n) has a balanced circle-contact representation. Theorem 1 goes beyond this.

Proof of Theorem 1: To prove the claim, it is sufficient to show how to augment a
given k-outerplanar graph into a maximal planar graph with additional vertices so that
its maximum degree remains O(∆) and so that its diameter becomes O(k + log n).
By Lemma 1, the resulting graph will admit a circular contact representation with the
given bounds on the ratio of radii. Removing the circles corresponding to added vertices
would then produce the desired balanced representation of the original graph.

LetG be an n-vertex k-outerplanar graph with the maximum degree∆. If the outer-
planarity k of G is bounded by a constant, we can easily augment G to logarithmic di-
ameter, preserving its constant maximum degree, as follows. Inside each non-triangular
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Fig. 2. Augmentation of a face (a) with a balanced binary tree (b, dashed edges), and triangulation
with grey edges (c, grey edges)

face f of G, insert a balanced binary tree with dlog |f |e levels and |f | leaves and then
triangulate the remaining non-triangular faces by inserting an outerpath (an outerpla-
nar graph whose weak dual is a path) with constant degree; see Figure 2. However
with such an augmentation the diameter of the resulting maximal planar graph becomes
O(k log n), which does not yield a balanced circle-contact representation when k is
non-constant. For k = Ω(log n), we have to be more careful in the augmentation to
achieve a diameter of O(k + log n) in the final graph.

We instead augment G using weight-balanced binary trees rather than traditional
balanced binary trees. Let T be a binary tree with leaves, l1, l2, . . . , l|f |, and a prespeci-
fied weight, wi, assigned to each leaf, li. T is weight-balanced if the depth of each leaf
li in T is O(logW/wi), where W =

∑f
i=1 wi. There are several known algorithms

for producing a weight-balanced binary tree with positive integer weights defined on its
leaves [14, 25].

To augment G, we label each vertex v of G with the number l + 1, where l is the
number of outer cycles that need to be removed before v becomes an outer vertex. By
our assumption that the outerplanarity of G is k, the label of every vertex is at most k.
It follows from this labeling that, for each vertex v of G with label l > 1, there exists a
face f containing v such that f has at least one vertex of label l−1 and such that all the
vertices on f have label either l or l− 1. We insert a weight-balanced binary tree inside
f ; we choose an arbitrary vertex of f with label l−1 as the root of the tree, and a subset
of vertices with label l as the leaves; see Figure 3. We construct these trees inside the

r
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Fig. 3. Augmentation of G with a weight-balanced binary trees
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different faces in such a way that each vertex of G with label l > 1 becomes a leaf in
exactly one of the trees. Finally, we insert another weight-balanced tree T0 on the outer
face containing all the outer vertices as the leaves. Note that we have yet to specify the
weights we assign to these leaves for producing the weight-balanced trees. Still, by our
construction, the union of all these trees forms a connected spanning tree of G; we can
consider the root of T0 to be the root of the whole spanning tree.

Let us now specify the weights we assign to the leaves of the different weight-
balanced trees we constructed. We label each tree with the label of its root, and define
the weights for the leaves of each tree in a bottom-up ordering, by decreasing order of
the labels of the trees. In a tree T with label l = (k − 1), all the leaves have label k
and are not the root of any other tree; we assign each of these leave the weight 1. In this
case, the total weight of T becomes its number of leaves. Similarly, for a tree with label
l < k − 1, we assign a weight of 1 to those leaves v that do not have any tree rooted at
them; otherwise if v is the root of a tree Tv with label l + 1, the weight of v is the total
weight of Tv . Once again the total weight of T is now defined as the summation of the
weights for all its leaves.

We claim that for each vertex v ofG the distance to v from the root r of T0 isO(k+
log n). Indeed assume that v = ul is a vertex of label l and ul−1, . . ., u1, u0 = r are
the root vertices of the successive weight-balanced trees Tul−1

, . . ., Tu1 , T0 with label
l−1, . . . , 1, 0, respectively on the way from v to r; see also Figure 3. Then the distance
from v to r is O(logw(r)/w(u1))+O(logw(u1)/w(u2))+. . .+O(logw(ul−1)/w(v))
= O(k+ logw(r)) = O(k+ log n). Here w(ui) denotes the weight of vertex ui as the
root. Thereforew(r) is the weight of the root of T0, which is equal to the total number of
vertices n inG. Thus the diameter of the augmented graph isO(k+log n). Furthermore
the maximum degree of a vertex remains constant. We finally triangulate this graph
by inserting outerpaths with constant maximum degree inside each non-triangular face
to obtain a maximal planar graph with constant maximum degree and O(k + log n)
diameter. The result then directly follows from Lemma 1. ut

Negative Results. The next lemma shows that if either the maximum degree is not
bounded or the outerplanarity is linear, then one might not find a balanced circle-contact
representation with circles.

Lemma 2. There is no balanced circle-contact representation for the graphs in Fig-
ure 4.

Lemma 2, which we prove in Appendix A, shows the tightness of the two conditions
for balanced circle-contact representations in Theorem 1 (the example of the graph in
Figure 4(b) can be extended for any specified unbounded maximum degree, for exam-
ple, by adding a simple path to the high-degree vertex). Furthermore, Figure 4 also gives
an example of a 2-outerplanar graph with no balanced circle-contact representation.

3 Trees and Outerplanar Graphs

Here we address balanced circle-contact representation for trees and outerplanar graphs.
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Fig. 4. Planar graphs with no balanced circle-contact representation: (a) the nested-triangles
graph [9]; (b) a 2-outerplanar graph

Theorem 2. One can compute a balanced circle-contact representation for any tree T
in linear time.

Proof: We first find a contact representation Γ of T with squares such that the ratio of
the maximum and the minimum sizes for the squares is polynomial in the number of
vertices n in T . To do this, we consider T as a rooted tree with an arbitrary vertex r
as the root. Then we construct a contact representation of T with squares where each
vertex v of T is represented by a square R(v) such that R(v) touches the square for its
parent by its top side and it touches all the squares for its children by its bottom side;
see Figure 5(left)–(middle). We choose the size of R(v) as l(v) + ε(n(v) − 1), where
ε > 0 is a small positive constant and n(v) and l(v) denote the number of vertices
and the number of leaves, respectively, in the subtree of T rooted at v. In particular,
the size of R(v) is 1 unit when v is a leaf. If v is not a leaf, then suppose v1, . . ., vd
are the children of v in the counterclockwise order around v. Then we place the squares
R(v1), . . .,R(vd) from left-to-right touching the bottom side ofR(v) such that for each
i ∈ {1, . . . , d− 1}, R(vi+1) is placed ε unit to the right of R(vi); see Figure 5(middle).
There is sufficient space to place all these squares in the bottom side of R(v), since
n(v) = (

∑d
i=1 n(vi))− 1 and l(v) =

∑d
i=1 l(vi). The representation does not create a

crossing (or unwanted contact) since for each vertex v the representation of the subtrees
rooted at v is bounded in the left and right side by the two sides of R(v) and all the
subtrees rooted at the children of v are in disjoint regions ε unit away from each other.
The size of the smallest square is 1 while the size of the largest square (for the root) has
size l(T ) + ε(n− 1) = O(n), where l(T ) is the number of leaves in T .

Once we get the square contact representation Γ we can find a balanced circle-
contact representation of T as follows. We replace each square R(v), representing v
by an inscribed circle of R(v); see Figure 5(right). This will remove some contacts in
the representation. However we can re-create these contacts by a top-down traversal of
T and moving each circle upward until it touches its parent. Note that a given circle
will not touch or intersect any circle other than the circles for its parent and its children
because for every vertex in the infinite strip between its leftmost and rightmost point for
its circle, the closest circle in the upward direction is its parent’s. Thus, we obtain a con-
tact representation of T with circles. The representation is balanced since the diameter
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for every circle is equal to the side-length for its square and the square representation
was balanced to begin with.

The linear running time can be achieved by any linear-time traversal of T . First, by
a bottom-up traversal of T , we compute the values n(v) and l(v) for each vertex v of T .
Using these values for each vertex, we compute the square-contact representation for T
by a linear-time top-down traversal of T . Finally, in another top-down traversal of T ,
for each vertex v of T , we can compute the exact translation required for the inscribed
circles of R(v) to touch the parent circle. Thus, the total running time is linear. ut

Let us now describe how to compute a balanced circle-contact representation for a
cactus graph, which is a connected graph where each biconnected component is either
an edge or a cycle. We use the algorithm in the proof for Theorem 2, which we call
Draw Tree.

Let T be a rooted tree with a plane embedding. For each vertex v of T , add an
edge between every pair of the children of v that are consecutive in the clockwise order
around v. Call the resulting graph an augmented fan-tree for T . Clearly for any rooted
tree T , the augmented fan-tree is outerplanar. We call an outerplanar graph a fan-tree
graph if it is an augmented fan-tree for some rooted tree. A star is the complete bipartite
graph K1,n−1. The center for a star is the vertex that is adjacent to every other vertex.
An augmented fan-tree for a star is obtained by taking the center as the root. Thus, an
augmented fan-tree for a star is a fan. The center of a fan is again the vertex adjacent to
all the other vertices.

Lemma 3. Any subgraph of a fan admits a contact representation with circles, where,
for each circle c(v) representing a vertex v other than the center, the vertical strip
containing c(v) is empty above c(v).

Proof: Let G be a subgraph of a fan and let T be the star contained in the fan. We
now use the contact representation Γ of T from Algorithm Draw Tree to compute a
representation for G. Consider the square-contact representation computed for T in the
algorithm. This defines a vertical strip for each circle c(v) in Γ representing a vertex v,
and for all the vertices other than the center, these strips are disjoint; see Figure 6(a).
Call the left and right boundary of this strip the left- and right-line for c respectively.

We now consider a set S of circles, one for each vertex of G other than the center
with the following properties:
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Fig. 5. Construction of a balanced circle-contact representation
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Fig. 6. (a) A star T and a contact representation of T with circles; (b) a subgraph of the fan for T
and its contact representation with circles

(P1) The circles are interior-disjoint.
(P2) Each circle c′(v) representing a vertex v spans the entire width of the vertical strip

for v and the vertical strip above c′(v) is empty.
(P3) For each vertex v, c′(v) touches the circle c0 representing the center in Γ if v

is adjacent to the center; otherwise, c′(v) is exactly ε distance away from c0, for
some fixed constant ε.

(P4) If a vertex v is not adjacent to the vertex on its left (or if v is the leftmost vertex),
then the leftmost point of c′(v) is on the left-line of v; similarly, if v is not adjacent
to the vertex on its right (or if v is the rightmost vertex), then the rightmost point
of c′(v) is on the right-line of v.

(P5) The sizes for the circles are maximal with respect to the above properties.

Note that there exists a set of circles with the properties (P1)–(P4); in particular, the
set of circles in Γ representing the vertices of T other than the center is such a set. We
now claim that the set S of circles with properties (P1)–(P5) together with the circle
c0 gives a contact representation for G; see Figure 6(b). First note that a circle c′(v)
cannot touch any circle other than c0 and the two circles c(vl) and c(vr) representing
the vertices vl and vr on its left and right, respectively. Indeed, it cannot pass the vertical
strip for vl and vr above them due to (P2) and behind them due to (P3). Furthermore,
the ε distance between c0 and the circles for vertices non-adjacent to the center and
the restriction on the left and right side in (P4) ensures that there is no extra contact.
It is thus sufficient to show that for each edge in G, we have the contact between the
corresponding circles.

Since each circle c′(v) is maximal in size, it must touch at least three objects. One
of them is either the circle c0 or the ε offset line for c0. Thus, if vl and vr are the left
and right neighbors of v (if any), then c′(v) must touch two of the followings: (i) c′(vl)
(or the left line of v if vl does not exists), (ii) the right line for vl, (iii) c′(vr) (or the
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right line of v if vr does not exists), and (iv) the left line for vr. Assume without loss of
generality that both vl and vr exist for v. Then if c′(v) touches both c′(vl) and c′(vr),
we have the desired contacts for v. Therefore, for a desired contact of c′(v) to be absent,
either c′(v) touches both c′(vl) and the right-line of vl or it touches both c′(vr) and the
left-line of vr.

Assume, for the sake of a contradiction, that there are two consecutive vertices x
and y that are adjacent in G but c′(x) and c′(y) do not touch each other. Let l and r be
the vertices to the left of x and to the right of y, respectively. Then it must be the case
that x touches both c′(l) and the right line for l and y touches both c′(r) and the left line
of r; see Figure 7(a). One can then increase the size of either c′(x) or c′(y) (say c′(y))
such that it now touches c′(x) and the left-line for r (but not c′(r)), a contradiction to
the maximality for the circles; see Figure 7(b). ut

x y

r r

p p

(a) (b)

x y

l l

Fig. 7. Illustration for the proof of Lemma 3

From the above lemma, we can design a quadratic time algorithm to obtain a bal-
anced circle-contact representation for a subgraph of a fan as follows. Given a subgraph
G of a fan, compute the balanced circle-contact representation Γ for the corresponding
star T using Algorithm Draw Tree. Now pick the vertices of T other than the cen-
ter in a random order and for each vertex v replace the circle c(v) in Γ by a circle of
maximum size that does not violate any of the properties (P1)–(P4) in the proof for
Lemma 3. This takes a linear time. Now for every edge (x, y) for which c(x) and c(y)
do not touch, we replace one of the two circles (say c(y)) with a circle that touches
c(x) as in Figure 7(b). However, this may result in a loss of a contact between c(y) and
the circle to it right. We perform a similar operation for the circle to the right of c(y),
then possibly for the circle on its right and so on, until all missing contact are repaired.
This process requires linear time per edge; hence the total running time to compute the
desired contact representation is quadratic. The contact representation is balanced since
the representation obtained from Algorithm Draw Tree is balanced and afterwards we
only increase the size of circles that are not of the largest size.

Theorem 3. One can find in O(n2) time a balanced circle-contact representation for
any subgraph of an n-vertex fan-tree graph.
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(b)(a)

Fig. 8. (a) A cactus graph G; (b) augmenting G to a fan-tree, where the directed edges forms a
rooted tree and are oriented towards the root

Proof: Let G be the fan-tree graph and let T be the corresponding tree for which G is
the augmented fan-tree. Using Algorithm Draw Tree, we first obtain a balanced circle-
contact representation of T . As in the proof for Lemma 3, this defines a vertical strip for
each vertex in T . In a top-down traversal of T , we can find a contact representation ofG
with circles by repeated application of the quadratic-time algorithm for the subgraphs
of fans. The total time-complexity is thus

∑
v∈V (T )

[deg2T (v)] = O(n2). ut

As a corollary of Theorem 3, we can obtain a quadratic-time algorithm for balanced
circle-contact representation of a cactus graph.

Corollary 1. One can find a balanced circle-contact representation of a given cactus
graph in quadratic time.

Proof: We show that every cactus tree is a subgraph of a fan-tree. This immediately
proves the claim due to Theorem 3. Let G be a cactus graph. Take a breadth-first traver-
sal of G with respect to an arbitrary vertex. For any cycle C of G, call the vertex that
was traversed first in C the leader of C. Note that for a cactus graph, this leader is
unique for every cycle. Now for every cycle C of G, add an edge from each vertex of
C to the leader vertex. The resulting graph is a fan-tree; see Figure 8. ut

We provide a linear-time algorithm for balanced circle-contact representation of
outerpaths in Appendix B. The main idea of this construction is to partition a given
outerpath into a sequence of fans, use unit circles to represent the zigzag outerpath
formed by the vertices at the ends of each fan, and then perturb these circles by small
rotations to make room for the other circles that should go between them.

4 Tree-depth

In Appendix C, we prove that every planar graph with bounded tree-depth has a bal-
anced circle packing. To show this, we characterize these graphs in terms of their block-
cut trees and SPQR trees. We then show how to use Möbius transformations to glue
together circle packings representing the triconnected components in each SPQR tree,
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producing a circle packing for the whole graph. To find an appropriate set of circle
packings for each triconnected component, allowing the packings to be glued together
without introducing unwanted tangencies, we prove the existence of circle packings
described by systems of inversive distances between circles.

5 Conclusion

We studied balanced circle packings for planar graphs, showing that several rich classes
of graphs have balanced circle packings. One interesting open problem is whether or
not every outerplanar graph has a balanced circle packing representation. While we
identified several subclasses of outerplanar graphs that admit such representations, the
question remains open for general outerplanar graphs.
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A Proof of Lemma 2

Recall that Lemma 2 states that there is no balanced circle-contact representation for
the graphs in Figure 4. We need the following auxiliary lemma to prove this.
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Fig. 9. Illustration for the proof of Lemma 4

Lemma 4. Let C1, C2, C3 be three interior-disjoint circles with radii r1, r2, r3, re-
spectively that touch each other mutually at the three points p1, p2 and p3. Then every
circle that lies completely inside the curvilinear triangle p1p2p3 bounded by the three
circles has radius at most half the median of r1, r2 and r3.

Proof: Assume without loss of generality that r1 ≤ r2 ≤ r3, so that the median radius
is r2. Let C be a circle lying completely inside p1p2p3 with radius r; see Figure 9. The
radius of C is maximum when C touches all the three circles C1, C2 and C3. Indeed if
C does not touch at least one of the three circles, say C3, then it can be moved slightly
towards C3 and then its radius can be increased by a positive amount so that it still lies
inside the region. Thus, we can assume without loss of generality that C touches all the
three circles C1, C2, C3. Then by Descartes’ Circle Theorem [33], we have

(
1

r1
+

1

r2
+

1

r3
+

1

r
)2 = 2((

1

r1
)2 + (

1

r2
)2 + (

1

r3
)2 + (

1

r
)2),

which simplifies to
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(The other solution to this quadratic equation, with a negative sign on the square root
term, gives the radius for the larger circle surrounding and tangent to C1, C2, and C3.)
Removing two positive terms from this equation gives the inequality 1

r ≥
1
r1

+ 1
r2
≥ 2

r2
or, equivalently, r ≤ r2/2. ut

Proof of Lemma 2: We prove the claim only for the 2-outerplanar graph in Figure 4(b),
since the proof for the nested-triangles graph in Figure 4(a) follows a similar argument.
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Because this graph is 3-connected, its planar embedding is unique up to the choice
of the outer face. To begin with, assume that the outer face has been chosen as triangle
xa1b1. Let Γ be a contact representation for the graph with circles. We prove that Γ
is not balanced. Let r be the radius of the circle C representing x and let ri and r′i,
1 ≤ i ≤ t be the radii of the circlesCi andC ′i representing ai and bi, respectively. Since
Γ is a contact representation, for any value i ∈ {1, . . . t− 1}, Ci and C ′i are completely
inside the region created by three circles C, Ci+1 and C ′i+1. Therefore by Lemma 4,
the values of ri and r′i are both less than 1

2 max(ri+1, r
′
i+1). Since t = (n− 1)/2, this

implies that Γ is not balanced.
In the general case, in which the outer face can be an arbitrary triangle of the graph,

the proof is similar. No matter which triangle is chosen as the outer face, the remaining
subgraph between that face and one of the two ends of the zigzag chain of triangles in
the graph has the same form as the whole graph, with at least half as many vertices, and
the result follows in the same way for this subgraph. ut
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B Outerpaths

Theorem 4. One can compute a balanced circle-contact representation for any outer-
path in linear time.

Proof: Let G be an outerpath. Assume for now that all the faces of G are triangles.
Then the consecutive faces of G along the weak dual path can be partitioned into a
sequence of fans. Define a path P in G that consists of all the edges that are shared by
two maximal fans in G, along with the two terminal edges; see Figure 10(a). We will
find a contact representation of G in which each vertex of P is realized by a unit circle.
Number the vertices from one end to the other along P as 1, 2, . . . , p. Then for each
vertex i on P , draw a unit circle Ci with the center at (i, y), where y = 0 if i is even,
and otherwise y =

√
3/2; see also Figure 10(b).
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Fig. 10. (a) an outerpath G; (b)–(c) construction of a balanced circle-contact representation for G

In this drawing, each circleCi touches the circlesCi−2,Ci−1,Ci+1 andCi+2. Thus
we have some additional and unwanted tangencies in this realization: namely, for some
circles Ci, the tangency with Ci+2 (or symmetrically with Ci−1) does not correspond
to an edge in G. When i is odd, we may remove an extra tangency between circles Ci
and Ci+2 by rotating Ci+2, and all circles to the left of it, clockwise by a small angle
θ around the center of circle Ci+1. Similarly, when i is even, we may remove an extra
tangency between circles Ci and Ci+2 by rotating Ci+2, and all circles to the left of
it, counterclockwise by a small angle θ around the center of Ci+1. We choose θ to be
90◦/n so that these rotations do not create any overlap between the other circles.
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Next, we draw the circles representing the remaining vertices of each fan, within
the regions created by these rotations. It is easy to see that the sizes for these circles are
at least Ω(1/n2). Finally, if G has some non-triangular faces, then we can add addi-
tional edges to augment G into triangulated outerpath G′, and perform the construction
above. A small perturbation of the construction suffices to remove its extra adjacencies.
Clearly, the running time is linear. ut
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C Bounded Tree-Depth

The tree-depth of a graph [40] is a measure of its complexity, related to but weaker than
its treewidth. Thus, problems that are hard even for graphs of bounded treewidth, such as
testing 1-planarity, can be solved efficiently for graphs of bounded tree-depth [28], and
constructions that might be impossible for graphs of bounded treewidth, such as find-
ing balanced circle-contact representations even when the vertex degree is unbounded,
might become possible for bounded tree-depth.

One definition of tree-depth involves a certain kind of forest, which we call an an-
cestral forest for a given graph G (Figure 11, left). An ancestral forest is a forest F
having the vertices of G as its vertices, such that every edge of G connects a vertex v
with one of the ancestors of v in the forest. For instance, every depth-first-search forest
is ancestral; however, unlike depth-first search forests, an ancestral forest is allowed to
have edges that do not belong to G. The tree-depth of G is then the minimum height of
an ancestral forest for G, where the height of a tree is the maximum number of vertices
on a root-leaf path. Tree-depth can also be defined inductively (a connected graph has
tree-depth ≤ k if it is possible to remove a vertex so that each remaining connected
component has tree-depth ≤ k − 1) or alternatively it can be defined in terms of the
existence of certain graph colorings, called centered colorings [40].

Fig. 11. Left: A planar graph of tree-depth 3 and one of its possible ancestral trees. Right: The
longest path in a graph of tree-depth 3 can have at most 7 = 23 − 1 vertices.

If the number of vertices in the longest simple path in a graph G is `, then G has
tree-depth at most `, for this will be the maximum possible height of a depth-first-search
forest. In the other direction, the tree-depth ofGmust be at least log2(`+1), because the
path itself requires this height in any ancestral forest (Figure 11, right). Therefore, for
any infinite family of graphs, it is equivalent to state that either the family has bounded
tree-depth or that it has bounded longest path length [40].
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Tree structures for graph connectivity

Our results in this section depend on a characterization of the planar graphs of bounded
tree-depth, which we state in terms of two standard data structures for graph connectiv-
ity, the block-cut tree and the SPQR tree.

In any undirected graphG, one can define an equivalence relation on the edges ofG
according to which two distinct edges are equivalent whenever they belong to a simple
cycle of G. The equivalence classes of this relation form subgraphs of G, called the
blocks or 2-vertex-connected components of G, and are separated from each other by
cut vertices, vertices that belong to more than one block. The collection of blocks and
cut vertices may be represented by a tree structure (or, in a disconnected graph, a forest)
called the block-cut tree [36]: this tree has a node for each block and each cut vertex of
G, and it has an edge connecting each cut vertex to the blocks that contain it. A graph
is 2-vertex-connected if it has only a single block (and no isolated vertices).

Similarly, a graph is 3-vertex-connected if it does not have any separation pairs,
pairs of vertices whose removal would disconnect the graph. If a graphG is 2-connected
but not 3-connected, it may be represented by a structure called an SPQR tree [34]. In
the formulation of SPQR trees that we use here, there are nodes of three types, each of
which is associated with a triconnected component of the given graphG, graphs derived
from G and having as their vertices subsets of the vertices of G [35, 39]. In an S-node
of an SPQR tree, the associated graph is a simple cycle. In a P -node, the associated
graph is a dipole graph, a two-vertex multigraph with three or more edges connecting
its two vertices. And in an R-node of an SPQR tree, the associated graph is a 3-vertex-
connected graph that is neither a cycle nor a dipole. In each of the graphs associated
with the nodes of an SPQR tree, some of the edges are real (belonging to the original
graph G) and some are virtual. Each edge of the SPQR tree identifies a pair of virtual
edges from the graphs associated with its two nodes, and each virtual edge is identified
in this way by one SPQR tree edge. The original graphG can be reconstructed by gluing
together each identified pair of virtual edges (merging each endpoint of one edge with
an endpoint of the other edge to form a supervertex), and then deleting these edges.
With the additional constraints that S nodes not be adjacent to other S nodes, and that
P nodes not be adjacent to other P nodes, this decomposition is uniquely determined
from G. A 2-connected graph G is planar if and only if each of the graphs associated
with the nodes of its SPQR tree is planar, and the SPQR tree can be used to represent
all of its possible planar embeddings.

Characterization of planar bounded tree-depth

We use the block-cut tree and SPQR tree structures to characterize the planar graphs of
bounded tree-depth, as follows.

Lemma 5. A family, F , of planar graphs has bounded tree-depth if and only if the
following three conditions are satisfied:

– The block-cut trees of the graphs in F have bounded height.
– The SPQR trees of the blocks of the graphs in F have bounded height.
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– For each node of an SPQR tree of a block of a graph in F , the number of vertices
in the graph associated with the node is bounded.

Proof: The requirements that the block-cut trees and SPQR trees have bounded height
are clearly both necessary for the tree-depth to be bounded. For, if the graphs in F
had block-cut trees or SPQR trees that could be arbitrarily high, we could follow the
structure of these trees to find paths in the graphs that were arbitrarily long, which in
turn would imply that the tree-depth (which is at least logarithmic in the path length)
would necessarily itself be arbitrarily high. In an SPQR tree of any graph, a P-node
cannot have an unbounded number of vertices. An S-node with many vertices would
necessarily again lead to a long path, as any virtual edge in the cycle associated with
the S-node can be replaced by a path of real edges. To show that it is also necessary to
have a bounded number of vertices in the graphs associated with R nodes, we invoke a
result of Chen and Yu [32], who proved that a 3-connected planar graph with k nodes
necessarily contains a cycle of length Ω(klog2 3). If the graphs associated with R-nodes
could have nonconstant values of k, this would again necessarily imply the existence of
paths of non-constant length in the graphs of F , and therefore it would also imply that
the tree-depth of F would not be bounded.

In the other direction, suppose that we have a family F of graphs whose block-cut
tree height is at most b, SPQR tree height is at most h, and SPQR node vertex count is
at most s. Then, any simple path Π in such a graph can pass through at most b blocks:
Π must follow a path in the block-cut tree, alternating between blocks and cut vertices,
and the total number of blocks and cut vertices in any such path is at most 2b − 1.
Within any block of the block-cut tree, Π must follow a walk through the SPQR tree
that passes through each node at most s times, because each time it passes through a
node it uses up one of the vertices in the associated graph. Therefore, the subtree of the
SPQR tree followed by Π has maximum degree at most s+ 1, and can include at most
O((s+1)h) nodes. Within each of these nodes,Π can have at most s vertices per node.
Therefore, the total number of nodes in Π can be at most O(sb(s+ 1)h) = O(1). Any
depth-first-search forest of a graph in F has height bounded by this quantity, showing
that all graphs in F have bounded tree-depth. ut

Möbius gluing

For any planar graph G of bounded tree-depth, we will form a circle-contact represen-
tation of G by decomposing G into its block-cut tree, decomposing each block into its
SPQR tree, using Koebe’s circle packing theorem to find a circle-contact representation
for each node of each SPQR tree, and gluing these packings together to give a represen-
tation ofG′. Because each SPQR tree node has an associated graph of bounded size, the
packings that we glue together will be balanced. When we glue two packings together,
we will ensure that we only form a polynomial imbalance in the ratio of sizes of their
circles. This, together with the bounded height of the trees that guide our overall gluing
strategy, will ensure that the eventual packing we construct is balanced.

To glue two packings together, we use Möbius transformations, a group of geomet-
ric transformations of the plane (plus one point at infinity) that includes inversion by
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Fig. 12. Lemma 6: Any two configurations of two tangent circles and a marked point on one of
the two circles can be Möbius-transformed into each other.

a circle as well as the familiar Euclidean translations, rotations, and scaling transfor-
mations. These transformations take circles to circles (allowing for some degenerate
cases in which a line must be interpreted as an infinite-radius circle through the point at
infinity) and preserve contacts between circles. The specific transformation we need is
described by the following lemma.

Lemma 6. Let X and Y be two geometric configurations, each consisting of two tan-
gent circles and a marked point on one but not both of the circles. Then there exists a
Möbius transformation that takes X to Y .

Proof: It is equivalent to state that there exists a Möbius transformation that takes both
of these configurations to the same configuration as each other. Both X and Y may
be transformed to a pair of parallel lines, by an inversion through a circle centered
on their point of tangency. A scaling transformation makes these two pairs of parallel
lines the same distance apart from each other, a rotation makes all four lines parallel, a
reflection (if necessary) makes both transformed configurations have the marked point
on the upper of the two lines, and then a translation matches the positions of the marked
points. ut

Lemma 6 is illustrated in Figure 12. To control the sizes of the transformed packings
generated by this lemma, we use the following lemma:

Lemma 7. Let two circles C0 and C1 be given, and suppose that we wish to apply
Lemma 6 to transform a system of at most n balanced packings, each containing at most
n circles, so that some two tangent circles in each packing are placed at the positions
of C0 and C1. Then there exists a sequence of marks on circle C0 such that, if each
packing is placed with one of its points of contact on one of these marks, then no two of
the transformed packings intersect each other, and the transformed size of the circles in
each packing is smaller than the size of C0 and C1 by at most a polynomial factor.

Proof: Place a line tangent to the two circles and place the first mark at the point where
it touches C0. Then, to place each successive mark, pack a sequence of 2n circles into
the triangular gap between C0, C1, and the circle or line defining the previous mark, in
such a way that each circle is tangent to C0, C1, and the previous circle in the sequence.
Place the next mark at the point where the last of these circles touches C0. These circles
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inversion circle

Fig. 13. An inverted view of the construction in Lemma 7, for n = 3

are as large as possible for their position in any packing that lies between C0 and C1,
so it is not possible for any of the transformed packings to stretch more than half-way
from one mark to the next; therefore, no two transformed packings interfere with each
other.

To analyze the size of the circles used to generate this system of marks, it is helpful
to construct the same sequence of circles in a different way. Place two parallel lines in
the plane, a unit distance apart, and pack a sequence of 2n(n − 1) + 1 unit-diameter
circles between them, so that each of the circles in this sequence is tangent to both
lines and to its neighbors in the sequence. Then, invert this system of lines and circles
through a unit-radius circle centered on a boundary point of the first circle in the se-
quence of unit-diameter circles (Figure 13). This first circle will invert to a line, tangent
to the circles C0 and C1 formed by the inverted images of the two parallel lines, and
the remaining circles will invert to a sequence of circles between C0 and C1 as con-
structed above. By choosing the inversion center appropriately, it is possible to choose
arbitrarily the ratio of radii of the circlesC0 andC1 formed by inverting the two parallel
lines, so we can construct a system of circles in this way that is similar to the previous
construction for any arbitrary pair of circles C0 and C1.

When we invert by a unit circle, the distances of each point from the inversion
center become inverted: the closer of the two parallel lines becomes the larger of the
two circles C0 and C1, which may be arbitrarily large. Because the other one of the
two parallel lines has all points at distance at least 1/2 from the inversion center, some
points within distance 1 of the inversion center, and some points arbitrarily far from
the inversion center, it becomes transformed into a circle that passes from the inversion
center to some points outside the inversion circle, but that remains within a radius-2
disk centered at the inversion center. Thus, its radius is necessarily between 1/2 and 1.
The ith of the 2n(n − 1) + 1 circles in the sequence of circles has its nearest point
to the inversion center at a distance between i − 1/2 and i, and its farthest point to
the inversion center at a distance between i + 1/2 and i + 1, so when these distances
are inverted its transformed diameter becomes Θ(1/i2). Therefore, the smallest of the
2n(n− 1) circles used to generate this system of marks is only polynomially small: its
radius is Θ(1/n4) times the smaller of the radii of C0 and C1. ut

Adjacent separating pairs

As a warm-up to our main result on bounded tree-depth, we show here the existence
of balanced circle-contact representations for a special subclass of the planar graphs of
bounded tree-depth, the graphs G in which the separation pairs are all adjacent. That is,
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if we construct the block-cut tree ofG, and for each block construct the SPQR tree, then
each separation pair of each SPQR tree should be the endpoints of an edge somewhere
in G. Equivalently, among each two adjacent nodes in any of the SPQR trees for the
blocks of G, one of the two nodes should be a P-node, and one of the edges of this
P-node should be a real edge.

Lemma 8. For every constant bound d, every planar graphG with tree-depth at most d
in which all separation pairs are adjacent has a balanced circle-contact representation.

Proof: We form the block-cut tree of G, form the SPQR tree of each block, and form
a circle-contact representation for the (constant size) graph associated with each SPQR
tree node. For the R nodes, we use the circle packing theorem; for the S nodes, we
pack equal-size circles in a circular layout; and for the P nodes, we place two equal
circles in contact with each other (representing the one real edge of the P node). We
must then glue these packings together so that, when two or more nodes contain the
same separation pair, this pair is represented by the same two circles; because of our
assumption about the adjacency of separation pairs, we can assume that these circles
are tangent to each other.

To perform this gluing step, at one of the P-nodes of the SPQR tree, we consider
all of the neighboring nodes connected to it (corresponding to the virtual edges of the
P node). For each neighboring node X , we form a configuration consisting of the two
circles representing the separation vertices in its packing, and a marked point where
another circle is tangent to these two circles. For the P-node itself, we have the corre-
sponding two circles, on which we may place a mark at an arbitrary point. By Lemma 6,
we may transform the packing representing X (and anything else that has already been
glued to it) so that its separation pair is represented by the same two circles as the P
node and its marked point of contact with these two circles is at the given point. By
placing the marked point on the P-node sufficiently close to its two circles’ point of
tangency, the packing representing X will also be transformed to be close to the point
of tangency, allowing it to avoid overlapping with any other part of the circle packing
that has already been glued to the P-node.

In this way, the packings for each node of an SPQR tree can be glued together, step
by step, to form a single packing representing the whole SPQR tree. At each P-node,
in order to keep the packings glued to that node from interfering with each other, it
is sufficient to place the marks polynomially close to each other and to the point of
tangency, causing the glued-in packings to be reduced in size (compared to the two
circles representing the separation vertices) by a polynomial factor. Because the SPQR
tree has bounded height, at most a constant number of these polynomial factors are
compounded together, resulting in polynomial balance overall.

The process for gluing together blocks of the block-cut tree is very similar, but
simpler, because each gluing step must match only one circle (the articulation vertex
between two blocks) rather than two circles. The analysis is the same. ut

Inversive-distance circle packings
To apply the same method to graphs with non-adjacent separation pairs, we would like
to modify the graphs associated with each SPQR tree node by removing the virtual
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edges between each non-adjacent separation pair, before finding a circle-contact rep-
resentation for each of these graphs and then gluing these representations together
by Möbius transformations. In the case of adjacent separation pairs, this gluing used
Lemma 6, in which a one-parameter family of Möbius transformations allows any tan-
gent pair of circles to be mapped to any other tangent pair of circles, with an additional
degree of freedom that allows two marked points to be aligned with each other. How-
ever, for non-adjacent separation pairs, the problem is made more complicated by the
fact that pairs of disjoint circles cannot always be mapped into each other by a Möbius
transformation. Instead, an invariant of these pairs called the inversive distance con-
trols the existence of such a mapping. Two Euclidean circles with radii r and R, whose
centers are at distance ` from each other, have inversive distance

I =
`2 − r2 −R2

2rR
.

This is an invariant under Möbius transformations, and can also be defined for circles in
hyperbolic and spherical geometry [29]. The inversive distance of two tangent circles is
one; it is less than one for circles that cross each other and greater than one for disjoint
circles. Two pairs of circles that both have equal inversive distances can be mapped into
each other in the same way as Lemma 6 (with the freedom to align two marked points)
but two pairs with unequal inversive distances cannot be mapped into each other.

Bowers and Stephenson [30] suggested the use of inversive distance in circle pack-
ings. An inversive-distance circle packing is specified by a planar graph G and a label
I(uv) for each edge uv of G; the goal is to represent the vertices of G by circles such
that, for each edge uv, the circles representing u and v are at inversive distance exactly
I(uv) from each other. Bowers and Stephenson write that “the theoretical underpin-
nings are not yet in place” for this type of packing. In particular it is still not known
under what conditions an inversive-distance circle packing exists, although a numerical
method briefly suggested by Collins and Stephenson [8] and detailed by Bowers and
Hurdal [29] is reported to work well in practice for finding such packings. Notwith-
standing this gap in our theoretical knowledge, we will prove that, in the case of inter-
est for us, inversive-distance circle packings do exist and can be used to find balanced
packings of graphs of bounded tree-depth.

One thing that is known about inversive-distance circle packings is that, when they
do exist for a given maximal planar graph, they are unique.

Lemma 9 (Luo [37]). LetG be a maximal planar graph, with outer face ∆, let G have
an assignment I of inversive distances to its edges, and fix a non-collinear placement
of the three vertices of ∆ in the Euclidean plane. If an inversive-distance circle packing
exists for G and I , with the circles representing ∆ centered at the fixed placement of
the vertices of ∆, then this packing is uniquely determined by G, I , and the placement
of ∆.

The fixed placement of ∆ simplifies the statement of this result by eliminating the
possibility of Möbius transformations that would change the position of the packing
without changing its inversive distances. Luo actually proved this result in greater gen-
erality, for triangulated topological surfaces with Euclidean or hyperbolic geometry; the
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analogous statement for spherical geometry turns out not to be true [38]. In Luo’s more
general setting, the packing is determined (up to scale) by the system of angular defects
at each vertex of the surface. In the version that we need for the Euclidean plane, the
angular defects are zero except at the vertices of ∆, and the fixed placement of ∆ de-
termines both the angular defects at these vertices and the scale of the packing, so the
result as stated above follows from Luo’s more general theorem.

Corollary 2. Let G be a maximal planar graph, with outer face ∆, and fix a non-
collinear placement of the three vertices of ∆ in the Euclidean plane. Let m be the
number of edges in G. Then the set of assignments of distances to the edges of G that
have inversive-distance circle packings is an open subset of Rm, and there exists a
continuous function from these distance assignments to the circle centers and radii of
the (unique) corresponding packings.

Proof: The space of distance assignments is m-dimensional, as is (by Euler’s formula)
the space of possible placements of circle centers (obeying the fixed placement of ∆)
and radii in a packing. Thus, by Lemma 9, the function from circle placements to inver-
sive distances is a continuous injective function between two sets of the same dimen-
sion. By Brouwer’s theorem on invariance of domain [31], this function has an open
image and a continuous inverse function. ut

By using the fact that the set of allowable inversive-distance assignments is open,
we can find the packing we need:

Lemma 10. LetG = (V,E) be a planar graph, and let F ⊂ E be a subset of “virtual”
edges in G. Then, for all sufficiently small ε > 0, there exists a collection of circles in
the plane, and a one-to-one correspondence between these circles and the vertices of
G, such that:

– For each edge e ∈ E\F , the two circles representing the endpoints of e are tangent
(inversive distance 1), and

– for each edge e ∈ F , the two circles representing the endpoints of e have inversive
distance exactly 1 + ε.

Additionally, this circle packing can be chosen to vary continuously with ε, in such a
way that as ε→ 0 the packing converges to a circle-contact representation for G.

Proof: Add extra vertices to G, and extra edges incident to those vertices, to make the
augmented graph maximal planar; include as part of this augmentation a triangle ∆ of
added vertices. Choose a placement of ∆ at the vertices of an equilateral triangle in the
plane. Let D be the distance assignment that sets all inversive distances on edges of the
augmented graph to equal 1; then there exists a circle packing for D, by the original
circle packing theorem of Koebe. By Corollary 2, there exists an open neighborhood
of D within which all distance assignments are achievable; let ε be sufficiently small
that all vectors within L∞ distance ε of D are achievable. In particular, the distance
assignment that sets all distances in F equal to 1 + ε, and all remaining distances equal
to 1, has an inversive circle packing. The subset of this packing that corresponds to the

24



original vertices in V then satisfies the conditions of the lemma. Once the augmentation
of G and the placement of ∆ is fixed, the continuous variation of the packing on ε
follows from the continuity of the function from distance assignments to packings stated
in Corollary 2. ut

Circle packings for graphs of bounded tree-depth

Theorem 5. For every constant bound d, every planar graphG with tree-depth at most
d has a balanced circle-contact representation.

Proof: We follow the same outline as the proof of Lemma 8, except that we choose
a sufficiently small value of ε (the same ε for all nodes of all SPQR trees) and use
Lemma 10 to construct circle packings for each node in which the real edges of the
graph associated with the node, and the virtual edges corresponding to adjacent sep-
aration pairs, have inversive distance one (that is, their circles are tangent) while the
remaining edges in each node (non-adjacent separation pairs) have inversive distance
exactly 1 + ε (their circles are disjoint).

The analogue of Lemma 6 holds for any two pairs of tangent circles with the same
inversive distance as each other. By continuity of the packing with respect to ε, for
small enough values of ε, the analogues of Lemma 1 and Lemma 7 also remain valid.
Additionally, although inversive-distance circle packings in general are not guaranteed
to have disjoint circles for pairs of vertices that are not connected by an edge in the
underlying graph, this property also follows for our circle packings, for sufficiently
small ε, by continuity. With these ingredients in hand, the proof proceeds as before.

ut

We remark that the proof described above does not require ε to be significantly
smaller than the balance of the resulting packing. Indeed, we only need to apply the
inversive circle packing method of Lemma 10 to the R-nodes of SPQR trees, as the
other nodes have associated graphs that are easy to represent directly. Because each
R-node has O(1) vertices, there are only O(1) combinatorially distinct choices of an
associated graph and set of virtual edges for which we need packings, and in order to
apply Lemma 10 we can choose any ε that is small enough to work for each of these
inputs, a value that is independent of n. The limiting factor controlling our actual choice
of ε is the variant of Lemma 7 that applies to inversive-distance circle packings, which
only requires ε to be polynomially small.

Although our proof is not constructive, the report by Collins and Stephenson [8] that
their inversive-distance circle packing algorithm works well in practice gives us hope
that the same would be true of its application to this problem.
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