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Abstract. Reducing the number of edge crossings is considered one of the most
important graph drawing aesthetics. While real-world graphs tend to be large and
dense, most of the earlier work on evaluating the impact of edge crossings utilizes
relatively small graphs that are manually generated and manipulated. We study
the effect on task performance of increased edge crossings in automatically gen-
erated layouts for graphs, from different datasets, with different sizes, and with
different densities. The results indicate that increasing the number of crossings
negatively impacts accuracy and performance time and that impact is significant
for small graphs but not significant for large graphs. We also quantitatively eval-
uate the impact of edge crossings on crossing angles and stress in automatically
constructed graph layouts. We find a moderate correlation between minimizing
stress and the minimizing the number of crossings.

1 Introduction

Graphs are often used to model a set of entities and their relationships. They are usually
visualized with node-link diagrams, where vertices are depicted as points and edges as
line-segments connecting the corresponding points. Many different methods for draw-
ing graphs have been developed and they typically aim to optimize one or more aes-
thetic criteria. According to the seminal work of Purchase [22], aesthetic criteria in-
clude: number of edge crossings, number of edge bends, symmetry of the drawing,
angular resolution, crossing angles, and vertex distribution. Such criteria are often pro-
posed based on human intuition and the personal judgement of algorithm designers, and
therefore the task of validating graph drawing aesthetics is of high importance.

A great deal of the prior experimental evaluations of graph drawing aesthetics utilize
relatively small and nearly planar graphs and networks. For example, Purchase et al. [23]
conduct a user study with graphs on 16 vertices and 18−28 edges. Huang et al. [14, 16]
generate graphs having between 10 and 40 vertices. In the eye tracking studies [15],
the number of vertices ranges from 9 to 14. Larger graphs with 50 vertices are used by
Dwyer et al. [5] but the number of edges is only 75, which results in graphs with almost
tree-like structure. Real-world graphs, however, tend to be large, dense, and non-planar.

There are several of-the-shelf methods for drawing large graphs. Classical force-
directed methods such as Fruchterman-Reingold [7] and Kamada-Kawai [19], and more
recent multiscale variants [11, 13], define and minimize the “energy” of the layout;
layouts the minimal energy tend to be aesthetically pleasing and to exhibit symme-
tries. Similarly, methods based on multidimensional scaling (MDS) minimize a partic-
ular energy function of the layout, called “stress” [8]. Note that the classical methods
are not designed to directly optimize a specific graph drawing aesthetic criterion. Yet



minimizing edge crossings remains the most cited and the most commonly used aes-
thetic [14, 17, 22–24]. With this in mind, we consider the impact of edge crossings on
the readability of graphs in automatically generated straight-line layouts of real-world
large graphs.

Many real-world graphs (e.g., biological networks, social networks, research cita-
tion graphs) have tens of thousands or even millions of vertices. Such graphs are not
usually explored with static node-link diagrams, but rather with alternative visualiza-
tion methods based on interaction, abstraction, overview-detail views, etc [1, 18]. Still,
static node-link diagrams with more than a hundred vertices are common today. We
would like to determine a reasonable upper limit on the size of a graph, for which typ-
ical tasks can be performed using a static node-link diagram. In order to empirically
define the notion of a “large graph” in this setting, we run a preliminary experiment
with graphs on 100-150 vertices. For graphs with 150 vertices and density (the number
of edges divided by the number of vertices) of 3.5, task accuracy is steadily below 39%,
even in the most advantageous setting (e.g., high resolution display, unlimited time, the
simplest path-finding tasks, graph layouts with close-to-optimal number of edge cross-
ings, etc). The results of this preliminary experiment helped us determine useful ranges
of size and density of the graphs used in our formal evaluation. In the main experi-
ment, we consider small (40 vertices) and large (120 vertices) graphs. The graphs are
constructed from two real-world datasets and drawn with the classical force-directed
and MDS-based algorithms. We vary edge density (from 1.5 to 2.5) and the number
of crossings (by a factor of two), and analyze accuracy and completion time for four
tasks, frequently utilized in prior experiments. We also quantitatively evaluate the re-
lationship between edge crossings and several other layout quality measures. Thus our
contributions are two-fold:

1. We measure accuracy and completion time for four graph tasks to evaluate the
effect of edge crossings on small and large graphs with varying densities. The ex-
periments indicate that increasing the number of crossings has a negative impact,
but the change is not significant for large graphs.

2. We quantitatively evaluate the impact of edge crossings on crossing angles and
stress in automatically constructed graph layouts. We find a moderate correlation
between minimizing stress and minimizing the number of edge crossings.

2 Related Work

Several empirical studies aim to determine the impact of various aesthetic criteria on hu-
man understanding of graph visualizations. A series of experiments by Purchase shows
that many of the aesthetics are indeed important [22]. The experiments indicate that the
number of edge crossings is by far the most important aesthetic, while the number of
edge bends and the local symmetry displayed have a lesser impact. These results are
confirmed by Huang et al. [17], who found that edge crossings significantly impact user
preference and task performance. Overall, it is a common belief that minimizing the
number of edge crossings is one of the most important goals in drawing graphs.
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These findings have made the area of crossing minimization one of the most active
research topics in the graph drawing community; see [3] for an excellent survey. How-
ever, the problem of crossing minimization is computationally hard [9], and it remains
hard even when restricted to special graphs [12]. In fact, one cannot even compute in
polynomial time a crossing-optimal solution for a graph obtained from a planar one
by adding a single edge [4]. Given that the problem is difficult, several heuristics have
been designed. The heuristics are usually hard to implement and they do not scale well
with the size of a graph [3]. Hence, it is a reasonable question to ask to what extent one
should try to minimize edge crossings to justify the cost.

Other graph aesthetics also have also been considered. Huang et al. [16] study cross-
ing angles (the minimum angle between pairs of crossing edges) and conclude that
larger crossing angles make graphs easier to read. This motivates the research area of
right-angle-crossing (RAC) drawings, where the goal is to make all crossing angles
close to 90 degrees. Several studies consider the relative importance of various aes-
thetic criteria, which is relevant as some of them can be conflicting (e.g., minimizing
crossings in planar graph drawings usually results in poor angular resolution). Huang
and Huang [14] argue that the number of edge crossings is relatively more important
than the crossing angles. Several user evaluations also compare user-generated and au-
tomatic graph layouts [5, 10].

Alternative representations of large graphs and networks have also been consid-
ered. Archambault et al. [1] show that coarsening graph representations, in which sev-
eral interconnected vertices are merged into metanodes, does not result in significant
improvements over node-link diagrams. However, such representations might be bene-
ficial for specific tasks in very dense graphs. Jianu et al. [18] investigate several methods
of representing cluster information in large graphs. Their results indicate that classical
node-link diagrams are not the most efficient way to visualize large clustered datasets.

3 Experiments

Objectives: We conduct a controlled experiment to explore how edge crossings affect
the understandability of graph layouts. Although several studies assess the impact of
crossings, a number of important questions remain open. Our specific objectives are:

1. to confirm the results of prior studies that increasing the number of edge crossings
negatively impacts the usability of node-link diagrams for small graphs;

2. to verify whether increasing the number of edge crossings also negatively impacts
the usability of node-link diagrams for large graphs;

3. to explore the impact of edge crossings while varying the edge density for both
large and small graphs;

4. to analyze the impact of edge crossings on different tasks.

Controlled experiments in graph drawing often involve manually creating different
layouts of the same graph, by varying only one aesthetic, while the others are kept un-
changed. However, due computational hardness of the crossing minimization problem,
and the use of larger graphs than those in previous studies, it is almost impossible to do
this in our setting. Instead we use a different approach to accomplish a similar result by
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(a) 139 edge crossings
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(b) 259 edge crossings

Fig. 1: A small dense graph with 40 vertices and 100 edges constructed from the Recipes dataset
with (a) the low number of crossings and (b) the high number of crossings. See Appendix E for
samples of larger graphs.

automatically generating all our drawings, without any manual postprocessing, as sug-
gested in [14, 24]. We emphasize here that unlike most previous work, we work only
with real-world graphs and automatically computed layouts.

Our study involves a two-phase evaluation. In the first step (Experiment 1), the par-
ticipant perform simple tasks on several graphs with different sizes (number of vertices)
and densities (ratio of number of edges to number of vertices). This is how we deter-
mine the size of the largest graphs for which task accuracy is steadily above 50%. We
use the information to design the main experiment (Experiment 2) in which we record
performance, in terms of accuracy and completion time for our four tasks.

Datasets and Visualization: In order to minimize potential bias, we use two differ-
ent datasets in our evaluation. The Recipes dataset contains 381 unique ingredients ex-
tracted from cooking recipes. The edges correspond to co-occurrence of the ingredients
in the recipes. The GD dataset models co-authorship in the Graph Drawing conference.
The vertices represent the 506 authors and an edge between two vertices indicates that
this pair of authors have co-authored a paper; see Appendix B for more details. For each
dataset, we randomly sample vertices and edges creating graphs with different sizes and
densities. The number of vertices is 40 (small) and 120 (large), and the edge density is
1.5 (sparse) and 2.5 (dense), making a total of 4 unweighted undirected graphs per
dataset. Section 3.1 explains why we choose these sizes and densities.

We use two classical straight-line drawing algorithms implemented in GRAPHVIZ [6].
The Recipes graphs are embedded using the multidimensional scaling layout algo-
rithm; for this purpose, we utilize the neato tool in GRAPHVIZ. For drawing the GD
graphs, we use the force-directed placement algorithm, fdp in GRAPHVIZ. In order
to perform our experiments, we need to have layouts of the same graph with differ-
ent number of crossings. To this end, we run the layout algorithms 10, 000 times on
the same graph, varying the initial positions of the vertices. Since both algorithms are
sensitive to the initial embedding, the resulting layouts are different. We choose two
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layouts of the same graph: the one with the minimum number of crossings and one with
approximately twice as many crossings. These two layouts are referred to as the draw-
ings with the low and high number of crossings; see Fig. 1 and Fig. 5 in Appendix. Note
that neither MDS-based nor force-directed algorithms provide any guarantees about the
number of crossings. However, due to the many runs for each graph, we expect that the
low number of crossings is not too far from optimal.

Tasks: We choose the tasks for our experiments based on several considerations.
First, the tasks should represent standard problems, commonly encountered when an-
alyzing relational data. Second, the number of edge crossings in a graph visualization
should likely affect task performance. Finally, the tasks should be present in existing
graph task taxonomies and often utilized in other graph drawing user evaluations. With
this in mind, we consider the task taxonomy for graph visualization suggested by Lee
et al. [21], which categorizes the tasks into groups: topology-based, attribute-based,
browsing, and overview tasks. Each of the categories specifies different subcategories.
Previous studies clearly indicate that the number of edges crossings affects tasks in
the topology-based category, while tasks in the other three categories are less likely to
be significantly impacted by the number of crossings or do not fit in our experimen-
tal setup. The graphs in our experiments do not contain special attributes (e.g., color
or shape), and hence the attribute-based tasks are not suitable. The browsing category
deals with navigational tasks that do not require a specific answer, making it difficult
to measure the task performance. Overview tasks are related to compound tasks (e.g.,
identifying changes over time, comparing the relative size of a pair of graphs) are also
not suitable to our setting and less likely to be affected by the number of edge cross-
ings. Therefore, we focus on topology-based tasks, grouped into four subcategories:
connectivity, accessibility, adjacency, and common connections. For each subcategory,
we choose a task that is frequently used in prior user studies on graph visualization; see
Appendix A for the categorization of prior tasks.

Task 1: How many edges are in a shortest path between two given nodes?
Task 2: What is the node with the highest degree?
Task 3: What nodes are all adjacent to the given node?
Task 4: Which of the following nodes are adjacent to both given nodes?

The vertices for each question were randomly selected (in the case of Task 1, addi-
tionally ensuring that the pair of vertices is at most 5 edges away).

Participants and Apparatus: For the first experiment we recruited 6 participants
(3 male, 3 female) aged 21–27 years (mean 23) with normal vision. For the second
experiment we recruited 16 new participants (12 male, 4 female) aged 21–30 years
(mean 25) with normal vision. All the participants were undergraduate and graduate
science and engineering students familiar with graphs and networks. Both experiments
were conducted on a computer with i7 CPU 860 @ 2.80GHz processor and 24 inch
screen with 1600x900 resolution. The participants interacted with a standard mouse
to complete the tasks. We used custom-built software to guide the users through the
experiment by providing instructions and collecting data about time and accuracy; see
a screenshot of the software in Appendix D.
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3.1 Procedure: Experiment 1

Real-world graphs are typically large and non-planar. In drawings of such graphs there
could be many edge crossings, which likely makes the drawings difficult to understand.
To evaluate the impact of the number of crossings for different sizes and densities of
graphs, while keeping the experiment to a reasonable length and complexity, we want
to choose the graphs so that the average completion time is below 120 seconds and the
average accuracy for a single task is higher than 50%.

To determine reasonable upper limits for the main experiment, we generated differ-
ent graphs with 100-150 vertices, in increments of 10, and densities ranging from 1.5 to
3.5, in increments of 1. For every graph, we used the layout with the smallest number
of crossings and for each of these layouts the participants performed the four tasks de-
scribed above. The resulting completion time ranges from 63 seconds for a 100-vertex
graph to 184 seconds for a 150-vertex graph. The accuracy (the number of correct an-
swers divided by the total number of questions) ranges from 85% for 100-vertex graphs
with 1.5 density to 39% for 150-vertex graphs with 3.5 density. Based on these results,
we choose 120 vertices as the maximum number of vertices and 2.5 as the maximum
density value for our main experiment.

3.2 Procedure: Experiment 2

An experimental system was implemented to present the 64 (2 sizes × 2 number of
crossings × 2 densities × 2 datasets × 4 tasks) stimuli and questions for this within-
subjects experiment, and to collect the participant answers and response times.

Before the controlled experiment, the participants were briefed about the purpose
of the study. Although all participants were familiar with graphs, we explained all the
required definitions (e.g., graphs, edges, paths). The participants then answered 8 train-
ing questions (two for each of the tasks) as quickly and as accurately as possible. The
participants were encouraged to ask questions during this stage and we did not record
time and accuracy for the training questions.

The main experiment consisted of the 64 tasks, presented in a reduced Latin square
to counterbalance learning and order effects (to prevent participants from extrapolating
new judgements from previous ones). The participants were able to zoom and pan the
diagram on the screen (if needed) and were required to select one of the provided mul-
tiple choices. We recorded time and accuracy for each task. After every 12 questions,
there was a break and the participants could continue when they were ready.

Hypotheses: Based on prior work and results from our preliminary experiment, we
hypothesize that:

H1 Increasing the number of crossings negatively impacts accuracy and performance
time and that impact is significant for small graphs but not significant for large
graphs.

H2 The negative impact of increasing the number of crossings on performance is sig-
nificant for both small sparse and small dense graphs.

H3 The negative impact of increasing the number of crossings on performance is not
significant for both large sparse and large dense graphs.
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Fig. 2: Mean and standard deviation for time and accuracy in small and large graphs with different
number of crossings. The differences are significant (indicated by the diagonal line segments)
only for small graphs.

3.3 Results

We use the within-subjects t-test to analyze the collected data. Accuracy is measured
using the number of correct trials divided by the total number of trials, thus showing a
percentage. Time is measured in seconds.

Completion Time. We exclude incorrect answers, about 11% of the total, and an-
alyze the completion time data only for the correct answers. Otherwise, the measure-
ments of performance time might not be fair (e.g., a participant might quickly give up
and give a random answer).

Increasing the number of edge crossings for small graphs results in statistically sig-
nificant reduction in performance time. For large graphs there is also a negative impact
on performance time, but the results are not statistically significant; see Fig. 2. These
results support H1.

Looking at the breakdown into large and small and dense and sparse provides further
information. The data are summarized in Table 1, where the small (large) category refers
to the average results computed for small (large) sparse and dense graphs.

Increasing the number of edge crossings results in statistically significant reduction
in performance time for both small sparse and small dense graphs. This supports H2.

Increasing the number of edge crossings does not result in statistically significant
reduction in performance time for large dense graphs (but the reduction is statistically
significant for large sparse graphs). This partially supports H3.

Further breakdown by task, reveals more interesting results; see Appendix C. For
small graphs the main contributor to the statistically significant impacts observed earlier
is Task 3.

For large graphs, there is a statistically significant impact for Task 1, although over
all tasks the impact is not significant. Surprisingly, increasing the crossings in large
graphs improved the performance time of Task 3 by 10 seconds.

Accuracy. Increasing the number of edge crossings for small graphs results in sta-
tistically significant reduction in performance accuracy. For large graphs there is also a
negative impact on performance accuracy, but the results are not statistically significant;
see Fig. 2. These results support H1.

Looking at the breakdown into large and small and dense and sparse provides further
information; see Table 2.
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Table 1: Mean (µ) and standard deviation (σ) of Completion Time (in seconds). Statistically
significant differences between performance time in layouts with the low and high number of
edge crossings are highlighted.

graphs the number of crossings t-test results

low high p-value t-value

small µ = 48.8 σ = 9.4 µ = 56.6 σ = 8.4 p < .01 t(15) = 2.9
large µ = 58.0 σ = 10.1 µ = 62.2 σ = 9.0 p > .05 t(15) = 2.0

small sparse µ = 44.2 σ = 11.0 µ = 51.3 σ = 6.7 p < .05 t(15) = 2.4
small dense µ = 53.4 σ = 11.9 µ = 62.0 σ = 11.9 p < .05 t(15) = 2.3
large sparse µ = 53.6 σ = 12.7 µ = 59.8 σ = 9.6 p > .05 t(15) = 1.6
large dense µ = 62.5 σ = 11.2 µ = 64.7 σ = 16.0 p > .05 t(15) = 0.5

Increasing the number of edge crossings results in statistically significant reduction
in accuracy for small dense graphs (but the reduction is not statistically significant for
small sparse graphs). This partially supports H2.

Increasing the number of edge crossings results in statistically significant reduction
in accuracy for large dense graphs (but the reduction is not statistically significant for
large sparse graphs). This partially supports H3.

Further breakdown by task, reveals more interesting results; see Appendix C. For
small graphs Tasks 2 and 4 contribute to the statistically significant impacts observed
earlier.

Although over all tasks the impact is not significant for large graphs, there is statisti-
cally significant difference in accuracy or Tasks 1 and 2. This is counterbalanced with a
statistically significant difference in accuracy in opposite direction for Task 4 (see more
about this below).

3.4 Discussion

Our first hypothesis (H1) is confirmed: increasing the number of edge crossings signifi-
cantly affects performance time and accuracy for small graphs and the impact is not sta-
tistically significant for large graphs. The second hypothesis (H2) is partially confirmed:
crossings have a statistically significant impact on time for both sparse and dense small
graphs. However, the effect is not statistically significant for accuracy in both sparse
and dense small graphs. The third hypothesis (H3) is also only partially confirmed: in-
creasing the number of edge crossings has no significant impact on completion time
for large graphs. However, there is statistically significant impact on accuracy for large
dense graphs.

It is somewhat surprising to see that increasing the crossings affects different task
in markedly different ways. It is particularly unexpected to see a statistically significant
positive impact on accuracy, with the increase of edge crossings, for Task 4 in large
graphs! It is also worth noting that with the increase of edge crossings, the average ac-
curacy increases for Task 3 in small graphs for Tasks 3 and 4 in large graphs. This might
be due to participants paying more attention in the cases where the problem was more
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Table 2: Mean (µ) and standard deviation (σ) of Accuracy (in percentage). Statistically significant
differences between completion time in layouts with the low and high number of edge crossings
are highlighted.

graphs the number of crossings t-test results

low high p-value t-value

small µ = 94.1% σ = 4.3 µ = 89.4% σ = 4.4 p < .05 t(15) = 2.8
large µ = 86.3% σ = 3.4 µ = 83.1% σ = 4.0 p > .05 t(15) = 1.4

small sparse µ = 93.7% σ = 6.4 µ = 92.9% σ = 6.3 p > .05 t(15) = 0.2
small dense µ = 94.5% σ = 7.8 µ = 85.9% σ = 13.5 p < .05 t(15) = 2.2
large sparse µ = 89.1% σ = 11.1 µ = 89.0% σ = 9.0 p > .05 t(15) = 0.2
large dense µ = 83.5% σ = 7.5 µ = 77.3% σ = 13.1 p < .05 t(15) = 2.4

difficult, possibly related to the “chart junk” effect [2]. But it is also possible that edge
crossings may not be as bad as we normally think, as indicated by Huang et al. [17],
who found that crossings have negative effect only on some of their tasks.

There are good indications that density plays a possibly independent role, especially
on accuracy. Note that we only considered two density settings (1.5 and 2.5), both of
which are relatively low. Yet, together with increased number of crossings, the high
density settings resulted in statistically significant decrease in accuracy both for small
and large graphs. It is probably worth exploring further the nature of the interactions
between size (number of vertices), density (ratio of number of edges to number of ver-
tices) and edge crossings upper limit of density.

4 Edge Crossings and Other Aesthetic Criteria

As mentioned earlier, several traditional methods for drawing large undirected graphs
are based on the assumption that minimizing a suitably-defined energy function of the
graph layout results in aesthetically pleasant drawing. But do such methods also (pos-
sibly indirectly) optimize some of the standard aesthetic criteria? Next we qualitatively
analyze layouts produced by fdp (force-directed) and neato (MDS-based), with re-
spect to three commonly used and well-defined quality measures: the energy of the
layout, the number of crossings, and the angles between pairs of crossing edges.

In a number of studies, the energy of a layout is defined as the variance of edge
lengths in the drawing, known as stress [20]. Assume a graph G = (V,E) is drawn
with pi being the position of vertex i ∈ V . Denote the distance between two vertices
i, j ∈ V by ||pi − pj ||. The energy of the graph layout is measured by∑

i,j∈V

wij(||pi − pj || − dij)
2, (1)

where dij is the ideal distance between vertices i and j, and wij is a weight factor.
Typically an ideal distance dij is defined as the length of the shortest path in G between
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Table 3: Correlations between three aesthetics: r(En,Cr), r(En,Ang), r(Cr,Ang) stand for
the correlation coefficients r between the layout energy En, the number of crossings Cr, and
the average crossing angle Ang. Absolute values between 0.7 and 1.0 indicate a strong relation-
ship (highlighted), while absolute values between 0.3 and 0.7 indicates a moderate relationship.
Negative values indicate a negative correlation.

MDS force-directed

graph r(En,Cr) r(En,Ang) r(Cr,Ang) r(En,Cr) r(En,Ang) r(Cr,Ang)

GD 0.64 0.00 0.26 0.59 −0.02 −0.39
Recipes 0.81 −0.27 −0.15 0.61 −0.13 −0.13
Trade 0.91 -0.82 -0.83 0.62 0.02 −0.24
Universities 0.68 −0.53 −0.56 0.66 −0.09 −0.16
SODA 0.67 −0.69 −0.07 0.54 −0.16 0.10
IPL 0.82 −0.37 −0.12 0.72 −0.11 −0.04
TARJAN 0.62 −0.02 −0.08 0.54 −0.10 −0.04
SOCG 0.22 −0.64 −0.04 0.72 −0.61 −0.11
ALGO 0.41 −0.47 0.15 0.78 −0.64 −0.28

i and j. Lower stress values correspond to a better layout. We use the conventional
weighting factor of wij =

1
d2
ij

.

We run the two algorithms fdp and neato on 9 graphs for 1, 000 times on each
graph; see Appendix B for details about the graph dataset. As in Section 3.2, we vary
the initial layout to produce different drawings of the same graph. For each run, we
measure stress, the number of edge crossings, and the average of all crossing angles of
the layout. Note that Huang et al. [16] use the minimum crossing angle; in our dataset
the minimum values range from 0.1 to 0.9 degrees and so the average angle provides
a wider range. Then we consider the computed values for each graph as three random
variables and compute the pairwise Pearson correlation coefficients; see Table 3.

The results indicate that there is a moderate positive correlation between the number
of crossings and the energy of the layout for all 9 graphs processed with the force-
directed algorithm and for 7 graphs processed with MDS. This means that there is a
tendency for low-energy drawings to have fewer number of crossings (and vice versa).
The effect is illustrated in Fig. 3, where crossings and energy are calculated for the
Recipes dataset. We note here that the force-directed algorithm fdp (unlike neato)
is not designed to reduce the energy function as defined by Equation (1). Yet the number
of crossings is steadily correlated with the energy. This experimental evidence partially
supports the observation of Dwyer et al. [5], who show that users prefer graph layouts
with lower stress.

On the other hand, there are no strong correlations between the other aesthetics. Our
results indicate that the number of crossings and the crossing angles are independent in
the layouts created by the two evaluated algorithms. We also note a negative correlation
between the average crossing angle and the energy on 4 graphs processed with the
MDS-based layout algorithm.
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Fig. 3: Relationship between the energy of the drawing (stress) and (a) the number of crossings,
(b) the average crossing angle. Dots represent values of the aesthetics computed for different
layouts created by the multidimensional scaling algorithm for the Recipes graph.

5 Conclusion and Future Work

We provide online http://sites.google.com/site/gdpaper2014 all relevant materials for
this study.

Our experimental results hopefully serve to inform designers of graph drawing algo-
rithms that minimizing the number of edge crossings in large graphs is not as important
as in small graphs. The correlation between low energy layouts and layouts with few
crossings indicates that traditional energy-based methods might already result in some
reduction in crossings. Although we attempted to be as diverse as possible, our results
should be interpreted in the context of the specified graphs, sizes, densities, and tasks.

Due to natural limitations (e.g., length and complexity of experiments), we could not
include graphs with more than 120 vertices and density greater than 2.5. Obtaining more
results for larger range of the parameters would hopefully help provide a more com-
plete picture. In our experiment we only considered relational reading of static graph
drawings; results may be different in experiments that require an interpretive reading of
graph drawings in the context of application domains. It would be also worthwhile to
consider tasks beyond the network-topology category.

Another interesting direction would be to study in depth the effect of layout energy
on understandability of graphs. Different energy function formulations (e.g., stress, dis-
tortion) likely have different impact. Evaluating such impact on a greater number of
quantitatively measurable aesthetic criteria, as well as on actual tasks performance, is
also a promising direction for future work.
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3. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planariza-
tion (2013)

4. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-
planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)

5. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.: A com-
parison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput. Graphics
15(6), 961–968 (2009)

6. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz - open source
graph drawing tools. In: Mutzel, P., Jnger, M., Leipert, S. (eds.) GD. LNCS, vol. 2265, pp.
483–484. Springer (2001)

7. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software:
Practice and experience 21(11), 1129–1164 (1991)

8. Gansner, E., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.)
GD, LNCS, vol. 3383, pp. 239–250. Springer (2005)

9. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic
Discrete Methods 4(3), 312–316 (1983)

10. van Ham, F., Rogowitz, B.: Perceptual organization in user-generated graph layouts. IEEE
Trans. Vis. Comput. Graphics 14(6), 1333–1339 (2008)

11. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algo-
rithms Appl. 6(3), 179–202 (2002)
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Appendix
A Popular Tasks for Node-Link Diagrams

We provide a list of 15 common tasks used in graph drawing and information visualiza-
tion evaluation studies. Many other tasks are not included since they can not be used in
our experimental setup. For example, we cannot use the task “which color is the most
present in the graph?” used in [1] since we did not cluster the nodes using colors.

Table 4: Popular questions in experimental evaluations on graph drawing.
Tasks References

Find the shortest path between two given nodes. [14, 16, 22–24],C
What is the minimum number of nodes that must be removed in order to dis-
connect two given nodes such that there is no path between them?

[22, 23],C

What is the minimum number of arcs that must be removed in order to dis-
connect two given nodes such that there is no path between them?

[22, 23],C

Which is the valid path between two given nodes? [1]
Which is a valid cycle that contains a specific node? [1]
Do the two highlighted nodes have node-node relationship? Two nodes A and
C have node-node relationship if there is a node B between them. e.g., A—
B—C

[15]

Find one node adjacent to given node. A,B
Find all common adjacent nodes of two given nodes. A,B
Find all triangle patterns in the given graph. A,B
Find all nodes adjacent to given node. [18]
Find a node with highest degree. [18]
Given a highlighted node, subjects determine its degree. [18]
Given a sequence of nodes, subjects determine if the sequence is a valid path
(edges between consecutive nodes are present).

[18]

Given a sequence of highlighted nodes, subjects determine if the sequence
is a valid path (edges between consecutive nodes are present), and if no two
consecutive nodes are in the same group.

[18]

Additional References:

A Huang, W., Hong, S.H., Eades, P.: Predicting graph reading performance: a cognitive
approach. In: APVIS. CRPIT, vol. 60, pp. 207–216. Australian Computer Society
(2006)

B Huang, W., Eades, P., Hong, S.H.: Measuring effectiveness of graph visualizations:
A cognitive load perspective. Information Visualization 8(3), 139–152 (2009)

C Purchase, H.C., Carrington, D., Allder, J.A.: Empirical evaluation of aesthetics-
based graph layout. Empirical Softw. Engg. 7(3), 233–255 (2002)
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B The Graph Dataset

In our experiments, we used the 9 graphs given in Table 5. ALGO, IPL, SOCG, SODA,
and TARJAN were created using the MoCS system; see E. The graphs describe topics
of research papers and contain the prominent words and phrases extracted from the titles
of the papers. The edges represent similarities between the topics computed based on
their co-occurrence in titles. GD is the co-authorship graph for the International Sympo-
siums on Graph Drawing, 1994-2007. The vertices represent the authors and an edge is
between two vertices if the corresponding authors published a paper together. Recipes
contain 381 unique cooking ingredients extracted from 56, 498 cooking recipes. Edges
are created based on co-occurrence of the ingredients in the recipes; see D. Trade de-
scribes trade relationships between countries. Edges are weighted based on normalized
combined import/export between pairs of countries. The Universities dataset is based
on average SAT scores in US universities. The edges are constructed based on similari-
ties of admissions data. All the datasets are available online at
http://gmap.cs.arizona.edu/datasets.

Table 5: Details on the dataset used in Section 4.

graph |V | |E| density

GD 506 1380 2.73
Recipes 381 2171 5.70
Trade 211 1670 7.91
Universities 161 745 4.63
SODA 316 692 2.19
IPL 336 687 2.04
SOCG 500 2940 5.88
TARJAN 252 504 2.00
ALGO 500 3375 6.75

Additional References:

D Ahn, Y.Y., Ahnert, S.E., Bagrow, J.P., Barabási, A.L.: Flavor network and the prin-
ciples of food pairing. Scientific reports 1 (2011)

E Fried, D., Kobourov, S.G.: Maps of computer science. In: PacificVis (2014), to ap-
pear.
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C Additional Measurements

Here we present more detailed measurements about accuracy and time for the individ-
ual Tasks 1-4. Values p < 0.05 indicate statistically significant differences. Note that
increasing the number of crossings improved the accuracy in several cases. Of particular
interest is accuracy for Task 4 in large graphs (italicized).

Table 6: Mean (µ) and standard deviation (σ) for different tasks.

task the number of crossings t-test results

low high p-value t-value

Completion Time in small graphs

Task 1 µ = 29.3 σ = 11.4 µ = 28.4 σ = 9.7 p > .05 t(15) = 0.5
Task 2 µ = 60.8 σ = 14.9 µ = 72.4 σ = 26.5 p > .05 t(15) = 2.0
Task 3 µ = 65.6 σ = 13.3 µ = 77.9 σ = 13.5 p < .05 t(15) = 2.2
Task 4 µ = 39.3 σ = 20.6 µ = 47.9 σ = 18.6 p > .05 t(15) = 1.3

Completion Time in large graphs.

Task 1 µ = 32.2 σ = 13.1 µ = 73.7 σ = 28.1 p < .05 t(15) = 5.6
Task 2 µ = 78.0 σ = 33.9 µ = 72.8 σ = 21.3 p > .05 t(15) = 0.7
Task 3 µ = 81.4 σ = 20.5 µ = 71.1 σ = 17.4 p > .05 t(15) = 2.1
Task 4 µ = 40.6 σ = 14.9 µ = 31.2 σ = 26.4 p > .05 t(15) = 1.5

Accuracy in small graphs

Task 1 µ = 92.6% σ = 15.4 µ = 85.9% σ = 15.7 p > .05 t(15) = 1.5
Task 2 µ = 95.3% σ = 10.0 µ = 85.9% σ = 12.8 p < .05 t(15) = 2.3
Task 3 µ = 90.6% σ = 12.5 µ = 96.8% σ = 8.5 p > .05 t(15) = 1.3
Task 4 µ = 98.4% σ = 6.2 µ = 89.0% σ = 15.7 p < .05 t(15) = 2.5

Accuracy in large graphs.

Task 1 µ = 90.6% σ = 12.5 µ = 71.8% σ = 12.5 p < .05 t(15) = 4.6
Task 2 µ = 85.9% σ = 15.7 µ = 71.8% σ = 23.3 p < .05 t(15) = 2.8
Task 3 µ = 89.0% σ = 12.8 µ = 96.8% σ = 12.5 p > .05 t(15) = 2.0
Task 4 µ = 79.6% σ = 18.7 µ = 92.2% σ = 15.1 p < .05 t(15) = 2.2
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D The Experimental Interface

Fig. 4: The experimental interface. The question is shown in the upper left corner of the screen.
When the participant is ready they select the appropriate radio button and click the “Submit”
button.
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E More Drawings
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(d) 2759 edge crossings

Fig. 5: Large graphs with 120 vertices constructed from the Recipes dataset. (a) Large sparse
graph with 180 edges and the low number of crossings, (b) large sparse graph with 180 edges
and the high number of crossings, (c) Large dense graph with 300 edges and the low number of
crossings and (d) large dense graph with 300 edges and the high number of crossings.
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