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Abstract We study the Nikol’skii inequality for algebraic polynomials on
the segment [−1, 1] between the uniform norm and the norm of the space
Lϕq , 1 ≤ q <∞, with the ultraspherical weight ϕ(x) = ϕ(α,α)(x) = (1 − x2)α,
α ≥ −1/2. We prove that the polynomial with unit leading coefficient that
deviates least from zero in the space Lψq with the Jacobi weight ψ(x) =

ϕ(α+1,α)(x) = (1 − x)α+1(1 + x)α is an extremal polynomial in the Nikol’skii
inequality. To prove the result, we use the generalized translation.
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1 Introduction. Statement of problems

1.1 Nikol’skii inequality on a segment with weight

Let a function υ be summable, nonnegative, and almost everywhere nonzero
on (−1, 1); we will call such function a weight. Denote by Lυq = Lυq (−1, 1),
1 ≤ q < ∞, the space of (real-valued) functions f measurable on (−1, 1) and
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such that the product |f |qυ is summable over (−1, 1). This is a Banach space
with respect to the norm

∥f∥Lυq (−1,1) =

 1∫
−1

|f(x)|qυ(x) dx

1/q

, f ∈ Lυq (−1, 1).

Along with Lυq (−1, 1), consider the space C = C[−1, 1] of functions continuous
on [−1, 1] with the uniform norm

∥f∥C[−1,1] = max{|f(x)| : x ∈ [−1, 1]}.

Denote by M(n, υ) = M(n, υ)q the best (i.e., the least possible) constant in
the inequality

∥p∥C[−1,1] ≤M(n, υ) ∥p∥Lυq (−1,1), p ∈ Pn, (1.1)

on the set Pn = Pn(R) of algebraic polynomials (in one variable) of degree
(at most) n with real coefficients.

In the present paper, we study inequality (1.1) with the ultraspherical
weight

ϕ(x) = ϕ(α)(x) = (1− x2)α, α > −1. (1.2)

In what follows, the space Lϕq with weight (1.2) will be denoted by Lαq . Thus,
in the present paper, we study the inequality

∥p∥C ≤Mn ∥p∥Lαq , p ∈ Pn, (1.3)

with the best constant Mn =M(n, ϕ(α))q.
Inequalities (1.1) and (1.3) are analogs of Nikol’skii inequality [29] for alge-

braic polynomials on a segment. Such inequalities and more general inequal-
ities between the uniform norm and integral norms with weights (especially
with Jacobi weights) of derivatives of algebraic polynomials and the polyno-
mials themselves were studied by A.A.Markov, V.A.Markov, S.N.Bernstein,
M.K.Potapov, I.K.Daugavet, S.Z.Rafal’son, V.I. Ivanov, S.V.Konyagin, B.Bo-
janov, P.Yu.Glazyrina, I.E. Simonov, and many others; see monographs [30,37,
28,11,31,26], papers [10,13,21,22,24,17,16,18,33–35], and references therein.
In particular, [13] contains the order of behavior of the best constantM(n, ϕ(α))q
in (1.3) with respect to n as n→ ∞:

M(n, ϕ(α))q ≍ nγ , γ =
2(α+ 1)

q
.

At present, a great number of works are devoted to related sharp in-
equalities for trigonometric polynomials. Such inequalities were studied by
S.N.Bernstein, M.Riesz, G. Szegö, A. Zygmund, S.B. Stechkin, A.P.Calderon,
G.Klein, L.V.Taikov, E.B. Saff, T. Sheil-Small, P.Nevai, E.A. Storozhenko, V.G.
Krotov, P.Osvald, V.I. Ivanov, S.V.Konyagin, A.I.Kozko, Q.I. Rahman, G.
Schmeisser, N.P.Korneichuk, V.F.Babenko, A.A. Ligun, V.A.Kofanov, S.A.
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Pichugov, A.G.Babenko, V.V.Arestov, P.Yu.Glazyrina, and many others; see
monographs [42,28,26,11,31], papers [12,39,32,21,22,1,2,6,7,4,3], and refer-
ences therein.

Consider an auxiliary inequality

|p(1)| ≤ Dn ∥p∥Lαq , p ∈ Pn, (1.4)

with the best constantDn = D(n, ϕ(α))q. This inequality is also of independent
interest. It is clear that Dn ≤Mn. We show below that, in fact, Dn =Mn at
least for α ≥ −1/2.

The aim of this paper is to study the properties of extremal polynomials
in inequalities (1.3) and (1.4), i.e., of polynomials ρn ∈ Pn, ρn ̸≡ 0, for which
these inequalities turn into equalities. In particular, we will study the unique-
ness of extremal polynomials. It is clear that, if a polynomial ρn is extremal,
then the polynomial cρn for any constant c ̸= 0 is also extremal. If ρn is an
extremal polynomial in inequality (1.4) and any other extremal polynomial
has the form cρn, c ̸= 0, then we will say that ρn is the unique extremal poly-
nomial in (1.4). Since weight (1.2) is even, along with the polynomial ρn(x),
the polynomial ρn(−x) is also extremal in (1.3). Therefore, in this case, the
polynomial ρn will be called unique extremal in (1.3) if any other extremal
polynomial has the form cρn(±x), c ̸= 0.

1.2 Polynomials that deviate least from zero

Given the weight

ψ(x) = ϕ(x)(1− x) = (1− x)α+1(1 + x)α,

a parameter q, 1 ≤ q < ∞, and integer n ≥ 1, denote by ϱn = ϱn,ψ,q the
polynomial of degree n with unit leading coefficient that deviates least from
zero in the space Lψq . The polynomial ϱn = ϱn,ψ,q is a solution of the problem

min{∥pn∥Lψq : pn ∈ P1
n} = ∥ϱn∥Lψq , (1.5)

where P1
n is the set of polynomials pn(x) = xn+

∑n−1
k=0 akx

k of degree n with
leading coefficient 1.

Solution of problem (1.5) for q = 2 is well-known. In this case, the Jacobi

polynomial R
(α+1,α)
n of degree n divided by its leading coefficient solves the

problem; see the next section for details. Problem (1.5) for q = 1 reduces
to studying a system of n polynomial equations in n variables which can be
solved at least for small n immediately or by finding a Gröbner basis; see, for
example, [14, Subsect. 3.3].
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1.3 Main result

The following statement is the main results of the present paper.

Theorem 1 For α ≥ −1/2, 1 ≤ q <∞, and n ≥ 1, the following statements
are valid.

(1) The best constants in inequalities (1.3) and (1.4) coinside:

Mn(ϕ
(α))q = Dn(ϕ

(α))q. (1.6)

(2) The polynomial ϱn that deviates least from zero with respect to the
norm of the space Lψq is the unique extremal polynomial in inequality (1.4).

(3) The polynomial ϱn is an extremal polynomial in inequality (1.3). This
polynomial is unique extremal in the case α > −1/2.

Theorem 1 reduces the problem of studying inequality (1.3) to studying
problem (1.5), which, to our mind, is essentially simpler.

For

α =
m− 3

2
, where m is integer, m ≥ 3, (1.7)

the statement of the theorem was proved in the author’s paper [5] in parallel
with studying the Nikol’skii inequality between the uniform norm and the
Lq-norm of algebraic polynomials on the unit sphere of the Euclidean space
Rm, m ≥ 3. For q = 1 and values (1.7) of the parameter α, the statement of
the theorem (except for the uniqueness of an extremal polynomial in inequality
(1.3)) was proved even earlier in [14].

The case α = −1/2 is special in this research area. The weight ϕ(x) =
(1−x2)−1/2 is called the Chebyshev weight. Inequality (1.3) for the Chebyshev
weight can be written as the classical Nikol’skii inequality on the set Fn of
trigonometric polynomials of degree (at most) n. Denote by L̃q, 1 ≤ q < ∞,
the space of 2π-periodic real-valued measurable functions F such that the
function |F |q is summable over (−π, π). This is a Banach space with respect
to the norm

∥F∥L̃q =

 1

π

π∫
−π

|F (η)|q dη

1/q

. (1.8)

For a function f ∈ L
−1/2
q , we have

∥f∥
L

−1/2
q

=

 1∫
−1

|f(x)|q(1− x2)−1/2dx

1/q

=

 π∫
0

|f(cos η)|qdη

1/q

. (1.9)

The formula F (η) = f(cos η), η ∈ R, establishes a one-to-one correspondence

between the space L
−1/2
q and the subspace of even functions from L̃q; moreover,

by (1.9), ∥f∥
L

−1/2
q

= (π/2)
1/q ∥F∥L̃q . Along with L̃q, consider the space C2π

of 2π-periodic functions continuous on the whole real line with the uniform
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norm. Denote by M̃(n) = M̃(n)q the best (i.e., the least possible) constant in
the inequality

∥Fn∥C2π ≤ M̃(n)q ∥Fn∥L̃q , Fn ∈ Fn, (1.10)

on the set of trigonometric polynomials of given degree n ≥ 1. Obviously, the
best constants in (1.3) for the Chebyshev weight and in (1.10) are related by

the inequality M
(
n, ϕ(−1/2)

)
q
≤ (2/π)1/qM̃(n)q. It is not hard to show that,

in fact,

M
(
n, ϕ(−1/2)

)
q
= (2/π)1/q M̃(n)q.

Not many results on sharp inequalities (1.1), (1.3), and (1.10) are known.
Probably, Jackson [23] was the first who studied inequality (1.10). At present,
the case q = 1 is the most completely studied. S.B. Stechkin showed (see

[38,40]) that, for the constant M̃(n) = M̃(n)1, there exists a finite limit

c = lim
n→∞

M̃(n)/n. Taikov [38] (see also [40]) obtained close upper and lower

estimates for the quantity c. To the present, the best results about the con-
stant M̃(n) have been obtained by Babenko, Kofanov, and Pichugov [9] and
Gorbachev [20] (see also [19]). Gorbachev, in addition, established [20,19] the
relation between this problem and other extremal problems of function theory.

Lupas [27], in particular, obtained sharp inequality (1.1) for the Jacobi
weight υ(x) = (1− x)α(1 + x)β with α, β ≥ −1/2 for q = 2 (i.e., he found the
best constant and an extremal polynomial).

Glazyrina and Simonov [35] constructed a polynomial extremal in inequal-
ity (1.3) with the Chebyshev weight for q = 1 (in the form of a linear com-
bination of Chebyshev polynomials of the first kind), proved its uniqueness,
and showed that its uniform norm is attained at an end-point of the segment
[−1, 1].

Note that our method of studying does not allow us to prove the uniqueness
of the extremal polynomial ϱn in inequality (1.3) for α = −1/2, i.e., for the
Chebyshev weight.

2 Pointwise Nikol’skii inequality for algebraic polynomials on a
segment

The aim of this section is to study an analog of inequality (1.4) for arbitrary
weight:

|pn(1)| ≤ D(n, υ)q ∥pn∥Lυq , pn ∈ Pn. (2.1)

2.1 Pointwise Nikol’skii inequality on a segment with arbitrary weight

Along with inequality (2.1), we are interested in the more general pointwise
inequality

|pn(z)| ≤ D(n, υ, z)q ∥pn∥Lυq , pn ∈ Pn, (2.2)
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for z ∈ C. To the present time, a large number of studies have been devoted
to inequalities (2.2) and (1.1), see [26, Sect. 6.1], [28, Ch. 4], [37, Sect. 7.71].

Inequalities (2.2) and (1.1) are studied most completely for q = 2; see [30,
Part VI, Sect. 12], [37, Sect. 7.71]. Let {pυn}∞n=0 be a system of polynomials
orthonormal on (−1, 1) with weight υ. Then, for z ∈ [−1, 1] and q = 2, the
square of the best constant in (2.2) satisfies the formula (see, for example, [37,
Sect. 3.1, Thm. 3.1.3])

(D(n, υ, z)2)
2
=

n∑
k=0

(pυk(z))
2
, (2.3)

and the polynomial

ρn(x) =
n∑
k=0

pυk(z)p
υ
k(x) (2.4)

is extremal. As a consequence of (2.3), the following formula is valid:

(D(n, υ)2)
2
= max

{
n∑
k=0

(pυk(z))
2
: z ∈ [−1, 1]

}
. (2.5)

The Jacobi polynomials {p(α,β)n }, which are orthonormal on (−1, 1) with
Jacobi weight

ϕ(α,β)(x) = (1− x)α(1 + x)β , (2.6)

have the following property for α ≥ β ≥ −1/2 (see, for example, [37, Sect. 7.32,
Thm. 7.32.1; Sect. 4.1, formula (4.1.1)])

max{|p(α,β)k (x)| : x ∈ [−1, 1]} = |p(α,β)k (1)|, k ≥ 0.

Hence, by (2.5) and (2.3), for Jacobi weight (2.6) with α ≥ β ≥ −1/2 and
q = 2, the constants in inequalities (1.1) and (2.1) coincide:

M
(
n, ϕ(α,β)

)
2
= D

(
n, ϕ(α,β)

)
2

and the square of their common value is (see, for example, [30, Part VI,
Sect. 12, Thm. 105]

1

2α+β+1
× Γ (n+ α+ 2)Γ (n+ α+ β + 2)

Γ (α+ 1)Γ (α+ 2)Γ (n+ 1)Γ (n+ β + 1)
.

The polynomial
n∑
k=0

p
(α,β)
k (1)p

(α,β)
k (x) (2.7)

is extremal in inequalities (2.1) and (1.1) for q = 2 and Jacobi weight (2.6) with
values of the parameters α ≥ β ≥ −1/2 (see (2.4)). These results for Jacobi
weight (2.6) are contained in [27]; we give them here to illustrate general fact
(2.5); they also will be useful in the further discussion.



Nikol’skii Inequality for Algebraic Polynomials on a Segment 7

Polynomial (2.7), up to a constant factor, coincides [37, Sect. 4.5, formulas

(4.5.2), (4.5.3)] with the Jacobi polynomial p
(α+1,β)
n , which corresponds to the

weight ϕ(α+1,β)(x) = (1− x)ϕ(α,β)(x) = (1− x)α+1(1 + x)β . It is well-known

that the polynomial p
(α+1,β)
n divided by its leading coefficient deviates least

from zero in the space Lυ2 with the weight υ = ϕ(α+1,β). This fact and the
results of [27] contain, in particular, the statements of Theorem 1 for q = 2.
To prove Theorem 1 for q ̸= 2, we will use other arguments.

2.2 Characterization of a polynomial extremal in inequality (2.1)

Given a weight υ, we define on the interval (−1, 1) another weight

w(x) = (1− x)υ(x). (2.8)

Denote by ϱn = ϱn,w,q the polynomial of degree n ≥ 1 with unit leading
coefficient that deviates least from zero in the space Lwq . This polynomial is
the solution of the problem

min{∥pn∥Lwq : pn ∈ P1
n} = ∥ϱn∥Lwq . (2.9)

The polynomial ϱn is characterized by the property of orthogonality of the
function |ϱn|q−1 sgn ϱn to the space Pn−1 (see, for example, [25, Ch. 3, Sect. 3.3,
Thms. 3.3.1, 3.3.2]):

1∫
−1

w(x) pn−1(x)|ϱn(x)|q−1 sgn ϱn(x) dx = 0, pn−1 ∈ Pn−1. (2.10)

From this, in particular, it follows easily that all n zeros of the polynomial ϱn
are simple and lie in the interval (−1, 1).

According to the following theorem, problems (2.9) and (2.1) have identical
solution. This statement for q = 1 has been proved in [14]. For arbitrary
q, 1 ≤ q < ∞, it has been proved in [5]. To make the presentation complete,
we give this theorem here with proof.

Theorem 2 For 1 ≤ q < ∞ and n ≥ 1, the polynomial ϱn of degree n with
unit leading coefficient that deviates least from zero in the space Lwq with weight
(2.8) is the unique extremal polynomial in inequality (2.1).

Proof Let ϱn be the polynomial of degree n that deviates least from zero in
the space Lwq . For an arbitrary polynomial pn ∈ Pn, we have

1∫
−1

pn(x) υ(x)|ϱn(x)|q−1 sgn ϱn(x) dx

=

1∫
−1

rn−1(x)(1− x)υ(x)|ϱn(x)|q−1 sgn ϱn(x)dx
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+ pn(1)

1∫
−1

υ(x)|ϱn(x)|q−1 sgn ϱn(x)dx,

where

rn−1(x) =
pn(x)− pn(1)

1− x

is a polynomial of degree n− 1. This, by (2.10), implies the equality

1∫
−1

pn(x)υ(x)|ϱn(x)|q−1 sgn ϱn(x)dx

= pn(1)

1∫
−1

υ(x)|ϱn(x)|q−1 sgn ϱn(x)dx.

(2.11)

Let us determine the sign of the integral

I(n, q) =

1∫
−1

υ(x)|ϱn(x)|q−1 sgn ϱn(x)dx.

Substituting the polynomial pn = ϱn into (2.11), we obtain the equality

1∫
−1

υ(x)|ϱn(x)|qdx = ϱn(1)

1∫
−1

υ(x)|ϱn(x)|q−1 sgn ϱn(x)dx. (2.12)

All zeros of the polynomial ϱn lie in the interval (−1, 1), and its leading coef-
ficient is positive. Hence, ϱn(1) > 0. By (2.12), we have the property

I(n, q) =

1∫
−1

υ(x)|ϱn(x)|q−1 sgn ϱn(x) dx > 0.

Now, relation (2.11) can be written in the form

pn(1) =
1

I(n, q)

1∫
−1

υ(x)pn(x)|ϱn(x)|q−1 sgn ϱn(x)dx, pn ∈ Pn. (2.13)

Using Hölder’s inequality, from (2.13), we obtain the following estimate for an
arbitrary polynomial pn ∈ Pn:

|pn(1)| ≤
1

I(n, q)

 1∫
−1

υ(x)|pn(x)|qdx


1
q
 1∫

−1

υ(x)|ϱn(x)|qdx


q−1
q

. (2.14)



Nikol’skii Inequality for Algebraic Polynomials on a Segment 9

For the polynomial ϱn, inequality (2.14) turns into an equality; this can
be easily verified, for example, with the use of identity (2.13). Consequently,
inequality (2.14) is inequality (2.1); moreover,

D(n, υ)q =

(
∥ϱn∥Lυq

)q−1

I(n, q)
.

Based on the conditions under which Hölder’s inequality turns into an equality,
it is easy to conclude that, for all q, 1 ≤ q < ∞, inequality (2.14) turns into
an equality only for polynomials cϱn, where c ∈ R. Thus, the polynomial ϱn
is unique extremal in inequality (2.1). Theorem 2 is proved. ⊓⊔

3 Generalized translation operator

The generalized translation operator plays an important role in proving The-
orem 1 below. The most part of required information about its genesis, prop-
erties, and application in function theory can be found in [8].

3.1 Basic definitions and simple facts

For 1 ≤ q <∞ and α > −1, denote by Lαq = Lαq (−1, 1) the space of complex-
valued functions f measurable on (−1, 1) and such that the function |f |q is
summable over (−1, 1) with ultraspherical weight (1.2). This is a Banach space
with respect to the norm

∥f∥Lαq =

 1∫
−1

|f(x)|q(1− x2)α dx.

1/q

.

In the limiting case q = ∞, we assume that Lαq is the classical space L∞ =
L∞(−1, 1) of (complex-valued) functions measurable and essentially bounded
on (−1, 1) with the norm

∥f∥L∞ = ess sup {|f(x)| : x ∈ (−1, 1)}.

The space Lα2 is a Hilbert space with the inner product

(f, g) = (f, g)Lα2 =

1∫
−1

f(x)g(x)(1− x2)αdx, f, g ∈ Lα2 . (3.1)

Let Rν = Rαν , ν ≥ 0, be a system of algebraic ultraspherical polynomials
of degree ν orthogonal on the segment [−1, 1] with weight (1.2); more exactly,
orthogonal with respect to inner product (3.1) and normalized by the condition
Rν(1) = 1, ν ≥ 0 (see, for example, [37, Ch. IV]). These polynomials satisfy the



10 V. Arestov, M. Deikalova

recurrent relation (see, for example, [37, Ch. IV, Sects. 4.1, 4.5], [36, Ch. VII,
Sect. 1])

Rν+1(z) =
(2ν + 2α+ 1)

(ν + 2α+ 1)
zRν(z)−

ν

(ν + 2α+ 1)
Rν−1(z), ν ≥ 1,

R0(z) = 1, R1(z) = z.

Note for the future that, in the case α ≥ −1/2, ultraspherical polynomi-
als Rν = Rαν satisfy the relation (see, for example, [37, Ch. VII, Sect. 7.32,
Thm. 7.32.1], [36, Ch. VII, Sect. 2, Thm. 7.1])

max{|Rν(x)| : x ∈ [−1, 1]} = Rν(1) = 1, ν ≥ 0. (3.2)

In the case α > −1/2 and ν ≥ 1, in addition to (3.2), we can assert that (see,
for example, [37, Sects. 4.2, 7.31, 7.32])

|Rν(x)| < Rν(1) = 1, x ∈ (−1, 1). (3.3)

The system of ultraspherical polynomials {Rν}ν≥0 forms an orthogonal
basis in the space Lα2 . Thus, an arbitrary function f ∈ Lα2 is expanded into
the Fourier series

f(x) =

∞∑
ν=0

fνRν(x), fν =
(f,Rν)

(Rν , Rν)
. (3.4)

For a pair of functions f, g ∈ Lα2 , the generalized version of Parseval’s identity
holds:

(f, g) =

∞∑
ν=0

δνfνgν , δν = (Rν , Rν) = ∥Rν∥2Lα2 . (3.5)

In particular, the norm of a function f ∈ Lα2 can be expressed in terms of its
Fourier coefficients {fν} by Parseval’s identity:

∥f∥2Lα2 =

∞∑
ν=0

δν |fν |2. (3.6)

The generalized translation operator with step t ∈ [−1, 1] is a linear oper-
ator Θt defined on functions f ∈ Lα2 with Fourier series (3.4) by the relation
(see, for example, [8, formula (0.5)] and references in [8])

Θtf(x) =
∞∑
ν=0

fνRν(t)Rν(x). (3.7)

Lemma 1 The following two statements are valid.
(1) For α ≥ −1/2 and any t ∈ [−1, 1], the generalized translation operator

Θt is a linear bounded operator in the space Lα2 whose norm is 1:

∥Θt∥Lα2 →Lα2 = 1. (3.8)

(2) For α > −1/2 and t ∈ (−1, 1), the norm of the operator Θt in the
space Lα2 is attained only at functions that coincide with some constant almost
everywhere on (−1, 1).
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Proof Let f ∈ Lα2 . By property (3.2), the right-hand side of (3.7) is a function
from Lα2 . Moreover, using Parseval’s identity (3.6), we conclude that

∥Θtf∥2Lα2 =
∞∑
ν=0

δν |Rν(t)|2|fν |2 ≤
∞∑
ν=0

δν |fν |2 = ∥f∥2Lα2 . (3.9)

Thus, in the case α ≥ −1/2, the norm of the generalized translation operator
Θt in the space Lα2 for any t ∈ [−1, 1] is at most 1. Since R0(t) ≡ 1, the
translation operator (with any fixed step t ∈ R) takes constant functions to
themselves. This implies (3.8).

For α > −1/2 and t ∈ (−1, 1), by (3.3), we have an equality in (3.9) if and
only if all Fourier coefficients fν of the function f vanish for ν ≥ 1. But this
means that f is constant. The proof of the lemma is complete. ⊓⊔

Note also that, by (3.5) and (3.7), we have

(Θtf, g) =
∞∑
ν=0

δνfνgνRν(t) = (f,Θtg)

for any pair of functions f, g ∈ Lα2 and any t ∈ [−1, 1]. Thus, the equality

(Θtf, g) = (f,Θtg), f, g ∈ Lα2 , (3.10)

holds, which means that the operator Θt is self-adjoint.

3.2 Integral representation of the generalized translation

In further arguments, we will use an integral representation of the generalized
translation. This representation is based on the so-called product formula for
ultraspherical polynomials. For α > −1/2, integer ν ≥ 0, and any real θ and
η, the product formula in the classical trigonometric form is (see, for example,
[8, formula (5.1)], [41, Ch. 11, Sect. 11.5])

Rν(cos θ)Rν(cos η) =
1

κ(α)

π∫
0

Rν(cos θ cos η + sin θ sin η cos ζ)(sin ζ)2αdζ,

(3.11)
where

κ(α) =

π∫
0

(sin ζ)2αdζ =

1∫
−1

(
1− ξ2

)α−1/2
dξ =

Γ (α+ 1/2)
√
π

Γ (α+ 1)
.

Introducing the notation t = cos θ and x = cos ζ, we pass to the new variable
of integration ξ = cos ζ in (3.11). This results in the following formula, which
is equivalent to (3.11),

Rν(t)Rν(x) =
1

κ(α)

1∫
−1

Rν

(
tx+ ξ

√
1− t2

√
1− x2

) (
1− ξ2

)α−1/2
dξ (3.12)
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with α > −1/2 and −1 ≤ t, x ≤ 1.
Substituting (3.12) into definition (3.7) of the generalized translation op-

erator Θt, we obtain the following integral representation for this operator for
α > −1/2:

Θtf(x) =
1

κ(α)

1∫
−1

f
(
tx+ ξ

√
1− t2

√
1− x2

) (
1− ξ2

)α−1/2
dξ (3.13)

at least on the set P = P(C) of all algebraic polynomials with complex
coefficients.

3.3 The norm of the generalized translation operator: the case α > −1/2

In this subsection, we will find the norm of the generalized translation operator
in the spaces Lαq , 1 ≤ q <∞, α > −1/2. Certainly, it is of interest to describe
sets of functions f ∈ Lαq at which the norm of the operator Θt is attained;
these functions are called extremal. The values t = ±1 are of no interest
because the operator Θ1 is the unit operator, and the operator Θ−1 satisfies
the formula (Θ−1f)(x) = f(−x). For these two values of the parameter t,
every function from Lαq is extremal. In the case |t| < 1, we restrict ourselves
to studying extremal functions that are polynomials. This will reduce and
simplify considerably the arguments, however, will be sufficient for studying
the main problem of this paper.

For a (complex-valued) function f defined and measurable on a measurable
set G ⊂ R, we will say that f maintain sign on G if there exists a number
ζ ∈ C, |ζ| = 1, such that ζf ≥ 0 almost everywhere on G; in this case, the
number ζ will be called the sign of the function f on G.

The following theorem is the main statement in this section.

Theorem 3 For α > −1/2, 1 ≤ q < ∞, and any t ∈ [−1, 1], the following
statements are valid.

(1) The generalized translation operator Θt is a linear bounded operator
in the space Lαq whose norm is 1:

∥Θt∥Lαq→Lαq = 1. (3.14)

(2) For α > −1/2, 1 < q < ∞, and |t| < 1, the norm of the operator Θt
is attained at a polynomial f if and only if f is a constant.

(3) For t ∈ (−1, 1), the norm of Θt in the space Lα1 is attained at a
polynomial f if and only if f maintains sign on [−1, 1].

Since operator (3.13) takes constant functions into themselves, to prove
equality (3.14), it is sufficient to prove the inequality

∥Θt∥Lαq→Lαq ≤ 1. (3.15)

Further arguments will be divided into several steps. Let C = C[−1, 1] be
the space of (complex-valued) functions continuous on the segment [−1, 1] with
the uniform norm.
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Lemma 2 For α > −1/2 and any t ∈ [−1, 1], the generalized translation
operator Θt is a linear bounded operator in the space C whose norm is 1.

Proof Evidently, the right-hand side of (3.13), is a linear bounded operator in
the space C and its norm is 1. Formula (3.13) holds on the set P of algebraic
polynomials. The set P is dense in the space C. Hence, we can easily conclude
that the operator Θt can be extended by continuity to a bounded operator
from the set P to the whole space C; exactly formula (3.13) implements this
extension. The lemma is proved. ⊓⊔

By (3.13), for α > −1/2, the pointwise inequality

|(Θtf)(x)| ≤ (Θt|f |)(x), x ∈ [−1, 1], (3.16)

is valid for f ∈ C. It is clear that, if, in addition, the function f maintains sign
on [−1, 1], then (3.16) turns into an equality.

Lemma 3 Let α > −1/2 and |t| < 1. Then, inequality (3.16) turns into an
equality for all x ∈ (−1, 1) for a polynomial f ̸≡ 0 if and only if f maintains
sign on (−1, 1).

Proof For a fixed x ∈ (−1, 1), inequality (3.16) turns into an equality if and
only if the function f(tx+ ξ

√
1− t2

√
1− x2) of variable ξ ∈ (−1, 1) has con-

stant sign. This means that the polynomial f maintains sign on the interval

I(x, t) =
(
tx−

√
1− t2

√
1− x2, tx+

√
1− t2

√
1− x2

)
.

Let us ensure that the intervals I(x, t) for x ∈ (−1, 1) cover the interval
(−1, 1). For x ∈ (−1, 1), the centers c(x, t) = tx of the intervals I(x, t) fill the
interval (−|t|, |t|). We have

I(t, t) =
(
2t2 − 1, 1

)
, c(t, t) = t2;

I(−t, t) =
(
−1, 1− 2t2

)
, c(−t, t) = −t2.

Since t2 < |t|, this implies that (−1, 1) ⊂ ∪{I(x, t) : x ∈ (−1, 1)}.
Let ρ be an arbitrary positive number satisfying the condition |t| < ρ < 1.

We have

[−ρ, ρ] ⊂ ∪{I(x, t) : x ∈ (−1, 1)}.

The segment [−ρ, ρ] is a compact set; therefore, it can be covered by a fi-
nite family of intervals I(x, t). A polynomial f cannot vanish on any interval;
therefore, if two intervals I(x′, t) and I(x′′, t) intersect, then the polynomial f
is also of constant sign on the union of these intervals. Hence, we can easily
conclude that the polynomial f maintains sign on the segment [−ρ, ρ]. This
implies that f maintains sign on (−1, 1). The lemma is proved. ⊓⊔
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Lemma 4 For α > −1/2 and q = 1, the following three statements are valid.

(1) For any t ∈ [−1, 1], the generalized translation operator Θt is a linear
bounded operator in the space Lα1 whose norm is 1:

∥Θt∥Lα1 →Lα1 = 1; (3.17)

the norm of the operator is attained at functions Lα1 that maintain sign on
(−1, 1).

(2) For any t ∈ [−1, 1], the generalized translation operator Θt in the space
Lα1 satisfies the formula

1∫
−1

(Θtf)(x)
(
1− x2

)α
dx =

1∫
−1

f(x)
(
1− x2

)α
dx, f ∈ Lα1 . (3.18)

(3) For t ∈ (−1, 1), the norm of the operator in the space Lα1 is attained
at a polynomial f if and only if f maintains sign on [−1, 1].

Proof Equality (3.10) is valid for a pair of functions g ∈ C and f ∈ P. Using
this equality and Lemma 2, we obtain

|(Θtf, g)| = |(f,Θtg)| ≤ ∥f∥Lα1 ∥Θtg∥C ≤ ∥f∥Lα1 ∥g∥C .

Consequently, the inequality ∥Θtf∥Lα1 ≤ ∥f∥Lα1 is valid for any polynomial f .
The set P is dense in the space Lα1 . Therefore, the operator Θt can be extended
by continuity to a linear bounded operator in the space Lα1 ; and the norm of
the extended operator is at most 1. Thus, inequality (3.15) holds for q = 1;
hence, (3.17) holds.

These arguments also allow us to assert that formula (3.10) is valid for an
arbitrary pair of functions g ∈ C and f ∈ Lα1 . Assume that f ∈ Lα1 and g is
the specific function identically equal to 1. According to formulas (3.7) and
(3.4), we have Θtg = g0 = 1. Therefore, in this case, equality (3.10) coincides
with (3.18).

Formula (3.18), in particular, shows that the norm of the operator Θt in
Lα1 is attained at functions from Lα1 that maintain sign on (−1, 1). Let us show
that any extremal polynomial has this property.

Let us verify that the inequality

1∫
−1

|(Θtf)(x)|
(
1− x2

)α
dx ≤

1∫
−1

(Θt|f |)(x)
(
1− x2

)α
dx (3.19)

holds for any function f ∈ Lα1 . Indeed, if f ∈ C, then pointwise inequality
(3.16) and, hence, inequality (3.19) holds. Hence, in view of the fact that C
is dense in Lα1 , we conclude that inequality (3.19) also holds in the space Lα1 .
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Combining inequality (3.19) for a function f ∈ Lα1 and equality (3.18) for the
function |f |, we obtain

∥Θtf∥Lα1 =

1∫
−1

|(Θtf)(x)|
(
1− x2

)α
dx ≤

1∫
−1

(Θt|f |)(x)
(
1− x2

)α
dx

=

1∫
−1

|f(x)|
(
1− x2

)α
dx = ∥f∥Lα1 .

(3.20)

We arrive again at the inequality

∥Θtf∥Lα1 ≤ ∥f∥Lα1
in the space Lα1 . This inequality turns into an equality for a function f ∈ Lα1
if and only if inequality (3.19) turns into an equality for the function f ; this
is equivalent to that inequality (3.20) turns into an equality for almost all
x ∈ (−1, 1).

We see from these arguments that a polynomial f is extremal if and only if
inequality (3.16) turns into an equality for this polynomial for all x ∈ [−1, 1].
Applying Lemma 3, we obtain the third statement of the lemma. ⊓⊔

Lemma 5 For α > −1/2, 1 < q < ∞, and t ∈ (−1, 1), the generalized
translation operator Θt is a linear bounded operator in the space Lαq whose
norm is 1: ∥Θt∥Lαq→Lαq = 1. The norm of the operator Θt is attained at a
polynomial f if and only if f is a constant.

Proof Let f ∈ C. For any x ∈ (−1, 1), using Hölder’s inequality, we obtain

|(Θtf)(x)| =

∣∣∣∣∣∣ 1

κ(α)

1∫
−1

f
(
tx+ ξ

√
1− t2

√
1− x2

) (
1− ξ2

)α−1/2
dξ

∣∣∣∣∣∣
≤

 1

κ(α)

1∫
−1

∣∣∣f (tx+ ξ
√
1− t2

√
1− x2

)∣∣∣q (1− ξ2
)α−1/2

dξ

1/q

. (3.21)

Applying this estimate and equality (3.18) to the function |f |q, we obtain

∥Θtf∥qLαq ≤ ∥Θt(|f |q)∥Lα1 = ∥|f |q∥Lα1 = ∥f∥qLαq .

Thus, functions f ∈ C satisfy the inequality ∥Θtf∥Lαq ≤ ∥f∥Lαq . The set C is
dense in the space Lαq ; therefore, Θt can be extended by continuity to a linear
bounded operator in the space Lαq whose norm is at most 1. Thus, inequality
(3.15) and, hence, equality (3.17) also holds for 1 < q <∞.

We have to describe polynomials at which the norm of the operator Θt,
where |t| < 1, in the space Lαq for 1 < q <∞ is attained. For an extremal poly-
nomial f , Hölder’s inequality in (3.21) must turn into an equality for any x ∈
[−1, 1]. For x ∈ (−1, 1), the equality in (3.21) is attained only if the polynomial
f is a constant on the segment

[
tx−

√
1− t2

√
1− x2, tx+

√
1− t2

√
1− x2

]
and, hence, on the whole segment [−1, 1]. Lemma 5 is proved. ⊓⊔
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The statement of Theorem 3 is contained in Lemmas 4 and 5.

3.4 The case α = −1/2

Let us discuss the properties of operator (3.7) for α = −1/2. In this case,
ultraspherical polynomials are the Chebyshev polynomials of the first kind:

Rν(x) = cos(ν arccosx), ν ≥ 0, x ∈ [−1, 1].

Setting x = cos ζ for ζ ∈ [0, π] and t = cosh for h ∈ [0, π] in (3.7), we obtain

Tcoshf(cos ζ) =

∞∑
ν=0

fν cos(νh) cos(νζ) =
1

2
(F (ζ + h) + F (ζ − h)), (3.22)

where

F (η) = f(cos η), η ∈ R. (3.23)

Denote by L̃q, 1 ≤ q < ∞, the space of 2π-periodic measurable complex-
valued functions F such that the function |F |q is summable over (−π, π). This
is a Banach space with respect to norm (1.8). Formula (3.23) establishes a

one-to-one correspondence between the space L−1/2
q and the subspace of even

functions from L̃q; moreover, the inequality ∥f∥L−1/2
q

= (π/2)
1/q ∥F∥L̃q holds,

which was discussed above.

Based on formula (3.22), we define an operator Θ̃h for 0 ≤ h ≤ π in the

space L̃q, 1 ≤ q <∞, by the formula

(Θ̃hF )(η) =
1

2
(F (ζ + h) + F (ζ − h)).

Evidently, the operator Θ̃h for any h ∈ [0, π] is a linear bounded operator in

the space L̃q for 1 ≤ q < ∞ and its norm is 1. As a consequence, we obtain
the following statement.

Lemma 6 For α = −1/2, 1 ≤ q < ∞, and any t ∈ [−1, 1], the generalized

translation operator Θt is a linear bounded operator in the space L−1/2
q whose

norm is 1.

In the case α = −1/2, the situation with polynomials at which the norm
of the operator Θt for |t| < 1 is attained is more complicated in comparison
with the case α > −1/2. We don’t discuss this question here, because we were
unable to describe polynomials extremal in inequality (1.1) for α = −1/2 in
this way.
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4 Proof of Theorem 1

The best constants in inequalities (1.1) and (1.4) satisfy the inequalityDn ≤Mn.
Let us show that, in fact, they coincide; i.e., (1.6) holds. Let us use generalized
translation operator (3.7). Assume that f ∈ Pn = Pn(R) and the uniform
norm of f is attained at some point t ∈ [−1, 1]. It is seen from definition (3.7)
that the function g(x) = (Θtf) also is a polynomial of degree n such that
g(1) = f(t). Using inequality (1.4), Theorem 3, and Lemma 6, we obtain

∥f∥C = |f(t)| = |g(1)| ≤ Dn∥g∥Lαq ≤ Dn∥f∥Lαq . (4.1)

Since f ∈ Pn is an arbitrary function, this implies the inequality Mn ≤ Dn.
Relation (1.6) is proved.

Recall that ϱn denotes the polynomial that solves problem (1.5). By The-
orem 2, this is the unique extremal polynomial in inequality (1.4). We have

Dn ∥ϱn∥Lϕq = |ϱn(1)| ≤ ∥ϱn∥C ≤Mn ∥ϱn∥Lϕq .

In view of (1.6), this implies that

∥ϱn∥C = |ϱn(1)|

and the polynomial ϱn is extremal in inequality (1.1).

It remains to verify that, if α > −1/2, then ϱn is the unique extremal
polynomial in inequality (1.1). If the uniform norm of a polynomial fn extremal
in inequality (1.1) is attained at one of the end-points ±1 of the segment, then
the polynomial fn(±x) is extremal in inequality (1.4). By Theorem 2, such
polynomial, up to a constant factor, coincides with ϱn.

Let us ensure that the uniform norm of none of polynomials extremal
in inequality (1.1) can be attained on the interval (−1, 1). On the contrary,
suppose that the uniform norm of a polynomial fn ∈ Pn extremal in inequality
(1.1) is attained at a point t ∈ (−1, 1). For the polynomial fn, both inequalities
and, in particular, the second inequality in (4.1) must turn into equalities. This
means that the norm of the operator Θt is attained at the polynomial fn. By
Theorem 3, the polynomial fn is an identical constant for 1 < q < ∞ and
maintains sign on (−1, 1) for q = 1. Now, it is important that the polynomial
fn maintains sign on (−1, 1) in both cases. By formula (3.13), the polynomial
gn = Θtfn also maintains sign on (−1, 1).

The first inequality in (4.1) must turn into an equality at the polynomial fn.
Consequently, the polynomial gn = Θtfn is extremal in inequality (1.4). By
the uniqueness property of an extremal polynomial, gn differs from ϱn only by
a constant factor. The polynomial ϱn has n sign changes on (−1, 1). Therefore,
gn cannot maintain sign on (−1, 1). This contradiction shows that, in the case
α > −1/2, the uniform norm of a polynomial extremal in inequality (1.1)
cannot be attained on the interval (−1, 1). Theorem 1 is proved. ⊓⊔
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30. Pólya, G., Szegö, G.: Problems and Theorems in Analysis. Springer-Verlag, Berlin,
(1972); Nauka, Moscow, (1978), Vol. 2.

31. Rahman, Q.I., Schmeisser G.: Analytic Theory of Polynomials. Oxford Univ. Press,
Oxford (2002).

32. Saff, E.B., Sheil-Small, T.: Coefficient and integral mean estimates for algebraic and
trigonometric polynomials with restricted zeros, J. London Math. Soc. 9, 16–22 (1974).

33. Simonov, I.E.: Sharp Markov brothers type inequality in the spaces Lp and L1 on a
closed interval, Proc. Steklov Inst. Math. 277 (Suppl. 1), S161–S170 (2012).

34. Simonov, I.E.: A sharp Markov brothers-type inequality in the spaces L∞ and L1 on
the segment, Math. Notes 93 (3–4), 607–615 (2013).

35. Simonov, I.E., Glazyrina, P.Yu.: Sharp Markov–Nikolskii inequality with respect to the
uniform norm and the integral norm with Chebyshev weight, J. Approx. Theory 192,
69–81 (2015), http://dx.doi.org/10.1016/j.jat.2014.10.009

36. Suetin, P.K.: Classical Orthogonal Polynomials. Fizmatlit, Moscow (1979) [in Russian].
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