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Abstract—On the set Fn of trigonometric polynomials of degree n ≥ 1 with complex coeffi-
cients, we consider the Szegö operator Dα

θ defined by the relation Dα
θ fn(t) = cos θDαfn(t) −

sin θDαf̃n(t) for α, θ ∈ R, where α ≥ 0. Here, Dαfn and Dαf̃n are the Weyl fractional

derivatives of (real) order α of the polynomial fn and of its conjugate f̃n. In particular, we prove

that, if α ≥ n ln 2n, then, for any θ ∈ R, the sharp inequality ∥ cos θDαfn − sin θDαf̃n∥Lp ≤
nα∥fn∥Lp holds on the set Fn in the spaces Lp for all p ≥ 0. For classical derivatives (of integer

order α ≥ 1), this inequality was obtained by Szegö in the uniform norm (p = ∞) in 1928 and
by Zygmund for 1 ≤ p < ∞ in 1931–1935. For fractional derivatives of (real) order α ≥ 1 and
1 ≤ p ≤ ∞, the inequality was proved by Kozko in 1998.
Keywords: trigonometric polynomial, Weyl fractional derivative, Bernstein inequality, Szegö
inequality.
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1. HISTORY. AUXILIARY STATEMENTS

1.1. Notation. Let Fn = Fn(P) be the set of trigonometric polynomials

fn(t) =
a0
2

+
n∑

k=1

(ak cos kt+ bk sin kt) (1.1)

of degree n ≥ 1 with coefficients from the field of real numbers P = R or from the field of complex

numbers P = C. The polynomial f̃n(t) =
∑n

k=1(ak sin kt− bk cos kt) is called the conjugate of the

polynomial fn.

On the set Fn(C), consider the functional ∥f∥p = ∥f∥Lp defined for 0 ≤ p ≤ +∞ by the

relations

∥f∥p =

(
1

2π

2π∫
0

|f(t)|pdt

)1/p

, 0 < p <∞,

∥f∥∞ = lim
p→+∞

∥f∥p = max{|f(t)| : t ∈ R} = ∥f∥C2π ,
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S2 ARESTOV, GLAZYRINA

∥f∥0 = lim
p→+0

∥f∥p = exp

(
1

2π

2π∫
0

ln |f(t)|dt

)
.

1.2. The Bernstein and Szegö inequalities for classical derivatives in the uniform

norm. In the set Fn(C), the following known Bernstein inequality holds:

∥f ′n∥C2π ≤ n∥fn∥C2π , fn ∈ Fn(C); (1.2)

all its extremal polynomials have the form

a cosnt+ b sinnt, a, b ∈ C. (1.3)

Bernstein obtained inequality (1.2) for polynomials with real coefficients [1, Sect. 10]. Note that, in

the original variant [2, Sect. 12] of paper [1], he proved this inequality with the constant n for odd

and even trigonometric polynomials and, as a consequence, with the constant 2n in the class of all

polynomials (1.1) from Fn(R). Bernstein writes in his comments [3, Sect. 3.4] to paper [1] that, soon

after the appearance of [2], E. Landau communicated to him that inequality (1.2) for polynomials

in general form (1.1) (with real coefficients) is an elementary consequence of the inequality for odd

polynomials; the proof was first published in [4, Sect. 10].

In 1914, Riesz [5, Sect. 2; 6, Sect. 2] obtained inequality (1.2) with the best constant n (both

on the set Fn(R) and on the set Fn(C)) with the help of the known interpolation formula for the

derivative of a trigonometric polynomial; in 1928, Szegö obtained [7] a more general result, which

will be given in Theorem B below.

As a consequence of (1.2), the following sharp inequality holds for any natural n and r:

∥f (r)n ∥C2π ≤ nr∥fn∥C2π , fn ∈ Fn(C). (1.4)

Later, inequalities (1.2) and (1.4) were generalized in different directions. In 1928, Szegö proved

the following assertion [7, formulas (1) and (1′)] (see also [8, Vol. 2, Ch. 10, Sect. 3]).

Theorem A. For any n ≥ 1 and any real θ, the inequality∥∥∥f ′n cos θ − f̃ ′n sin θ
∥∥∥
∞

≤ n∥fn∥∞, fn ∈ Fn(R), (1.5)

and, as a consequence, the inequality∥∥∥√(f ′n)2 + (f̃ ′n)2 ∥∥∥∞ ≤ n∥fn∥∞, fn ∈ Fn(R), (1.6)

hold on the set Fn(R). Inequalities (1.5) and (1.6) are sharp and turn into equalities only for

polynomials (1.3) with coefficients a, b ∈ R.
Szegö obtained inequality (1.5) with the help of an interpolation formula that generalizes the

Riesz formula [5, 6]. More exactly, Szegö proved the following assertion [7, formula (10)] (see also

the proof in [8, Vol. 2, Ch. 10, Sect. 3]).

Theorem B. For n ≥ 1 and any real θ, the following formula holds on the set of trigonometric

polynomials Fn(C):

f ′n(t) cos θ − f̃ ′n(t) sin θ =

2n∑
k=1

µkfn(t+ tk), t ∈ (−∞,∞), (1.7)
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BERNSTEIN–SZEGÖ INEQUALITY S3

where

tk = tk(θ) =
2k − 1

2n
π +

θ

n
, µk = µk(θ) =

(−1)k+1 + sin θ

4n sin2(tk/2)
.

Szegö proved [7] formula (1.7) on the set Fn(R) of real polynomials. Due to linearity, (1.7) also

holds for polynomials fn ∈ Fn(C) with complex coefficients. The coefficients of (1.7) satisfy [7,

formula (11)] the equality
∑2n

k=1 |µk| = n; therefore, (1.7) implies inequality (1.5) both on the

set Fn(R) and on Fn(C).
1.3. The Bernstein and Szegö inequalities for fractional derivatives in the uniform

norm. The Weyl derivative (or the fractional derivative) of real order α ≥ 0 of a polynomial fn
written in form (1.1) is the polynomial

Dαfn(t) =

n∑
k=1

kα
(
ak cos

(
kt+

απ

2

)
+ bk sin

(
kt+

απ

2

))
. (1.8)

If α is a positive integer, then the fractional derivative coincides with the classical derivative:

Dαfn = f
(α)
n . Denote by Bα

n the best constant in the Bernstein inequality

∥Dαfn∥∞ ≤ Bα
n∥fn∥∞, fn ∈ Fn(R), (1.9)

for fractional derivatives on the set Fn(R). Lizorkin [9, Theorem 2] proved that, if α ≥ 1, then

Bα
n = nα; i.e., an analog of inequality (1.4) holds for fractional derivatives of order α ≥ 1. Bang [10],

Geisberg [11] (see [12, Theorem 19.10 and comments to Sect. 19, Subsect. 8]), and Wilmes [13,

Remark 4] studied inequality (1.9) for 0 < α < 1. The best current estimates [13] are

nα ≤ Bα
n ≤ 21−αnα, 0 < α < 1.

Kozko [14, Corollary 1] extended Theorem A to fractional derivatives (1.8); more exactly, he

proved the following assertion for fractional derivatives.

Theorem C. For any n ≥ 1, arbitrary real α ≥ 1, and any real θ, the inequality

max
t∈[0,2π]

∣∣∣Dαfn(t) cos θ −Dαf̃n(t) sin θ
∣∣∣ ≤ nα∥fn∥∞, fn ∈ Fn(R), (1.10)

and, as a consequence, the inequality∥∥∥∥√(Dαfn)
2 +

(
Dαf̃n

)2 ∥∥∥∥
∞

≤ nα∥fn∥∞, fn ∈ Fn(R), (1.11)

hold on the set Fn(R).
Let Cα

n (θ) and C
α
n be the best (i.e., the smallest possible) constants in the inequalities

max
t∈[0,2π]

∣∣∣Dαfn(t) cos θ −Dαf̃n(t) sin θ
∣∣∣ ≤ Cα

n (θ)∥fn∥∞, fn ∈ Fn(R), (1.12)

∥∥∥∥√(Dαfn)
2 +

(
Dαf̃n

)2 ∥∥∥∥
∞

≤ Cα
n∥fn∥∞, fn ∈ Fn(R). (1.13)

Inequality (1.9) is a special case of (1.12); more exactly, Bα
n = Cα

n (0).

The statements of Theorem C mean that, if α ≥ 1, then Cα
n = Cα

n (θ) = nα for any θ ∈ R.
It is natural to ask the question about conditions on the parameters under which the values Cα

n (θ)
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S4 ARESTOV, GLAZYRINA

and Cα
n are equal to nα. The polynomial fn(t) = cosnt shows that Cα

n ≥ Cα
n (θ) ≥ nα for any values

of the parameters. Consequently, the fact that inequality (1.10) or (1.11) does not hold means that

the constant in corresponding inequality (1.12) or (1.13) is greater than nα. The following assertion

was proved by Kozko [14, Theorem 3] for even n; in the general case, this asssertion was proved

in [15, Lemma 3] by a different argument.

Theorem D. For n ≥ 2, 0 < α < 1, and θ = −απ/2, the best constant in inequality (1.12)

satisfies the strict inequality Cα
n (θ) > nα.

Theorem D implies that, for any n ≥ 2 and 0 < α < 1, inequality (1.11) does not hold; more

exactly, the best constant Cα
n in (1.13) has the property Cα

n > nα. The exact values of Cα
n (θ) for

0 ≤ α < 1 are known only in particular cases (see references in [15,16]).

To prove the results of Theorem C, Kozko [14, Lemma] constructed for the operator

Dα
θ fn(t) = Dαfn(t) cos θ −Dαf̃n(t) sin θ (1.14)

a quadrature formula generalizing the quadrature formulas by Riesz [5, 6] and Szegö [7]. This

formula has the form

Dα
θ fn(t) =

2n−1∑
k=0

µk(α, θ)(−1)kfn(tk + t), tk =
πk

n
+
απ

2n
+
θ

n
; (1.15)

here,

µk(α, θ) =

(
(−1)k+1

n−1∑
ℓ=1

((ℓ+ 1)α − 2ℓα + (ℓ− 1)α) cos
(
ℓtk −

απ

2
− θ
)

+ nα − (n− 1)α + (−1)k+1 cos
(απ

2
+ θ
))(

4n sin2
tk
2

)−1

in the case 2k + α+ 2θ/π ̸= 0 (mod 4n) and

µk(α, θ) =
1

n

( n−1∑
ℓ=1

ℓα +
nα

2

)
in the case 2k + α + 2θ/π = 0 (mod 4n). For α ≥ 1, the coefficients µk(α, θ) of formula (1.15) are

nonnegative and
∑2n−1

k=0 µk(α, θ) = nα.

Formula (1.14) is valid for polynomials fn ∈ Fn(C) with complex coefficients. Therefore, for

any n ≥ 1, arbitrary real α ≥ 1, and any real θ, inequality (1.10) actually holds on the set of

polynomials Fn(C); in this case, it turns into an equality only for polynomials (1.3).

1.4. The Bernstein and Szegö inequalities for fractional derivatives in the classical

integral norms. Kozko’s paper [14, Theorem 1] contains the following assertion.

Theorem E. Suppose that a function φ is nondecreasing and convex (downwards) on the

semiaxis [0,∞). Then, for any n ≥ 1, arbitrary real α ≥ 1, and any real θ, the following inequality

holds on the set Fn(C):

2π∫
0

φ
(∣∣∣Dαfn(t) cos θ −Dαf̃n(t) sin θ

∣∣∣) dt ≤ 2π∫
0

φ(nα|fn(t)|) dt, fn ∈ Fn(C).
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BERNSTEIN–SZEGÖ INEQUALITY S5

This inequality is sharp and turns into an equality for polynomials (1.3). If the function φ is

(strictly) increasing on [0,∞), then only such polynomials are extremal.

The function φ(u) = up for 1 ≤ p < ∞ satisfies the conditions of Theorem E; therefore, the

following assertion holds as a special case of the theorem.

Corollary 1. For all n ≥ 1, α ≥ 1, θ ∈ R, and p ∈ [1,∞), the inequality∥∥∥Dαfn cos θ −Dαf̃n sin θ
∥∥∥
p
≤ nα ∥fn∥p , fn ∈ Fn(C),

and, in particular, the inequalities

∥Dαfn∥p ≤ nα ∥fn∥p , fn ∈ Fn(C),∥∥∥Dαf̃n

∥∥∥
p
≤ nα ∥fn∥p , fn ∈ Fn(C), (1.16)

hold. All three inequalities are sharp and turn into equalities only for polynomials (1.3).

The statements of Theorem E and Corollary 1 for classical derivatives of integer order α ≥ 1

were established earlier by Zygmund [8, Vol. 2, Ch. 10].

1.5. The Bernstein and Szegö inequalities for classical derivatives in the spaces Lp,

0 ≤ p < 1. Let Φ+ = Φ+(0,∞) be the class of functions φ defined on (0,∞) and representable

in the form φ(u) = ψ(lnu), where the function ψ(v) = φ(ev) is continuous, nondecreasing, and

convex on (−∞,∞). The class Φ+ includes, for example, all nondecreasing convex functions, and

the functions up for p > 0, lnu, ln+ u = max{0, lnu}, and ln(1+up) for p > 0. Taking into account

the properties of convex functions, we can assert that a function φ defined on (0,∞) belongs to

the class Φ+ if and only if the function uφ′(u) is nondecreasing on (0,∞). The class of functions

Φ+ = Φ+(0,∞) was introduced in [17, 18], where the Bernstein inequality and its generalizations

in the spaces Lp for p ∈ [0, 1) (and more general spaces) were studied. In [19], it was shown that

the use of this class is natural in this research area.

In [15, Lemma 1], another description of the class Φ+ is given. More exactly, a function φ

defined on the semiaxis (0,∞) belongs to the class Φ+ if and only if it has a finite or equal to

−∞ right-hand limit c = lim
r→+0

φ(r) at the point 0 and, under the extension φ(0) = c, the function

ϕ(z) = φ(|z|) is subharmonic in the complex plane C. The following assertion [18, Corollary 6] was

proved without using any quadrature formulas.

Theorem F. For functions φ ∈ Φ+ and any integer n ≥ 1 and r ≥ 1, the following sharp

inequality holds:
2π∫
0

φ(|f (r)n (t)|)dt ≤
2π∫
0

φ(nr|fn(t)|)dt, fn ∈ Fn(C). (1.17)

Inequality (1.17) turns into an equality for polynomials fn(t) = ae−int+ beint, where a, b ∈ C. If the
function uφ′(u) is strictly increasing on (0,+∞), then there are no other extremal polynomials.

Corollary 2. For 0 ≤ p ≤ ∞ and integer n, r ≥ 1, the inequality

∥f (r)n ∥p ≤ nr∥fn∥p, fn ∈ Fn(C), (1.18)

holds. This inequality is sharp and turns into an equality only for polynomials (1.3).
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The functions φ(u) = lnu and φ(u) = up for 0 ≤ p < ∞ satisfy the conditions of Theorem F.

Therefore, the statement of Corollary 2 for 0 ≤ p <∞ is contained in Theorem F. Inequality (1.18)

for p = ∞ is Bernstein inequality (1.4). Inequality (1.18) for 1 ≤ p <∞ was proved by Zygmund [8,

Vol. 2, Ch. 10]. Thus, there are at least two proofs of (1.18) for 1 ≤ p <∞.

By (1.16), along with inequality (1.18), the (sharp) inequality

∥f̃ (r)n ∥Lp ≤ nr∥fn∥Lp , fn ∈ Fn(C), (1.19)

holds for any positive integer n and r and for 1 ≤ p ≤ ∞. As shown in [20, Theorems 3 and

5], generally speaking, inequality (1.19), in contrast to (1.18), cannot be extended to the case

0 ≤ p < 1. More exactly, if r ≥ n ln 2n, then inequality (1.19) holds for all p ≥ 0. For a fixed r, the

best constant in the analog of inequality (1.19) in the space L0 behaves as 4εn as n → ∞, where

εn = n + o(n). It is seen that the growth of this constant with respect to n is essentially greater

than that of the constant nr in (1.19) for 1 ≤ p ≤ ∞.

1.6. The Bernstein–Szegö inequality for fractional derivatives in the spaces Lp,

0 ≤ p < 1. For θ ∈ R and α ≥ 0, consider the Szegö operator on Fn(C):

Dα
θ fn(t) = cos θDαfn(t)− sin θDαf̃n(t)

=
n∑

k=1

kα
(
ak cos

(
kt+

απ

2
+ θ
)
+ bk sin

(
kt+

απ

2
+ θ
))
. (1.20)

In the present paper, we are primarily interested in the inequality

∥Dα
θ fn∥p ≤ Cα

n (θ)p ∥fn∥p, fn ∈ Fn(C),

with the smallest possible constant Cα
n (θ)p for 0 ≤ p ≤ ∞. As said above, Kozko [14] proved that,

in the case α ≥ 1,

Cα
n (θ)p = nα (1.21)

for all n ≥ 1 and 1 ≤ p ≤ ∞.

Let us list known order results for the growth of the value Cα
n (θ)p as n→ ∞ in the case of the

other parameters fixed. Belinsky and Liflyand [21] and Runovski and Schmeisser [22, Theorems 5.3

and 5.4] proved that Cα
n (θ)p ≍ nα for θ ∈ R, p > 0, and α > (1/p − 1)+ = max{0, 1/p − 1}.

Belinsky and Liflyand [21] also established that Cα
n (0)p ≍ n1/p−1 for 0 < p < 1, 0 < α < 1/p − 1,

and α ̸∈ N and Cα
n (0)p ≍ n1/p−1 log1/p n for 0 < p < 1 and α = 1/p − 1 ̸∈ N. For α = 0,

Kozko [14, Theorem 5] proved that C0
n(0)p ≍ n(1/p−1)+ for all p > 0 and Leont’eva [23, Theorem 1]

proved that C0
n(0)0 ≍ 4nn−1/2. In Zygmund’s monograph [8, Vol. 1, Ch. 2, Sect. 12], it was shown

that C0
n(π/2)∞ ≍ logn; Taikov [24] found the exact value of C0

n(π/2)∞.

Let us define α(n) for n ≥ 1 by the relations

α(1) = 0; α(n) =
ln 2n

ln(n/(n− 1))
, n ≥ 2.

In what follows, the condition

α ≥ α(n) (1.22)

plays an important role. We have 1/n < ln(n/(n − 1)) < 1/(n − 1). Therefore, condition (1.22)

will hold if the constraint α ≥ n ln(2n) holds, which is clearer (and rather close).
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The following assertion is the main result of the present paper.

Theorem 1. If the order α of a fractional derivative satisfies condition (1.22), then the sharp

inequality

2π∫
0

φ
(∣∣∣Dαfn(t) cos θ −Dαf̃n(t) sin θ

∣∣∣) dt ≤ 2π∫
0

φ (nα |fn(t)|) dt, fn ∈ Fn(C), (1.23)

holds for any function φ ∈ Φ+ and any real θ. This inequality turns into an equality for polynomials

a cosnt+b sinnt, where a, b ∈ C; if the function uφ′(u) is strictly increasing on (0,+∞), then there

are no other extremal polynomials.

As a special case of Theorem 1, the following assertion is valid.

Theorem 2. If the order α of a fractional derivative satisfies condition (1.22), then the sharp

inequality ∥∥∥Dαfn cos θ −Dαf̃n sin θ
∥∥∥
p
≤ nα∥fn∥p, fn ∈ Fn(C), (1.24)

holds for 0 ≤ p < ∞ and arbitrary real θ. Inequality (1.24) turns into an equality for polynomials

a cosnt+ b sinnt, where a, b ∈ C; there are no other extremal polynomials for 0 < p <∞.

According to Theorem 2, for n ≥ 1, values of the parameter α satisfying condition (1.22), and

any real θ, equality (1.21) also holds in the case 0 ≤ p < 1.

Inequality (1.24) for θ = 0, i.e., the inequality

∥Dαfn∥p ≤ nα∥fn∥p, fn ∈ Fn(C), (1.25)

is of interest. In accordance with (1.4), this inequality holds for classical derivatives for any positive

integer α, i.e., for α ≥ 1. One might expect that it holds for all real α ≥ 1. However, this fact is not

valid. According to Theorem 2, inequality (1.25) certainly holds under condition (1.22). Computer

calculations allow us to conjecture that inequalities (1.24) and (1.25) hold for real α if and only if

the constraint α ≥ 2(n− 1) holds, which is weaker than (1.22). This conjecture is proved for n = 2

in the last section of the present paper.

2. REDUCTION TO PROBLEMS FOR ALGEBRAIC POLYNOMIALS

ON THE UNIT CIRCLE OF THE COMPLEX PLANE

The formula

fn(t) = e−intP2n(e
it) (2.1)

establishes a one-to-one correspondence between the set Fn(C) of trigonometric polynomials of

degree n and the set P2n of algebraic polynomials of degree 2n (see, for example, [8, Vol. 2,

Ch. 10]). Using this fact, we can rewrite inequality (1.23) for trigonometric polynomials in the

form of the corresponding inequality for algebraic polynomials (on the unit circle of the complex

plane). These inequalities are the subject of our study in this section.

2.1. The operation of Szegö composition on the set of algebraic polynomials.

Let Pn = Pn(C) be the set of algebraic polynomials of degree (at most) n ≥ 1 with complex
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coefficients. On the set Pn, consider the functional ∥Pn∥p = ∥Pn∥Hp defined by the following

relations depending on the value of the parameter p:

∥Pn∥p =

(
1

2π

2π∫
0

∣∣Pn

(
eit
)∣∣p dt)1/p

, 0 < p <∞,

∥Pn∥∞ = lim
p→+∞

∥Pn∥p = max
{∣∣Pn

(
eit
)∣∣ : t ∈ R

}
,

∥Pn∥0 = lim
p→+0

∥Pn∥p = exp

(
1

2π

2π∫
0

ln
∣∣Pn

(
eit
)∣∣ dt).

For polynomials

Λn(z) =

n∑
k=0

λk

(
n

k

)
zk, Pn(z) =

n∑
k=0

ak

(
n

k

)
zk, (2.2)

the polynomial

(ΛnPn)(z) =

n∑
k=0

λkak

(
n

k

)
zk (2.3)

is called the Szegö composition of Λn and Pn. Properties of the Szegö composition can be

found in [26, Sect. 5; 27, Ch. 4], see also [28, 29] and references therein. For fixed Λn, Szegö

composition (2.3) is a linear operator in Pn. The following assertion [25, Theorem 1] is valid for

the Szegö composition of polynomials.

Theorem G. The inequality

2π∫
0

φ(|(ΛnPn)(e
it)|)dt ≤

2π∫
0

φ(∥Λn∥0 |Pn(e
it)|)dt (2.4)

is valid for functions φ ∈ Φ+ and any two polynomials from the set Pn for any n ≥ 1.

Inequality (2.4) for the function φ(u) = lnu takes the form

∥ΛnPn∥0 ≤ ∥Λn∥0 ∥Pn∥0.

This inequality in a slightly different form was proved earlier in [29, Theorem 7]. For any Λn, this

inequality turns into an equality for polynomials Pn(z) = c(1 + z)n, where c ∈ C.
Let Ω+

n , Ω
−
n , and Ω1

n = Ω+
n

∩
Ω−
n be the sets of polynomials Λn ∈ Pn all of whose n zeros

lie in the unit disk |z| ≤ 1, in the domain |z| ≥ 1, and on the unit circle, respectively. We set

Ωn = Ω+
n

∪
Ω−
n . By the known Poisson–Jensen formula (see, for example, [26, Sect. 3, Problem 175;

31, Ch. 6, Sect. 4]), we have

∥Λn∥0 = |λn|, Λn ∈ Ω+
n ; ∥Λn∥0 = |λ0|, Λn ∈ Ω−

n ;

∥Λn∥0 = |λn| = |λ0|, Λn ∈ Ω1
n. (2.5)

Denote by the same symbols Ω+
n , Ω−

n , Ω1
n, and Ωn the sets of operators (2.3) generated by

polynomials Λn from the corresponding classes.
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The following assertion is a refinement of Theorem G, though it was obtained earlier (see [18,

Theorem 4]).

Theorem H. For any n ≥ 1, operator Λn ∈ Ω1
n and function φ ∈ Φ+, the following inequality

holds on the set Pn:

2π∫
0

φ(|(ΛnPn)(e
it)|)dt ≤

2π∫
0

φ(cn |Pn(e
it)|)dt, Pn ∈ Pn, (2.6)

cn = ∥Λn∥0 = |λn| = |λ0|.

Inequality (2.6) is sharp and turns into an equality for polynomials

Pn(z) = azn + b, a, b ∈ C. (2.7)

Under certain conditions on the polynomial Λn and the function φ, there are no other extremal

polynomials in (2.6) except for (2.7). For fixed A ∈ C and ϕ ∈ R, the polynomial

In(z) = A(ze−iϕ + 1)n = Ae−inϕ(z + eiϕ)n = A

n∑
k=0

zk
(
n

k

)
e−ikϕ (2.8)

generates by formula (2.3) the operator

InPn(z) = A
n∑

k=0

ck

(
n

k

)
e−ikϕzk = APn(e

−iϕz), Pn ∈ Pn,

for which, obviously, any polynomial is extremal in inequality (2.6). For n ≥ 2, we associate with

the polynomial Λn defined in (2.2) the polynomial

Λ n−2(z) =

n−2∑
k=0

λk+1

(
n− 2

k

)
zk (2.9)

of degree n− 2. The property

Λ n−2 ∈ Ωn−2 (2.10)

plays an important role in studying the set of polynomials extremal in inequality (2.6). The

following assertion is contained in [18, Theorem 2].

Theorem I. If a function φ ∈ Φ+ and a polynomial Λn ∈ Ω1
n for n ≥ 2 are such that the

function uφ′(u) is strictly increasing on (0,+∞), the polynomial Λn does not have form (2.8), and

condition (2.10) holds, then only polynomials (2.7) are extremal in (2.6).

2.2. Representation of operator (1.20) in the form of Szegö composition. Let us check

that operator (1.20) can be written in the form of the Szegö composition of algebraic polynomials (of

degree 2n). Along with formula (1.1), a polynomial fn ∈ Fn(C) can be written in the exponential

form

fn(t) =

n∑
k=−n

cke
ikt =

n∑
k=1

c−ke
−ikt + c0 +

n∑
k=1

cke
ikt. (2.11)
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The coefficients of representations (1.1) and (2.11) are related as follows:

c−k =
ak + ibk

2
, ck =

ak − ibk
2

, 1 ≤ k ≤ n; c0 =
a0
2
.

Note that formula (2.11) can be written in the form

fn(t) = e−intP2n(e
it), P2n(z) =

2n∑
k=0

ck−nz
k; (2.12)

this is exactly formula (2.1).

Let us find an expression for the operator of fractional differentiation and the Szegö operator on

trigonometric polynomials fn ∈ Fn(C) written in exponential form (2.11). For k ≥ 1, in accordance

with the definition of a conjugate polynomial, for the functions

e+k (t) = eikt, e−k (t) = e−ikt,

we have

ẽ+k (t) = −ieikt = e−iπ/2eikt, ẽ−k (t) = ie−ikt = eiπ/2e−ikt.

Based on formula (1.8), we find

(Dαe+k )(t) = kαei
απ
2 eikt, Dαe−k (t) = kαe−iαπ

2 e−ikt.

Consequently,

f̃n(t) =
n∑

k=1

c−ke
iπ/2e−ikt +

n∑
k=1

cke
−iπ/2eikt,

Dαfn(t) =

n∑
k=1

kαe−iαπ
2 c−ke

−ikt +

n∑
k=1

kαei
απ
2 cke

ikt.

Hence, it is also easy to obtain an expression for Szegö operator (1.20):

Dα
θ fn(t) =

n∑
k=1

kαe−i(θ+απ
2 )c−ke

−ikt +

n∑
k=1

kαei(θ+
απ
2 )cke

ikt. (2.13)

Polynomial (2.13) has the form Dα
θ fn(t) = e−intG2n(e

it), where

G2n(z) =

n∑
k=1

c−kk
αe−i(πα/2+θ)zn−k +

n∑
k=1

ckk
αei(πα/2+θ)zn+k.

The polynomial G2n is the Szegö composition (see definition (2.3)) of the polynomial

Λα
2n(z) = Λα,θ

2n (z) =

n∑
k=1

kα
(

2n

n− k

)
e−i(πα/2+θ)zn−k +

n∑
k=1

kα
(

2n

n+ k

)
ei(πα/2+θ)zn+k (2.14)

and the polynomial P2n from (2.12). Then, polynomial (2.12) satisfies the formula

Dα
θ fn(t) = e−int (Λα

2nP2n) (e
it); (2.15)

thus, operator (1.20) is represented in the form of Szegö composition of algebraic polynomials.
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Theorem 3. For any n ≥ 1 and any real α and θ, functions φ ∈ Φ+ satisfy the inequality

2π∫
0

φ
(∣∣∣Dαfn(t) cos θ −Dαf̃n(t) sin θ

∣∣∣) dt ≤ 2π∫
0

φ (∥Λα
2n∥0 |fn(t)|) dt, fn ∈ Fn(C). (2.16)

Proof. The inequality

2π∫
0

φ(|(Λα
2nP2n)(e

it)|)dt ≤
2π∫
0

φ
(
∥Λα

2n∥0 |P2n(e
it)|
)
dt, P2n ∈ P2n, (2.17)

is valid as a special case Theorem G. By relations (2.15) and (2.1), inequality (2.17) on the set

P2n of algebraic polynomials of degree 2n coincides with inequality (2.16) on the set Fn(C) of

trigonometric polynomials of degree n. �
2.3. Studying zeros of polynomial (2.14). Let us formulate sufficient conditions under

which all 2n zeros of polynomial (2.14) lie on the unit circle {z ∈ C : |z| = 1} or, equivalently, all

2n zeros of the polynomial

e−intΛα
2n(e

it) =

n∑
k=1

(
2n

n+ k

)
kαe−i(πα/2+θ)e−ikt +

n∑
k=1

(
2n

n+ k

)
kαei(πα/2+θ)eikt

= 2
n∑

k=1

(
2n

n+ k

)
kα cos(kt+ πα/2 + θ) (2.18)

are real.

Lemma 1. For n ≥ 1,

α ≥ α(n), (2.19)

and, for any real θ, all 2n zeros of polynomial (2.14) lie on the unit circle.

To prove Lemma 1, we apply the following assertion by Pólya [30].

Theorem J. If λ, µ ∈ R, λ2 + µ2 > 0, and

0 < a0 < a1 < a2 < . . . < an,

then the trigonometric polynomials

λ
(
a0 + a1 cos t+ · · ·+ an cosnt

)
− µ

(
a1 sin t+ · · ·+ an sinnt

)
, (2.20)

µ
(
a0 + a1 cos t+ · · ·+ an cosnt

)
+ λ

(
a1 sin t+ · · ·+ an sinnt

)
have only real zeros, which interlace.

Proof of Lemma 1. In the case n = 1, the statement of the lemma is obvious.

Let n ≥ 2. The statement of Lemma 1 is equivalent to the fact that all 2n zeros of trigonometric

polynomial (2.18) are real. We have

cos
(
kt+

πα

2
+ θ
)
= cos

(πα
2

+ θ
)
cos kt− sin

(πα
2

+ θ
)
sin kt.
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Consequently, polynomial (2.18) has form (2.20) with the coefficients

a0 = 0, ak =

(
2n

n+ k

)
kα (2.21)

and the values of the parameters

λ = cos
(πα

2
+ θ
)
, µ = sin

(πα
2

+ θ
)
.

Let us check that, under condition (2.19), coefficients (2.21) increase. Obviously, for α ≥ 0 and

n > 1, the relation

ak+1

ak
=

(
k + 1

k

)α (n+ k)!(n− k)!

(n+ k + 1)!(n− k − 1)!
=

(
k + 1

k

)α (n− k)

(n+ k + 1)

decreases with respect to k ∈ [1, n− 1]. Therefore, if

an
an−1

=

(
n

n− 1

)α 1

2n
> 1 or, equivalently, α > α(n) =

ln 2n

ln(n/(n− 1))
, (2.22)

then coefficients (2.21) increase with respect to k. Thus, under condition (2.22), polynomial (2.18)

satisfies the conditions of Theorem J and, therefore, all its 2n zeros are real (and, in addition, they

all are different). For α = α(n), in view of continuity, the statement of Lemma 1 can be easily

proved by means of, for example, the Hurwitz theorem (see [31, Ch. 4, Sect. 3]). �
2.4. Proof of Theorem 1. First, let us apply the statement of Theorem 3. According

to Lemma 1, under condition (2.19), all 2n zeros of polynomial (2.14) lie on the unit circle; i.e.,

Λα
2n ∈ Ω1

2n. The leading coefficient of polynomial (2.14) is nαei(πα/2+θ). By formula (2.5), for the

constant in inequality (2.16), the formula ∥Λα
2n∥0 = nα is valid. Thus, under the conditions of

Theorem 1, inequality (2.16) coincides with inequality (1.23).

Under condition (2.19), polynomial (2.14) satisfies the conditions of Theorem H. Therefore, in-

equality (2.17) turns into an equality for polynomials cnz
2n+c−n, where cn, c−n ∈ C. Consequently,

inequality (1.23) turns into an equality for polynomials

cne
int + c−ne

−int, cn, c−n ∈ C, (2.23)

or, equivalently, for polynomials (1.3).

To prove the uniqueness property for polynomials (2.23), we apply Theorem I. For n ≥ 2, by

formula (2.9), the polynomial

Λα
2(n−1)(z) =

n−1∑
k=1

kα
(
2(n− 1)

n− k − 1

)
e−i(πα/2+θ)zn−k−1 +

n−1∑
k=1

kα
(
2(n− 1)

n+ k − 1

)
ei(πα/2+θ)zn+k−1 (2.24)

corresponds to polynomial (2.14); this is polynomial (2.14) corresponding to the degree n− 1. It is

easy to understand that the right-hand side of condition (2.19) grows with respect to n. Therefore,

if condition (2.19) holds, then zeros of polynomial (2.24) lie on the unit circle of the complex plane;

i.e., Λα
2(n−1) ∈ Ω2(n−1). If n = 1, then Λα

2(n−1) ≡ 0 and, hence, property (2.10) also holds. Therefore,

if the function uφ′(u) is increasing on (0,+∞), then, by Theorem I, for all n ≥ 1, there are no

other extremal polynomials in inequality (1.23) except for (2.23). Theorem 1 is proved. �
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3. THE BERNSTEIN–SZEGÖ INEQUALITY

FOR POLYNOMIALS OF SECOND DEGREE

3.1. Formulation of results. In this section, we study inequalities (1.23) and (1.24) on

the set of trigonometric polynomials of second degree. More exactly, we will give necessary and

sufficient conditions on the parameters α ≥ 0 and θ under which the quantity Cα
2 (θ)0 = ∥Λα

4 ∥0 is

equal to 2α. The results of this section are contained in the following two statements.

Lemma 2. Let

d(α, θ) = 4−α(4α − 4)3 − 108 sin2
(π(α− 1)

2
+ θ
)
, α ∈ [1, 2], θ ∈ [0, π).

For any θ ∈ (0, π), the equation

d(α, θ) = 0

has a unique solution α = α2(θ) ∈ (1, 2); in addition,

d(α, θ) < 0 for α ∈ [1, α2(θ)) and d(α, θ) > 0 for α ∈ (α2(θ), 2]. (3.1)

For θ = 0,

d(α, 0) < 0 for α ∈ (1, 2) and d(1, 0) = d(2, 0) = 0.

Theorem 4. If θ = 0, then

Cα
2 (0)0 = 2α for α = 1 and α ≥ 2, Cα

2 (0)0 > 2α for α ∈ [0, 1) ∪ (1, 2).

If θ ∈ (0, π), then

Cα
2 (θ)0 = 2α for α ≥ α2(θ), Cα

2 (θ)0 > 2α for α ∈ [0, α2(θ)).

3.2. Proof of Lemma 2. We divide the proof of the lemma into several steps.

(1) First, consider the case θ = 0. In this case,

d(α) = d(α, 0) =
(4α − 4)3

4α
− 108 sin2

(π(α− 1)

2

)
.

The well-known inequality sinx > 2x/π for x ∈ (0, π/2) implies the estimate

d(α) < q(α) =
(4α − 4)3

4α
− 108(α− 1)2, α ∈ (1, 2).

We have

q′(α) = 2 ln 4
(
42α − 6× 4α +

32

4α

)
− 216(α− 1),

q′′(α) = 4 ln2 4
(
4α(4α − 3)− 16

4α

)
− 216.

It is seen from the latter expression that q′′(α) is increasing with respect to α ∈ [1, 2]. Consequently,

q′(α) is (strictly) convex downwards; moreover, q′(1) = 0 and q′(2) > 0. Hence, the function q(α)

is strictly increasing at the point α = 2 and changes the character of monotonicity on the interval

[1, 2] at most once. However, since q(1) = q(2) = 0, we have d(α) < q(α) < 0 for α ∈ (1, 2). Thus,

we have proved the statement of the lemma for θ = 0.
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(2) Let θ ∈ (0, π/2). Let us introduce the notation

g(α) =
(4α − 4)3

4α
, h(α, θ) = 108 sin2

(π(α− 1)

2
+ θ
)
= h

(
α+

2θ

π
, 0
)
.

For α ∈ [1, 2−2θ/π], the function h(α, θ) is strictly increasing with respect to θ; therefore, we have

d(α, θ) < g(α)− h(α, 0) = d(α, 0) ≤ 0.

For α ∈ [2−2θ/π, 2], the function g(α) is increasing and h(α, θ) is decreasing with respect to α and

d(2, θ) = g(2)− h(2, θ) = 108− 108 sin2
(π
2
+ θ
)
> 0.

Consequently, there exists unique α = α2(θ) ∈ (1, 2) with property (3.1). In addition, α2(θ) ∈
(2− 2θ/π, 2) in this case.

(3) Let θ ∈ [π/2, π). In this case, for α ∈ [1, 3 − 2θ/π], the function g(α) is increasing and

h(α, θ) is decreasing with respect to α; in addition, g(1) = 0 and h(3 − 2θ/π, θ) = 0. Therefore,

there exists unique α = α2(θ) ∈ (1, 3− 2θ/π) such that d(α, θ) < 0, α ∈ [1, α2(θ)), d(α, θ) > 0, and

α ∈ (α2(θ), 3− 2θ/π). For α ∈ (3− 2θ/π, 2), we have α+ 2θ/π − 2 ∈ (1, 2); therefore,

d(α, θ) = g(α)− h
(
α+

2θ

π
− 2, 0

)
< g
(
α+

2θ

π
− 2
)
− h
(
α+

2θ

π
− 2, 0

)
≤ 0.

Thus, there exists unique α = α2(θ) ∈ (1, 2) with property (3.1). In addition, α2(θ) ∈ (1, 3− 2θ/π)

in this case. The lemma is proved. �
3.3. Proof of Theorem 4. Consider polynomial (2.14) for n = 2 and α > 0:

Λα
4 (z) = 2αe−i(πα/2+θ) + 4e−i(πα/2+θ)z + 4ei(πα/2+θ)z3 + 2αei(πα/2+θ)z4 = b0 + b1z + b3z

3 + b4z
4.

The polynomial Λα
4 has the property Λα

4 (z) = z4Λα
4 (1/z). Therefore, either all zeros of Λα

4 lie on

the boundary of the disk B = {z : |z| < 1} or Λα
4 has zeros both in the disk B and in the domain

|z| > 1. If all zeros of Λα
4 lie on the boundary of B, then Cα

2 (θ) = 2α; otherwise, Cα
2 (θ) > 2α.

Let us study the number of zeros of Λα
4 in the open disk B. According to Theorem (45,2)

from [27], the polynomials Λα
4 and

Q(z) = 4b4 + 3b3z + b1z
3 = 4× 2αe−(πα/2+θ) + 3× 4e−i(πα/2+θ)z + 4ei(πα/2+θ)z3

have the same number of zeros in the disk B. Therefore, in what follows, we will study the

polynomial Q. For computational convenience, we multiply Q by ei(πα/2+θ)/4 and obtain the

polynomial

Q1(z) = 2α + 3z + ei(πα+2θ)z3 = a0 + a1z + a2z
2 + a3z

3.

Consider the following three cases.

(1) If α ∈ [0, 1) or α ≥ 2, then, applying Rouché’s theorem, it is easy to see that Q1(z) has one

zero in B for α ∈ [0, 1) and has no zeros in B for α ≥ 2.

(2) If α = 1, then Q1(z) = 2+3z+ei(π+2θ)z3. By Lemma (42,1) from [27], the number of zeros

in the disk B of the polynomial Q1 is the number of zeros in B of the polynomial

Q2(z) = 3(1 + 2z + ei(π+2θ)z2).
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However, if z1 and z2 are zeros of Q, then, by the Viète formulas, z1z2 = −e−i(π+2θ) and z1 + z2 =

2e−i(π+2θ). Consequently, if θ = 0, then the polynomial Q2 has no zeros in B, and, if θ ∈ (0, π),

then Q2 has one zero in the disk B.

(3) It remains to consider the case α ∈ (1, 2). To find the number of zeros of Q1 in the disk B,

we apply Theorem (43,1) from [27]. If all the determinants

∆k = ∆k(α, θ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 0 . . . 0 an an−1 . . . an−k+1

a1 a0 0 . . . 0 0 an . . . an−k+2

. . . . . .

ak−1 ak−2 ak−3 . . . a0 0 0 . . . an
an 0 0 . . . 0 a0 a1 . . . ak−1

an−1 an 0 . . . 0 0 a0 . . . ak−2

. . . . . .

an−k+1 an−k+2 an−k+3 . . . an 0 0 . . . a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, 3,

are different from 0, then the number of zeros of the polynomial Q1 in the disk B is the number of

sign changes in the sequence 1, ∆1, ∆2, ∆3. An elementary computation leads to

∆1(α, θ) = 4α − 1, ∆2(α, θ) = (4α − 1)2 − 9,

∆3(α, θ) = 64α − 12× 16α − 6× 4α − 64− 27× 4α × 2× cos(πα+ 2θ)

= 4α
(
(4α − 4)3

4α
− 108 sin2

(π(α− 1)

2
+ θ
))

.

We have ∆1 > 0 and ∆2 > 0, while the behavior of the sign of ∆3 is completely described in

Lemma 2, which implies the statement of the theorem. �
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4. S. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une
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26. G. Pólya and G. Szegö, Problems and Theorems in Analysis (Springer, Berlin, 1972; Nauka, Moscow, 1978),
Vols. 1, 2.

27. M. Marden, Geometry of Polynomials (AMS, Providence, RI, 1966), Ser. Mathematical Surveys and Monographs,
Vol. 3.

28. N. G. de Bruijn and T. A. Springer, “On the zeros of composition-polynomials,” Nederl. Akad. Wetensch. Proc.
50, 895–903 (1947).

29. N. G. de Bruijn, “Inequalities concerning polynomials in the complex domain,” Nederl. Akad. Wetensch. Proc.
50, 1265–1272 (1947).
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