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ABSTRACT

The optical response in materials offers valuable insights into their properties, especially regarding interband
transitions, distinct from direct current responses. By adjusting the frequency of electromagnetic radiation, inter-
band transitions and energy band mappings can be explored, even in materials like graphene. Optical conductiv-
ity, which measures a material’s ability to conduct electricity under the influence of light, is pivotal across
physics, materials science, and engineering. It quantifies a material’s efficiency in absorbing and transporting
electromagnetic energy as photons. Typically described by Drude’s model, optical conductivity has applications
in diverse fields, from designing specific optical properties in materials to optimizing solar cells and developing
photonic devices. Plasmonics, meta-materials, and renewable energy research also benefit from understanding
and controlling optical conductivity. The optical conductivity problem centers on comprehending materials’
electrical interactions with light across the optical spectrum, which is vital for various technologies. Theoretical
models, simulations, and experiments address this problem, aiming to develop tunable materials and enhance
theoretical models for accurate prediction of optical properties. Mathematical models, such as Maxwell’s equa-
tions, the Lorentz-Drude model, and the Hosam-Heba model, elucidate optical conductivity, aiding in under-
standing light-material interactions and predicting material behavior under electromagnetic radiation. Each
model offers a unique perspective on optical conductivity, with different theoretical foundations and mathemati-
cal formulations that can be applied depending on the specific properties of the material being studied. Under-
standing and manipulating optical conductivity is foundational to utilizing light across various technological ap-
plications.

1. Introduction

electricity under the influence of light, typically in the visible or in-
frared spectrum. It's a key property in understanding how materials in-

The term optical conductivity/response is a physical parameter re-
lates the polarization-current density to the incident light at various fre-
quencies, is attributed to the direct interband optical transitions of elec-
trons, also known as light-induced density fluctuations. The optical con-
ductivity is frequently used to describe material optical properties such
as absorptions, transmissions, and reactions [1]. In other words, the
term optical conductivity refers to the ability of a material to conduct
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teract with light, which has implications across various fields including
physics, materials science, and engineering. In other words, the Optical
conductivity is a measure of how efficiently a material conducts electric
current in response to light of a specific frequency. It quantifies the abil-
ity of a material to absorb and transport electromagnetic energy in the
form of photons. The optical conductivity of a material is determined by
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its electron band structure, specifically the possible transitions from an
initial occupied to an empty state of electrons [2].

In general the optical response is a strong tool for extracting infor-
mation about a variety of material properties. The sensitivity to inter-
band transitions distinguishes the optical or alternating current re-
sponse from the direct current equivalent [3-6]. Tuning the frequency
of electromagnetic radiation allows one to investigate alternative inter-
band transitions, identify selection rules, and map the energy bands of
diverse materials, including those with unique spectra like graphene
and Dirac semimetals [7-10]. Mathematically, the Optical conductivity
is often described by Drudge’s model, using some of the parameters
such as the electronic charge, relaxation time, and effective mass of the
charge carriers, in addition to the angular frequency of light. Optical
conductivity has a variety of applications in different fields. For exam-
ple in material sciencethe Understanding of optical conductivity is cru-
cial for designing materials with specific optical properties. By the way,
in semiconductor devices, the optical conductivity determines the ma-
terial's ability to absorb and emit light, which is fundamental to their
operation [11].

In the field of Photonics and Optoelectronics studies, the Optical
conductivity is essential in the design of photonic devices such as lasers,
LEDs, photodetectors, and optical fibers. It governs the efficiency of
light absorption, emission, and propagation in these devices [12,13].
On the other side, in Plasmonics, the interaction of light with free elec-
trons at metallic surfaces or nanoparticles is characterized by their opti-
cal conductivity. This field is critical for applications like sensing, imag-
ing, and light manipulation at the Nano scale. At the renewable energy
researches such as Solar Cells: Understanding and controlling optical
conductivity is vital for improving the performance of solar cells, the
optical conductivity influences light absorption and charge carrier gen-
eration within the solar cell material [4-6].

Also, the Optical conductivity plays a crucial role in the develop-
ment of metamaterials with engineered optical properties, such as neg-
ative refractive index or perfect absorption, leading to applications in
cloaking, imaging, and sensing. Ongoing research focuses on develop-
ing materials with tunable optical conductivity, exploring novel materi-
als and nanostructures, and improving theoretical models to accurately
predict and manipulate optical properties [14,15]. In essence, optical
conductivity is a fundamental property that underpins numerous tech-
nologies and scientific endeavors, shaping our ability to control and
harness light for various applications. The optical conductivity problem
is the study of how materials interact with light in terms of their electric
conductivity. It focuses on how materials respond to electromagnetic
radiation across the optical spectrum, from ultraviolet to infrared wave-
lengths. This includes understanding how electrons in a material re-
spond to light's electric field, resulting in phenomena such as light ab-
sorption, reflection, and transmission. Researchers study optical con-
ductivity to better understand the underlying features of materials and
how they behave under various electromagnetic situations. This under-
standing is essential for a variety of applications, including the develop-
ment of optical devices, photonic circuits, sensors, and materials for en-
ergy collection and conversion [14-18]. The optical conductivity prob-
lem is addressed by theoretical models, computer simulations, and ex-
perimental approaches such as spectroscopy, which allow scientists to
investigate and understand this phenomenon. Given the relevance of
the topic, the purpose of this study is to provide an overview, shed light
on, and compare three different mathematical models of the optical
conductivity concept.

2. Description of the optics problem

The problem of the optical response of a solid sample can be gener-
alized as shown in Fig. 1, which exhibits a light beam impinges on a di-
electric sample of thickness t and length 1. Depending on photon energy
and layer thickness, the radiation is both transmitted and reflected. A
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Fig. 1. A light beam impinges on a dielectric sample of thickness t and length 1.
Depending on photon energy and layer thickness, the radiation is both transmit-
ted and reflected. A portion of the radiation may be internally absorbed.

portion of the radiation may be internally absorbed. Where, the struc-
ture's total light reflection and transmission are calculated by adding
the amplitudes of partially reflected and partially transmitted beams.
This feature is fundamental to a wide range of applications. Depending
on the situation, the sample may be clear or absorbent [19-22]. Fig. 1
depicts a structure that shows an optical response problem in how the
spectrum response of the sample's known parameters is calculated, in-
cluding its optical constants as a function of photon wavelength, as well
as its thickness.

Mathematically, the optical response problem is direct. The phe-
nomenon is described by a partial differential wave equation (derived
from Maxwell equations), with the assumption that the parameters and
boundary conditions are known. The direct problem consists of calcu-
lating the wave's state. Analytic solutions are possible if it is assumed
that the incident wave is pure and that the boundaries of the sample are
regular. In more complex circumstances, numerical solutions are re-
quired. However, even when analytic calculations are feasible, the
practical computation of the response might be quite expensive. This is
because pure waves do not exist in most optical experiments, therefore
the genuine answer is an average of multiple waves of varying wave-
lengths. Although the transmitted and reflected energies of pure waves
can be expressed in a closed analytic form, analytic integration is not
possible, and numerical integration is computationally expensive
[23-26]. Generally, the interaction of electromagnetic radiation with
either dielectric or semiconductor solids is addressed by adding bound-
ary conditions to Maxwell equation solutions at the interface of distinct
media. The wavelength of light is always substantially larger than the
interatomic dimensions. Thus, the interaction between light and these
types of solid matter is averaged over a large number of structural units.
As a result, the optical properties inside the solid can be defined macro-
scopically in terms of phenomenological parameters, also known as op-
tical constants or optical parameters [27-32].

3. Mathematical modelization of optical conductivity
3.1. Shankar Model

When an electromagnetic wave interacts with dielectric solid sam-
ple, with optical loss, the resulting refractive index of such sample
should be complicated and dispersive as shown in Eq. (1). In other
words, the resulting refractive index n* will consisting of a real compo-
nent (refractive index n) and an imaginary part (absorption index K).
The real and imaginary components of a complex index of refraction (n)
[33-35]. The real portion, n, is the ratio of the velocity of light in a vac-
uum to the velocity of light at a wavelength (1) in the substance. The
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imaginary portion, K, is an attenuation coefficient measuring the ab-
sorption of light over distance. Using Maxwell equations, the fre-
quency-dependent “constants” can be connected to other optical quan-
tities like the dielectric constant and conductivity.

By considering a plane-polarized wave moving along the positive z-
axis with the electric field component, E,, vibrating in the x-direction,
and disregarding any magnetic effects, the electromagnetic wave equa-
tion can be stated as shown in Eq. (2), where ¢ is the dielectric con-
stant/permittivity, and o is the alternating conductivity. The electric
field component in the x-direction, as given in Eq. (3), can be obtained
by solving Eq. (2), where E, is the maximum value of the electric field
strength and x is the angular frequency (o = 2 nf). Accordingly, Eq. (4)
can be found by solving both Egs. (3) and (2) [35,36].

n=n+iK 1)
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From Eq. (1)
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By comparing Egs. (4) and (5), we can derive Egs. (6) and (7)
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This relation gives the optical conductivity in terms of refractive in-
dex, absorption coefficient, and light velocity.

3.2. Hosam-Heba model

Acceding to Eq.1, The refractive index of a solid sample with an op-
tical loss is a complex quantity composed of real part (refractive index
n) and an imaginary part (absorption index. This concept can be ac-
cepted based on the fact that the electronic polarization, (P,): the redis-
tribution of electron density within a material in response to an external
electric field, throughout a solid sample is proportional to the electric
field component E of incident light as well as the average current i per
unit area of this sample. The interaction between the electromagnetic
rays with a dielectric sample can be described by Maxwell's equations,
Egs. (10)-(16), where p is the density of the free charge carries, i is aver-
age current density, D is the electric displacement parameter, c is the
space light speed, and ¢, are and space permittivity. The solution of
Maxwell's equations resulted in the following plane harmonic waves,
Egs. (17)-(18), their traveling phase velocity vy, is described by Eg.
(19), where n is the refractive index [36-38].

p=-VP (10)

i= o 11
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The optical dielectric relaxation ¢* can express the loss of energy pa-
rameters (see Eq. (20), which consists of a real and imaginary compo-
nents €; and &,. For unfree damper, the real component ¢; characterizes
the damping of the light propagation through the medium. While the
imaginary component is considered as a damping factor describes the
amount of energy loss/absorbed within the medium. According to Eq.
(21) the complex dielectric constant could be expressed in terms of the
complex refractive index n* which can be defined as formulated in Eq.
(22).

& =g +j& (20)

& =n*? 2n
Where

n* =n+jK (22)

Solving of Egs. 33 and 34 gives Eqgs. (35) and (36)

& = (- K?) (23)
& =2nK 24
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The Optical conductivity is known as the relationship between the
induced current density and the strength of the generated electric field
component of the light. Also, it’s well known that the optical conductiv-
ity o is proportional to both the angular frequency of the electromag-
netic wave and the dielectric relaxation loss €, of the medium Eq. (25).
Mathematically, Eq. (25) can be re-formulated in the form of Eq. (26).
Hosam and Heba used numerical methods to estimate the magnitude of
the proportional constant C (1/6.25), Accordingly, Eq. (27) took the f
form of Eq. (28) which shows that the optical conductivity depends on
the values of both the refractive and absorption indices (n and K),
which means its dependence on the amount of the energy loss within
the optical medium. By a few steps, it can be demonstrated that the last
equation is the same as result from the Shankar model, as follows; Ac-
cording to Shankar

o= 2% where a—4”—K
4 i
nedzK _ nek

L I
S - - = (e nk = (rpenk

which is the same as the result of Hosam-Heba equation.

3.3. Lorentz—Drude model

In 1905, Lorentz developed his theory describing the response of di-
electric materials. He proposed that when an electron (denoted as e)
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with a mass (m) moves in an alternating electric field (E) with fre-
quency (o), it experiences an electric force (eE) [11,38].

m(x + yx + cofx) =eE (29)

E(w) = E,e"! (30)
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The equation of motion governing this electron's displacement (x)
relative to its equilibrium position (atomic core) is given by Eq. (10).
Here, y represents the bandwidth or damping factor, and w, is the reso-
nance frequency. Lorentz postulated that the solution to this equation
of motion is described by Eq. (12), from which he derived the maximum
electronic displacement (x,) as expressed in relation (4). Substituting
Egs and 11, 13 into Eq. (14), which defines the electronic polarizability
(P): the ability of electrons in an atom, molecule, or material to deform
in reaction to an external electric field, enables the estimation of the di-
electric function of an oscillator, as shown in Eq. (15). In this equation,
¢ denotes the dielectric function, ¢, represents the space permittivity, N
signifies the electronic density in ecm™3, and f denotes the oscillator
strength.

Drude postulated that the valence electrons associated with an atom
or a group of atoms possess a loose connection to their respective
atomic cores, allowing them to exhibit relatively unrestricted (semi-
free) motion akin to plasma movements. When subjected to an external
electric field (E), these electrons are expected to undergo displacement
and collide with one another. Due to their weak bonding to the atoms,
there is no significant restoring force acting on them, hence the assump-
tion that the restoring force f = 1. Based on Egs. (29)-(34) Egs. (35)
and (36) can be obtained by substituting f = 1, where m* is the elec-
tronic reduced mass [12,39-41].

m*(% + yx) = eE (35)
Neé? 1
f=g 4 ————
7 md el-w?—iyo (36)

By putting o, = M (plasmon frequency) Eq. (36) becomes as

follows Eq. (37). Accordingly, the imaginary component of the Eq. (36)
will be in the form Eq.38;
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The last Equation, Eq. (40b), is known as the Drude model for opti-
cal conductivity and can be applied to all materials if the frequencies
are sufficiently high.

4. Discussion

The three models try to describe optical conductivity but differ in
their theoretical basis and mathematical representations. The Shankar
and Hosam-Heba models are mainly concerned with the electromag-
netic properties of dielectric materials, whereas the Lorentz-Drude
model takes into account electron behavior within these materials.
Each model provides unique insights and can be used depending on the
properties of the substance being studied. After describing the three dif-
ferent models for understanding optical conductivity in materials, a
straightforward comparison can be performed between the three mod-
els as follows:

a) Shankar Model is an approach which utilizes Maxwell's
equations to derive the optical conductivity of a dielectric solid
sample based on its optical absorption coefficient as well as its
linear refractive index. Such a model provides a mathematical
framework for understanding how materials interact with
electromagnetic waves. Shankar's optical conductivity model,
while less well-known than the Drude model, can be very useful
in systems including quantum mechanical effects and
interactions. Shankar's model frequently addresses more complex
aspects of condensed matter physics, such as strong correlations
and collective excitations. Shankar's model could be useful for a
lot of materials including High-temperature superconductors and
Low-Dimensional Systems (1D conductors, 2D electron gases,
transition metal oxides, graphene, and other 2D materials).
Hosam-Heba Model is a semi-empirical approach which is Also
employs Maxwell's equations to describe the interaction between
electromagnetic waves and dielectric samples, resulting in the
optical conductivity. Such a model presents the complex
dielectric constant in terms of the refractive index, n, and
absorption index, K, then derives the optical conductivity (¢) in
relation to these parameters. It also offers an alternative
perspective on optical conductivity, focusing on the loss of
energy parameters within the medium. Because it was published
so recently, Hosam and Heba's model for optical conductivity is
still not commonly accepted in mainstream condensed matter
physics. However, it was effectively used for amorphous solids
such as oxide glass, metal oxide, conductive polymers, and
inorganic thin films.

Lorentz-Drude Model approach that developed by Lorentz to
describe the response of dielectric materials, incorporating the
motion of electrons in an alternating electric field. This model
derives the dielectric function of an oscillator from the equation
of motion governing the displacement of electrons relative to
their equilibrium positions. Expresses the optical conductivity
using the plasmon frequency and electronic density. Such a
model provides insights into the behavior of valence electrons in
materials and their response to external electric fields. Drude's
optical conductivity model is most suited to materials in which
free electron activity dominates the electrical and optical
properties. These materials typically have a high density of free
charge carriers (electrons or holes) that can be considered
classical gases. Drude's model applies to the following sorts of
materials: Metals like Cu and Ag, doped semiconductors like Si
and Ge, inorganic oxides, and simple alloys like brass and
bronze, Conductive polymers, graphene, and other two-
dimensional materials. While the Drude model is useful, it has
limitations in the case of materials with significant
electron-electron interactions, strong correlations, or significant

b

-

C
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contributions from bound states (such as excitons), which require
models other than Drude, such as the Lorentz model or quantum
mechanical treatments. For example, complicated. The Drude
model cannot effectively explain many materials, including high-
temperature superconductors, heavy fermion systems, and
materials with substantial spin-orbit coupling or topological
characteristics.

5. Conclusion

Mathematical models like Maxwell equations, the Lorentz-Drude
model, and the Hosam-Heba model contribute to elucidating light-
material interactions and predicting material behavior under electro-
magnetic radiation. Overall, the study of optical conductivity not only
enriches our understanding of fundamental physical phenomena but
also drives technological advancements with real-world applications.
The comparison between the Shankar, Hosam-Heba, and
Lorentz-Drude models highlights their common goal of understanding
optical conductivity in materials. Each model approaches this problem
from a distinct theoretical framework, utilizing Maxwell's equations
and considerations of electron behavior in response to electromagnetic
fields. The Shankar model emphasizes the relationship between refrac-
tive index and optical conductivity, providing a straightforward mathe-
matical expression for these properties. On the other hand, the
Hosam-Heba model delves into the complex dielectric constant to char-
acterize energy loss within the medium, offering insights into absorp-
tion phenomena. Meanwhile, the Lorentz—Drude model focuses on the
behavior of valence electrons and their interaction with external elec-
tric fields, providing a deeper understanding of dielectric materials' re-
sponse to electromagnetic radiation. Overall, these models contribute
to the broader understanding of optical conductivity, offering valuable
insights into the underlying physics of light-matter interactions. They
provide essential tools for researchers in various fields, from materials
science to photonics, enabling the design and optimization of devices
with specific optical properties.
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