The Number of Distinct Subpalindromes in Random Words / Rubinchik Mikhail,Shur Arseny M. // FUNDAMENTA INFORMATICAE. - 2016. - V. 145, l. 3. - P. 371-384.

ISSN/EISSN:
0169-2968 / 1875-8681
Type:
Article
Abstract:
We prove that a random word of length n over a k-ary fixed alphabet contains, on expectation, circle minus(root n) distinct palindromic factors. We study this number of factors, E (n, k), in detail, showing that the limit lim(n ->infinity) E (n, k) / root n does not exist for any k >= 2, liminf(n ->infinity) E (n, k) / root n = circle minus(1), and limsup(n ->infinity) E (n, k) / root n = circle minus(root k). Such a complicated behaviour stems from the asymmetry between the palindromes of even and odd length. We show that a similar, but much simpler, result on the expected number of squares in random words holds. We also provide some experimental data on the number of palindromic factors in random words.
Author keywords:
нет данных
DOI:
10.3233/FI-2016-1366
Web of Science ID:
ISI:000383787000011
Соавторы в МНС:
Другие поля
Поле Значение
Publisher IOS PRESS
Address NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS
Language English
EISSN 1875-8681
Research-Areas Computer Science; Mathematics
Web-of-Science-Categories Computer Science, Software Engineering; Mathematics, Applied
Author-Email mikhail.rubinchik@gmail.com arseny.shur@urfu.ru
Number-of-Cited-References 11
Journal-ISO Fundam. Inform.
Doc-Delivery-Number DW6UN