Phase equilibria in the Y–Ba–Fe–O system / Urusova A.S., Bryuzgina A.V., Mychinko M.Y., Mordvinova N.E., Lebedev O.I., Caignaert V., Kiselev E.A., Aksenova T.V., Cherepanov V.A. // Journal of Alloys and Compounds. - 2017. - V. 694, l. . - P. 375-382.

ISSN:
09258388
Type:
Article
Abstract:
The phase equilibria in the Y – Ba – Fe – O system were systematically studied at 1373 K in air. The intermediate phases formed in the Y – Ba – Fe – O system at 1373 K in air were: Ba3YFe2O7.5+δ and BaFe1-xYxO3-δ. The combined X-ray diffraction and electron microscopy show that Ba3YFe2O7.5+δ exhibits the monoclinic structure a = 7.976(1) Å, b = 5.988(1) Å, c = 18.408(1) Å, β = 90.028 (sp. gr. P2/c), which in the first approximation can be described as the orthorhombic structure with a tiny monoclinic distortion. High-temperature XRD of BaFeO3-δ within the temperature range 298–1273 K in air demonstrates a single phase with the orthorhombic structure (sp. gr. P21212) that appears below 673 K, a single phase cubic BaFeO3-δ (sp. gr. Pm3m) that forms at temperature above 1273 K, and a mixture of two phases mentioned above that coexisted within 673–1273 K. These correlate with the results obtained by TGA and dilatometry methods. The substitution of yttrium for iron in BaFe1-xYxO3-δ leads to the formation of solid solutions with the cubic structure in air within (0.075 < x < 0.125) for slowly cooled samples. The homogeneity range has extended at 1373 K towards undoped BaFeO3-δ. The projection of isothermal-isobaric phase diagram for the Y – Ba – Fe – O system at 1373 K in air to the compositional triangle of metallic components has been constructed. © 2016 Elsevier B.V.
Author keywords:
Oxide materials; Oxygen nonstoichiometry; Phase diagram; TEM; X-ray diffraction
Index keywords:
нет данных
DOI:
10.1016/j.jallcom.2016.10.023
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991500833&doi=10.1016%2fj.jallcom.2016.10.023&partnerID=40&md5=709603abf317d856dff63c3168d3eb54
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991500833&doi=10.1016%2fj.jallcom.2016.10.023&partnerID=40&md5=709603abf317d856dff63c3168d3eb54
Affiliations Department of Chemistry, Institute of Natural Sciences, Ural Federal University, Yekaterinburg, Russian Federation; Department of Chemistry, Moscow State University, Moscow, Russian Federation; Laboratoire CRISMAT, CNRS-Ensicaen, Université de Caen Basse Normandie, Caen, France
Author Keywords Oxide materials; Oxygen nonstoichiometry; Phase diagram; TEM; X-ray diffraction
Funding Details Ministry of Education and Science
Funding Text This work was supported in parts by the Ministry of Education and Science of RF (State Task project 1039) and by Act 211 Government of the Russian Federation, agreement No 02.A03.21.0006.
References Karen, P., (2004) J. Solid State Chem., 177, pp. 281-292; Woodward, P.M., Karen, P., (2003) Inorg. Chem., 42 (4), pp. 1121-1129; Chen, D., Wang, F., Shi, H., Ran, R., Shao, Z., (2012) Electrochim. Acta, 78, pp. 466-474; Xue, J., Shen, Y., He, T., (2011) J. Power Sources, 196, pp. 3729-3735; Matsumoto, Y., Hombo, J., (1991) J. Solid State Chem., 93, pp. 395-402; Karen, P., Kjekshus, A., Huang, Q., Lynn, J.W., Rosov, N., Natali Sora, I., Karen, V.L., Santoro, A., (1998) J. Solid State Chem., 136, pp. 21-33; Karen, P., Kjekshus, A., Huang, Q., Karen, V.L., Lynn, J.W., Rosov, N., Natali Sora, I., Santoro, A., (2003) Solid State Chem., 174, pp. 87-95; Tsipis, E.V., Kharton, V.V., Frade, J.R., (2006) Solid State Ion., 177, pp. 1823-1826; Duffort, V., Caignaert, V., Pralong, V., Barrier, N., Raveau, B., Avdeev, M., Zheng, H., Mitchell, J.F., (2012) J. Solid State Chem., 191, pp. 225-231; Duffort, V., Sarkar, T., Caignaert, V., Pralong, V., Raveau, B., Avdeev, M., Cervellino, A., Tsipis, E.V., (2013) J. Solid State Chem., 205, pp. 225-235; Kudrjavtsev, D.A., Mill, B.V., Vedernikov, I.F., Shaplygin, I.S., (1992) Inorg. Mater., 28 (6), pp. 1197-1201. , (in Russian); Luo, K., Hayward, M.A., (2012) Inogr. Chem., 51, pp. 12281-12287; Luo, K., Johnson, R.D., Tran, T.T., Halasyamani, P.S., Radaelli, P.G., Hayward, M.A., (2013) Chem. Mater., 25, pp. 1800-1808; Kimizuka, N., Katsura, T., (1975) J. Solid State Chem., 13, pp. 176-181; Kimizuka, N., Yamamoto, A., Ohashi, H., Sugihara, T., Sekine, T., (1983) J. Solid State Chem., 49, pp. 65-76; Kitayama, K., Sakaguchi, M., Takahara, Y., Endo, H., Ueki, H., (2004) J. Solid State Chem., 177, pp. 1933-1938; Yuan, X., Sun, Y., Xu, M., (2012) J. Solid State Chem., 196, pp. 362-366; Jacob, K.T., Rajitha, G., (2012) Solid State Ion., 224, pp. 32-40; Downie, L.J., Goff, R.J., Kockelmann, W., Forder, S.D., Parker, J.E., Morrison, F.D., Lightfoot, P., (2012) J. Solid State Chem., 190, pp. 52-60; Piekarczyk, W., Wepper, W., Rabenau, A., (1978) Mat. Res. Bull., 13, pp. 1077-1083; Geller, S., Gilleo, M.A., (1958) Phys. Chem. Solids, 3, pp. 30-36; Garskaite, E., Gibson, K., Leleckaite, A., Glaser, J., Niznansky, D., Kareiva, A., Mejer, H.-J., (2006) Chem. Phys., 323, pp. 204-210; Lopato, L.M., Maister, I.M., Zhevchenko, A.V., Nauk SSSR, I.A., (1972) Neorg. Mater, 8, pp. 861-864. , (in Russian); Kwestroo, W., van Hal, H., Langreis, C., (1974) Mater. Res. Bull., 9, pp. 1631-1637; Kovba, L.M., Lykova, L.N., Antipov, E.V., (1983) Russ. J. Inorg. Chem., 28, pp. 724-727. , (in Russian); Kale, G.M., Jacob, K.T., (1989) Solid State Ion., 34 (4), pp. 247-252; Urusova, A.S., Cherepanov, V.A., Aksenova, T.V., Gavrilova, L.Y., Kiselev, E.A., (2013) J. Solid State Chem., 202, pp. 207-214; Rakshit, S.K., Parida, S.C., Singh, Z., Prasad, R., Venugopal, V., (2004) J. Solid State Chem., 177, pp. 1146-1156; Goto, Y., Takada, T., (1960) J. Amer. Ceram. Soc., 43, pp. 150-153; Shirk, B.T., (1970) Mater. Res. Bull., 5, pp. 771-778; Boivin, J.-C., Thomas, D., Pouillard, G., Perrot, P., (1979) J. Solid State Chem., 29, pp. 101-108; Mori, K., Kamiyama, T., Kobayashi, H., Itoh, K., Otomo, T., Ikeda, S., (2003) Phys. B, 329-333, pp. 807-808; Xian, H., Li, F., Li, X., Zhang, X.-W., Meng, M., Zhang, T.-Y., (2011) Fuel Proces. Technol., 92, pp. 1718-1724; Zhu, X., Wang, H., Yang, W., (2006) Solid State Ion., 177, pp. 2917-2921; Candeia, R.A., Souza, M.A.F., Bernardi, M.I.B., Maestrelli, S.C., Santos, I.M.G., Souza, A.G., Longo, E., (2007) Ceram. Int., 33, pp. 521-525; Meriani, S., (1972) Acta Cryst. B, 28, pp. 1241-1243; Chen, X., Tan, G., (2013) J. Magn. Magn. Mater., 327, pp. 87-90; Rane, V.A., Meena, S.S., Gokhale, S.P., (2013) J. Electron. Mater., 42, pp. 761-767; Lin, Y., Yang, H., Zhu, H., Wang, F., (2013) Mat. Lett., 93, pp. 230-232; Takeda, Y., Kanno, K., Takada, T., Yamamoto, O., Takano, M., Nakayama, N., Bando, Y., (1986) J. Solid State Chem., 63, pp. 237-249; Dong, F., Chen, Y., Chen, D., Shao, Z., (2014) ACS Appl. Mater. Interfaces, 6, pp. 11180-11189; Dong, F., Chen, D., Chen, Y., Zhao, Q., Shao, Z., (2012) J. Mater. Chem., 22, pp. 15071-15079; Lomakov, M.V., Istomin, S.Y., Abakumov, A.M., Van Tendeloo, G., Antipov, E.V., (2008) Solid State Ion., 179, pp. 1885-1889; Wang, J., Saccoccio, M., Chen, D., Gao, Y., Chen, C., Ciucci, F., (2015) J. Power Sources, 297, pp. 511-518; Jacob, K.T., Dasgupta, N., Vineeth, P.R., (2010) J. Phase Equil. Diff., 31 (6), pp. 518-522
Correspondence Address Cherepanov, V.A.; Department of Chemistry, Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: v.a.cherepanov@urfu.ru
Publisher Elsevier Ltd
CODEN JALCE
Language of Original Document English
Abbreviated Source Title J Alloys Compd
Source Scopus