References |
Cahn, J.W., Allen, S.M., A microscopic theory of domain wall motion and its experimental verification inFe-Al alloy domain growth kinetics (1977) J Phys Colloq, 38. , C7–51–C7–54; Allen, S.M., Cahn, J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening (1979) Acta Metall, 27, pp. 1085-1095; Ward, M.J., Asymptotic methods for reaction-diffusion systems: past and present (2006) Bull Math Biol, 68, pp. 1151-1167; Provatas, N., Elder, K., Phase-Field methods in materials science and engineering (2010), Weinheim: Wiley-VCH; Field, R.J., Burger, M., Oscillations and traveling waves in chemical systems (1985), Wiley New York; Wazwaz, A.M., The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations (2008) Chaos, Solitons Fractals, 38 (5), pp. 1505-1516; Feng, Z., The first-integral method to study the Burgers–Korteweg–de Vries equation (2002) J Phys A, 35, pp. 343-349; Lu, B., Zhang, H.Q., Xie, F.D., Traveling wave solutions of nonlinear partial differential equations by using the first integral method (2010) Appl Math Comput, 216, p. 1329-36; Feng, Z., Wang, X., The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation (2003) Phys Lett A, 308, pp. 173-178; Fan, E., Multiple traveling wave solutions of nonlinear evolution equations using a unified algebraic method (2002) J Phys A, 35, pp. 6853-6872; Kudryashov, N.A., Seven common errors in finding exact solutions of nonlinear differential equations (2009) Commun Nonlinear Sci Numer Simulat, 14, p. 3507-29; Wazwaz, A.M., The tanh method for traveling wave solutions of nonlinear equations (2004) Appl Math Comput, 154, p. 713-723; Kim, H., Sakthivel, R., Traveling wave solutions for time-delayed nonlinear evolution equations (2010) Appl Math Lett, 23, p. 527-532; Feng, X., Exploratory approach to explicit solution of nonlinear evolution equations (2000) Int J Theor Phys, 39 (1), p. 207-222; Hu, J., Zhang, H., A new method for finding exact traveling wave solutions to nonlinear partial differential equations (2001) Phys Lett A, 286 (2-3), pp. 175-179; Rehman, T., Gambino, G., Choudhury, S.R., Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations (2013) Commun Nonlinear Sci Numer Simul, 19 (6), pp. 1746-1769; Ahmed Ali, A.H., Raslan, K.R., New solutions for some important partial differential equations (2007) Int J Nonlin Sci, (4), pp. 109-117; Taşcan, F., Bekir, A., Travelling wave solutions of Cahn–Allen equation by using first integral method (2009) Appl Math Comput, 207 (1), pp. 279-282; Rotstein, H.G., Nepomnashchy, A.A., Dynamics of kinks in two-dimensional hyperbolic models (2000) Physica D, 136, pp. 245-265; Mendez, V., Fedotov, S., Horsthemke, W., Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities (2010), Springer New York; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys Lett A, 235 (3), pp. 271-280; Grasselli, M., Petzeltova, H., Schimperna, G., Convergence to stationary solutions for a parabolic-hyperbolic phase-field system (2006) Commun Pure Appl Anal, 5 (4), pp. 827-838; Galenko, P.K., Danilov, D.A., Selection of the dynamically stable regime of rapid solidification front motion in an isothermal binary alloy (2000) J Cryst Growth, 216, pp. 512-526; Galenko, P., Jou, D., Diffuse-interface model for rapid phase transformations in nonequilibrium systems (2005) Phys Rev E, 71. , 046125-1–13; Galenko, P.K., Abramova, E.V., Jou, D., Danilov, D.A., Lebedev, V.G., Herlach, D.M., Solute trapping in rapid solidification of a binary dilute system: a phase-field study (2011) Phys Rev E, 84. , 041143-1–17; Salhoumi, A., Galenko, P.K., Gibbs-Thomson condition for the rapidly moving interface in a binary system (2016) Physica A, 447, pp. 161-171; Hilhorst, D., Nara, M., Singular limit of a damped wave equation with a bistable nonlinearity (2014) SIAM J Math Anal, 46 (2), pp. 1701-1730; Bourbaki, N., Commutative algebra (1972), Addison-Wesley Paris; Wazwaz, A.M., The tanh method for traveling wave solutions of nonlinear equations (2004) Appl Math Comput, 154, pp. 713-723; Bona, J.L., Schonbek, M.E., Travelling-wave solutions to the Korteweg-de Vries-Burgers equation (1985) Proc R Soc Edin, 101A, pp. 207-226; Elder, K.R., Rossi, G., Kanerva, P., Sanches, F., Ying, S.C., Granato, E., Patterning of heteroepitaxial overlayers from nano to micron scales (2012) Phys Rev Lett, 108. , 226102-1-5; Athreya, B.P., Goldenfeld, N., Danzig, J.A., Renormalization-group theory for the phase-field crystal equation (2006) Phys Rev E, 74. , 011601-1-13; Galenko, P.K., Sanches, F.I., Elder, K.R., Traveling wave profiles for a crystalline front invading liquid states (2015) Physica D, 308, pp. 1-10 |