Traveling wave solutions for the hyperbolic Cahn–Allen equation / Nizovtseva I.G., Galenko P.K., Alexandrov D.V. // Chaos, Solitons and Fractals. - 2017. - V. 94, l. . - P. 75-79.

ISSN:
09600779
Type:
Article
Abstract:
Traveling wave solutions of the hyperbolic Cahn–Allen equation are obtained using the first integral method, which follows from well-known Hilbert–Nullstellensatz theorem. The obtained complete class of traveling waves consists of continual and singular solutions. Continual solutions are represented by tanh -profiles and singular solutions exhibit unbounded discontinuity at the origin of coordinate system. With the neglecting inertia of the dynamical system, the obtained traveling waves include the previous solutions for the parabolic Cahn–Allen equation. © 2016 Elsevier Ltd
Author keywords:
Cahn–Allen equation; Division theorem; First integral method; Traveling wave
Index keywords:
Dynamical systems; Co-ordinate system; Division theorem; First integral method; Hilbert; Singular solutions; Traveling wave; Traveling wave solution; Integral equations
DOI:
10.1016/j.chaos.2016.11.010
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84999148214&doi=10.1016%2fj.chaos.2016.11.010&partnerID=40&md5=aaa5da449bbd5eb0e0ab051f73f84e5a
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84999148214&doi=10.1016%2fj.chaos.2016.11.010&partnerID=40&md5=aaa5da449bbd5eb0e0ab051f73f84e5a
Affiliations Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät, Jena, Germany; Ural Federal University, Department of Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ekaterinburg, Russian Federation
Author Keywords Cahn–Allen equation; Division theorem; First integral method; Traveling wave
Funding Details 1160779, Alexander von Humboldt Foundation; 16-11-10095, RSF, Russian Science Foundation; RE 1261/8-2, DFG, German Research Foundation
Funding Text The authors acknowledge the support from the Russian Science Foundation (project no. 16-11-10095). I.N. specially acknowledges the support of Alexander von Humboldt Foundation (ID 1160779). P.G. specially acknowledges the support from German Research Foundation (DFG Project RE 1261/8-2).
References Cahn, J.W., Allen, S.M., A microscopic theory of domain wall motion and its experimental verification inFe-Al alloy domain growth kinetics (1977) J Phys Colloq, 38. , C7–51–C7–54; Allen, S.M., Cahn, J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening (1979) Acta Metall, 27, pp. 1085-1095; Ward, M.J., Asymptotic methods for reaction-diffusion systems: past and present (2006) Bull Math Biol, 68, pp. 1151-1167; Provatas, N., Elder, K., Phase-Field methods in materials science and engineering (2010), Weinheim: Wiley-VCH; Field, R.J., Burger, M., Oscillations and traveling waves in chemical systems (1985), Wiley New York; Wazwaz, A.M., The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations (2008) Chaos, Solitons Fractals, 38 (5), pp. 1505-1516; Feng, Z., The first-integral method to study the Burgers–Korteweg–de Vries equation (2002) J Phys A, 35, pp. 343-349; Lu, B., Zhang, H.Q., Xie, F.D., Traveling wave solutions of nonlinear partial differential equations by using the first integral method (2010) Appl Math Comput, 216, p. 1329-36; Feng, Z., Wang, X., The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation (2003) Phys Lett A, 308, pp. 173-178; Fan, E., Multiple traveling wave solutions of nonlinear evolution equations using a unified algebraic method (2002) J Phys A, 35, pp. 6853-6872; Kudryashov, N.A., Seven common errors in finding exact solutions of nonlinear differential equations (2009) Commun Nonlinear Sci Numer Simulat, 14, p. 3507-29; Wazwaz, A.M., The tanh method for traveling wave solutions of nonlinear equations (2004) Appl Math Comput, 154, p. 713-723; Kim, H., Sakthivel, R., Traveling wave solutions for time-delayed nonlinear evolution equations (2010) Appl Math Lett, 23, p. 527-532; Feng, X., Exploratory approach to explicit solution of nonlinear evolution equations (2000) Int J Theor Phys, 39 (1), p. 207-222; Hu, J., Zhang, H., A new method for finding exact traveling wave solutions to nonlinear partial differential equations (2001) Phys Lett A, 286 (2-3), pp. 175-179; Rehman, T., Gambino, G., Choudhury, S.R., Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations (2013) Commun Nonlinear Sci Numer Simul, 19 (6), pp. 1746-1769; Ahmed Ali, A.H., Raslan, K.R., New solutions for some important partial differential equations (2007) Int J Nonlin Sci, (4), pp. 109-117; Taşcan, F., Bekir, A., Travelling wave solutions of Cahn–Allen equation by using first integral method (2009) Appl Math Comput, 207 (1), pp. 279-282; Rotstein, H.G., Nepomnashchy, A.A., Dynamics of kinks in two-dimensional hyperbolic models (2000) Physica D, 136, pp. 245-265; Mendez, V., Fedotov, S., Horsthemke, W., Reaction-transport systems: mesoscopic foundations, fronts, and spatial instabilities (2010), Springer New York; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys Lett A, 235 (3), pp. 271-280; Grasselli, M., Petzeltova, H., Schimperna, G., Convergence to stationary solutions for a parabolic-hyperbolic phase-field system (2006) Commun Pure Appl Anal, 5 (4), pp. 827-838; Galenko, P.K., Danilov, D.A., Selection of the dynamically stable regime of rapid solidification front motion in an isothermal binary alloy (2000) J Cryst Growth, 216, pp. 512-526; Galenko, P., Jou, D., Diffuse-interface model for rapid phase transformations in nonequilibrium systems (2005) Phys Rev E, 71. , 046125-1–13; Galenko, P.K., Abramova, E.V., Jou, D., Danilov, D.A., Lebedev, V.G., Herlach, D.M., Solute trapping in rapid solidification of a binary dilute system: a phase-field study (2011) Phys Rev E, 84. , 041143-1–17; Salhoumi, A., Galenko, P.K., Gibbs-Thomson condition for the rapidly moving interface in a binary system (2016) Physica A, 447, pp. 161-171; Hilhorst, D., Nara, M., Singular limit of a damped wave equation with a bistable nonlinearity (2014) SIAM J Math Anal, 46 (2), pp. 1701-1730; Bourbaki, N., Commutative algebra (1972), Addison-Wesley Paris; Wazwaz, A.M., The tanh method for traveling wave solutions of nonlinear equations (2004) Appl Math Comput, 154, pp. 713-723; Bona, J.L., Schonbek, M.E., Travelling-wave solutions to the Korteweg-de Vries-Burgers equation (1985) Proc R Soc Edin, 101A, pp. 207-226; Elder, K.R., Rossi, G., Kanerva, P., Sanches, F., Ying, S.C., Granato, E., Patterning of heteroepitaxial overlayers from nano to micron scales (2012) Phys Rev Lett, 108. , 226102-1-5; Athreya, B.P., Goldenfeld, N., Danzig, J.A., Renormalization-group theory for the phase-field crystal equation (2006) Phys Rev E, 74. , 011601-1-13; Galenko, P.K., Sanches, F.I., Elder, K.R., Traveling wave profiles for a crystalline front invading liquid states (2015) Physica D, 308, pp. 1-10
Correspondence Address Nizovtseva, I.G.; Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische FakultätGermany; email: nizovtseva.irina@gmail.com
Publisher Elsevier Ltd
CODEN CSFOE
Language of Original Document English
Abbreviated Source Title Chaos Solitons Fractals
Source Scopus