Effect of convective flow on stable dendritic growth in rapid solidification of a binary alloy / Galenko P.K., Danilov D.A., Reuther K., Alexandrov D.V., Rettenmayr M., Herlach D.M. // Journal of Crystal Growth. - 2017. - V. 457, l. . - P. 349-355.

ISSN:
00220248
Type:
Article
Abstract:
A model for anisotropic growth of a dendritic crystal in a binary mixture under non-isothermal conditions is presented. A criterion for a stable growth mode is given for the dendrite tip as a function of the thermal Péclet number and the ratio between the velocities of dendrite growth and solute diffusion in the liquid bulk. Limiting cases of known criteria for anisotropic dendrite growth at low and high growth Péclet numbers are provided. The inclusion of forced convective flow extends the range of theoretical predictions, especially to low growth velocities, thus eliminating systematic discrepancies between earlier models and observed experimental data, as shown by a comparison of model predictions with measured growth velocities in Ti–55 at% Al alloys solidified under electromagnetic levitation. © 2016 Elsevier B.V.
Author keywords:
A1. Dendrites; A1. Growth models; A1. Morphological stability; A2. Growth from melt
Index keywords:
Anisotropy; Binary mixtures; Bins; Electromagnetic propulsion; Heat convection; Rapid solidification; Anisotropic growth; Comparison of models; Electromagnetic levitation; Forced convective flows; Gro
DOI:
10.1016/j.jcrysgro.2016.07.042
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996866531&doi=10.1016%2fj.jcrysgro.2016.07.042&partnerID=40&md5=9a8b4a77a7df577f547bb6011cb926ad
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996866531&doi=10.1016%2fj.jcrysgro.2016.07.042&partnerID=40&md5=9a8b4a77a7df577f547bb6011cb926ad
Affiliations Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät, Jena, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany; Ural Federal University, Department of Mathematical Physics, Ekaterinburg, Russian Federation; Physikalisch-Astronomische Fakultät, Ruhr-Universität Bochum, Bochum, Germany; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Cologne, Germany
Author Keywords A1. Dendrites; A1. Growth models; A1. Morphological stability; A2. Growth from melt
References Flemings, M.C., Solidification Processing (1974), McGraw-Hill New York; Chernov, A.A., Modern crystallography III—crystal growth (2009) M. Cardona, P. Fulde, H.-J. Queisser (Eds.), Springer Series in Solid-State Science, vol. 36, Springer, Berlin, 1984; W.A. Tiller, The Science of Crystallization: Microscopic Interfacial Phenomena, Cambridge University Press, 1991; W. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th ed., Aedermannsdorf, Trans Tech, 1998; J.A. Danzig, M. Rappaz, Solidification, EPFL Press, Lausanne, Switzerland, New York; Kurz, W., Fisher, D.J., Dendrite growth at the limit of stability: tip radius and spacing (1981) Acta Metall., 29, pp. 11-20; Lipton, J., Glicksman, M.E., Kurz, W., Solidification microstructure: 30 years after constitutional supercooling dendritic growth into undercooled alloy metals (1984) Mater. Sci. Eng., 65, pp. 57-63; Boettinger, W.J., Coriell, S.R., Microstructure formation in rapidly solidified alloys (1986) Science and Technology of the Undercooled Melt, , P.R. Sahm H. Jones C.M. Adam Springer Netherlands; Lipton, J., Kurz, W., Trivedi, R., Rapid dendrite growth in undercooled alloys (1987) Acta Metall., 35, pp. 957-964; Trivedi, R., Lipton, J., Kurz, W., Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts (1987) Acta Metall., 35, pp. 965-970; Boettinger, W.J., Coriell, S.R., Trivedi, R., Application of dendritic growth theory to the interpretation of rapid solidification microstructures (1988) Rapid Solidification Processing: Principles and Technologies IV, , R. Mehrabian P.A. Parrish Claitors Baton Rouge, Louisiana; Herlach, D.M., Matson, D.M., Solidification of Containerless Undercooled Melts (2012), Wiley-VCH, Weinheim,; Hoyt, J.J., Asta, M., Karma, A., Atomistic and continuum modeling of dendritic solidification (2003) Mater. Sci. Eng. R, 41, pp. 121-163; Bragard, J., Karma, A., Lee, Y.H., Plapp, M., Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts (2002) Interface Sci., 10, pp. 121-136; Eckler, K., Herlach, D.M., Measurements of dendrite growth velocities in undercooled pure Ni-melts—some new results (1994) Mater. Sci. Eng. A, 178, pp. 159-162; Funke, O., Phanikumar, G., Galenko, P.K., Chernova, L., Reutzel, S., Kolbe, M., Herlach, D.M., Dendrite growth velocity in levitated undercooled nickel melts (2006) J. Cryst. Growth, 297, pp. 211-222; Binder, S., Galenko, P.K., Herlach, D.M., Faceting of a rough solid–liquid interface of a metal induced by forced convection (2013) Philos. Mag. Lett., 93, pp. 608-617; Langer, J.S., Hong, D.C., Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy (1986) Phys. Rev. A, 34, pp. 1462-1471; Pelcé, P., Bensimon, D., Theory of dendrite dynamics (1987) Nucl. Phys. B, 2, pp. 259-270; Ben Amar, M., Pelcé, P., Impurity effect on dendritic growth (1989) Phys. Rev. A, 39, pp. 4263-4269; Brener, E.A., Effects of surface energy and kinetics on the growth of needle-like dendrites (1990) J. Cryst. Growth, 99, pp. 165-170; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys. Lett. A, 235, pp. 271-280; Galenko, P.K., Danilov, D.A., Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions (1999) J. Cryst. Growth, 197, pp. 992-1002; Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts (2011) Phys. Rev. Lett., 107, p. 025505; Jou, D., Galenko, P., Coarse graining for the phase-field model of fast phase transitions (2013) Phys. Rev. E., 88, p. 042151; Herlach, D., Non-equilibrium solidification of undercooled metallic melts (1994) Mater. Sci. Eng. R, 12, pp. 177-272; Herlach, D., Galenko, P., Holland-Moritz, D., Metastable Solids from Undercooled Melts (2007), Elsevier Amsterdam; Barbieri, A., Langer, J.S., Predictions of dendritic growth rates in the linearized solvability theory (1989) Phys. Rev. A, 39, pp. 5314-5325; Alexandrov, D.V., Galenko, P.K., Selection criterion of stable dendritic growth at arbitrary Peclét numbers with convection (2013) Phys. Rev. E, 87, p. 062403; Alexandrov, D.V., Galenko, P.K., Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow (2015) Phys. Chem. Chem. Phys., 17, pp. 19149-19161; Alexandrov, D.V., Danilov, D.A., Galenko, P.K., Selection criterion of a stable dendrite growth in rapid solidification (2016) Int. J. Heat Mass Transf., 101, pp. 789-799; Ben Amar, M., Theory of needle-crystal (1988) Physica D, 31, pp. 409-423; Brener, E., Melnikov, V.I., Velocity selection and instability spectrum in 3D dendritic growth (1995) J. Exp. Theor. Phys., 80, pp. 341-345; Bouissou, P., Pelcé, P., Effect of a forced flow on dendritic growth (1989) Phys. Rev. A, 40, pp. 6673-6680; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: analysis methods and experimental tests (2014) Phys.—Uspekhi, 57, pp. 771-786; Müller-Krumbhaar, H., Abel, T., Brener, E., Hartmann, M., Eissfeldt, N., Temkin, D., Growth-morphologies in solidification and hydrodynamics (2002) JSME Int. J. Ser. B, 45, pp. 129-132; Galenko, P., Solute trapping and diffusionless solidification in a binary system (2007) Phys. Rev. E, 76, p. 031606; Galenko, P., Extended thermodynamical analysis of a motion of the solid–liquid interface in a rapidly solidifying alloy (2002) Phys. Rev. B, 65, p. 144103; Hartmann, H., Galenko, P.K., Holland-Moritz, D., Kolbe, M., Herlach, D.M., Shuleshova, O., Nonequilibrium solidification in undercooled Ti45Al55 melts (2008) J. Appl. Phys., 103, p. 073509; Okamoto, H., Al–Ti (Aluminum–Titanium) (1993) J. Phase Equilib., 14, pp. 120-121; Witusiewicz, V.T., Bondar, A.A., Hecht, U., Rex, S., Velikanova, T.Y., The Al–B–Nb–Ti system: I. Re-assessment of the constituent binary systems B–Nb and B–Ti on the basis of new experimental data (2008) J. Alloys Compd., 448, pp. 185-194; Brillo, J., Thermophysical Properties of Multicomponent Liquid Alloys (2016), De Gruyter Oldenbourg; Lee, J., Matson, D.M., Binder, S., Kolbe, M., Herlach, D., Hyers, R.W., Magnetohydrodynamic modeling and experimental validation of convection inside electromagnetically levitated Co–Cu droplets (2014) Metal. Mater. Trans., 45B, pp. 1018-1023; Galenko, P.K., Reutzel, S., Herlach, D.M., Fries, S.G., Steinbach, I., Apel, M., Dendritic solidification in undercooled Ni–Zr–Al melts: experiments and modeling (2009) Acta Mater., 57, pp. 6166-6175; Alexandrov, D.V., Galenko, P.K., Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation (2016), Bull Udmurt Univ.: Math. Mech. Comput. Sci.,, in press; Alexandrov, D.V., Malygin, A.P., Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection (2012) Int. J. Heat Mass Transf., 55, pp. 3196-3204; Alexandrov, D.V., Nizovtseva, I.G., Malygin, A.P., Huang, H.-N., Lee, D., Unidirectional solidification of binary melts from a cooled boundary: Analytical solutions of a nonlinear diffusion-limited problem (2008) J. Phys.: Condens. Matter, 20, p. 114105; Borisov, V.T., Theory of two-phase mushy zone of metallic ingot (1987) Metallurgy, Moscow
Correspondence Address Galenko, P.K.; Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische FakultätGermany; email: peter.galenko@uni-jena.de
Publisher Elsevier B.V.
CODEN JCRGA
Language of Original Document English
Abbreviated Source Title J Cryst Growth
Source Scopus