References |
Flemings, M.C., Solidification Processing (1974), McGraw-Hill New York; Chernov, A.A., Modern crystallography III—crystal growth (2009) M. Cardona, P. Fulde, H.-J. Queisser (Eds.), Springer Series in Solid-State Science, vol. 36, Springer, Berlin, 1984; W.A. Tiller, The Science of Crystallization: Microscopic Interfacial Phenomena, Cambridge University Press, 1991; W. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th ed., Aedermannsdorf, Trans Tech, 1998; J.A. Danzig, M. Rappaz, Solidification, EPFL Press, Lausanne, Switzerland, New York; Kurz, W., Fisher, D.J., Dendrite growth at the limit of stability: tip radius and spacing (1981) Acta Metall., 29, pp. 11-20; Lipton, J., Glicksman, M.E., Kurz, W., Solidification microstructure: 30 years after constitutional supercooling dendritic growth into undercooled alloy metals (1984) Mater. Sci. Eng., 65, pp. 57-63; Boettinger, W.J., Coriell, S.R., Microstructure formation in rapidly solidified alloys (1986) Science and Technology of the Undercooled Melt, , P.R. Sahm H. Jones C.M. Adam Springer Netherlands; Lipton, J., Kurz, W., Trivedi, R., Rapid dendrite growth in undercooled alloys (1987) Acta Metall., 35, pp. 957-964; Trivedi, R., Lipton, J., Kurz, W., Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts (1987) Acta Metall., 35, pp. 965-970; Boettinger, W.J., Coriell, S.R., Trivedi, R., Application of dendritic growth theory to the interpretation of rapid solidification microstructures (1988) Rapid Solidification Processing: Principles and Technologies IV, , R. Mehrabian P.A. Parrish Claitors Baton Rouge, Louisiana; Herlach, D.M., Matson, D.M., Solidification of Containerless Undercooled Melts (2012), Wiley-VCH, Weinheim,; Hoyt, J.J., Asta, M., Karma, A., Atomistic and continuum modeling of dendritic solidification (2003) Mater. Sci. Eng. R, 41, pp. 121-163; Bragard, J., Karma, A., Lee, Y.H., Plapp, M., Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts (2002) Interface Sci., 10, pp. 121-136; Eckler, K., Herlach, D.M., Measurements of dendrite growth velocities in undercooled pure Ni-melts—some new results (1994) Mater. Sci. Eng. A, 178, pp. 159-162; Funke, O., Phanikumar, G., Galenko, P.K., Chernova, L., Reutzel, S., Kolbe, M., Herlach, D.M., Dendrite growth velocity in levitated undercooled nickel melts (2006) J. Cryst. Growth, 297, pp. 211-222; Binder, S., Galenko, P.K., Herlach, D.M., Faceting of a rough solid–liquid interface of a metal induced by forced convection (2013) Philos. Mag. Lett., 93, pp. 608-617; Langer, J.S., Hong, D.C., Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy (1986) Phys. Rev. A, 34, pp. 1462-1471; Pelcé, P., Bensimon, D., Theory of dendrite dynamics (1987) Nucl. Phys. B, 2, pp. 259-270; Ben Amar, M., Pelcé, P., Impurity effect on dendritic growth (1989) Phys. Rev. A, 39, pp. 4263-4269; Brener, E.A., Effects of surface energy and kinetics on the growth of needle-like dendrites (1990) J. Cryst. Growth, 99, pp. 165-170; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Phys. Lett. A, 235, pp. 271-280; Galenko, P.K., Danilov, D.A., Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions (1999) J. Cryst. Growth, 197, pp. 992-1002; Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts (2011) Phys. Rev. Lett., 107, p. 025505; Jou, D., Galenko, P., Coarse graining for the phase-field model of fast phase transitions (2013) Phys. Rev. E., 88, p. 042151; Herlach, D., Non-equilibrium solidification of undercooled metallic melts (1994) Mater. Sci. Eng. R, 12, pp. 177-272; Herlach, D., Galenko, P., Holland-Moritz, D., Metastable Solids from Undercooled Melts (2007), Elsevier Amsterdam; Barbieri, A., Langer, J.S., Predictions of dendritic growth rates in the linearized solvability theory (1989) Phys. Rev. A, 39, pp. 5314-5325; Alexandrov, D.V., Galenko, P.K., Selection criterion of stable dendritic growth at arbitrary Peclét numbers with convection (2013) Phys. Rev. E, 87, p. 062403; Alexandrov, D.V., Galenko, P.K., Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow (2015) Phys. Chem. Chem. Phys., 17, pp. 19149-19161; Alexandrov, D.V., Danilov, D.A., Galenko, P.K., Selection criterion of a stable dendrite growth in rapid solidification (2016) Int. J. Heat Mass Transf., 101, pp. 789-799; Ben Amar, M., Theory of needle-crystal (1988) Physica D, 31, pp. 409-423; Brener, E., Melnikov, V.I., Velocity selection and instability spectrum in 3D dendritic growth (1995) J. Exp. Theor. Phys., 80, pp. 341-345; Bouissou, P., Pelcé, P., Effect of a forced flow on dendritic growth (1989) Phys. Rev. A, 40, pp. 6673-6680; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: analysis methods and experimental tests (2014) Phys.—Uspekhi, 57, pp. 771-786; Müller-Krumbhaar, H., Abel, T., Brener, E., Hartmann, M., Eissfeldt, N., Temkin, D., Growth-morphologies in solidification and hydrodynamics (2002) JSME Int. J. Ser. B, 45, pp. 129-132; Galenko, P., Solute trapping and diffusionless solidification in a binary system (2007) Phys. Rev. E, 76, p. 031606; Galenko, P., Extended thermodynamical analysis of a motion of the solid–liquid interface in a rapidly solidifying alloy (2002) Phys. Rev. B, 65, p. 144103; Hartmann, H., Galenko, P.K., Holland-Moritz, D., Kolbe, M., Herlach, D.M., Shuleshova, O., Nonequilibrium solidification in undercooled Ti45Al55 melts (2008) J. Appl. Phys., 103, p. 073509; Okamoto, H., Al–Ti (Aluminum–Titanium) (1993) J. Phase Equilib., 14, pp. 120-121; Witusiewicz, V.T., Bondar, A.A., Hecht, U., Rex, S., Velikanova, T.Y., The Al–B–Nb–Ti system: I. Re-assessment of the constituent binary systems B–Nb and B–Ti on the basis of new experimental data (2008) J. Alloys Compd., 448, pp. 185-194; Brillo, J., Thermophysical Properties of Multicomponent Liquid Alloys (2016), De Gruyter Oldenbourg; Lee, J., Matson, D.M., Binder, S., Kolbe, M., Herlach, D., Hyers, R.W., Magnetohydrodynamic modeling and experimental validation of convection inside electromagnetically levitated Co–Cu droplets (2014) Metal. Mater. Trans., 45B, pp. 1018-1023; Galenko, P.K., Reutzel, S., Herlach, D.M., Fries, S.G., Steinbach, I., Apel, M., Dendritic solidification in undercooled Ni–Zr–Al melts: experiments and modeling (2009) Acta Mater., 57, pp. 6166-6175; Alexandrov, D.V., Galenko, P.K., Analytical solution of the problem on inclined viscous flow around a parabolic dendrite within the framework of Oseen's approximation (2016), Bull Udmurt Univ.: Math. Mech. Comput. Sci.,, in press; Alexandrov, D.V., Malygin, A.P., Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection (2012) Int. J. Heat Mass Transf., 55, pp. 3196-3204; Alexandrov, D.V., Nizovtseva, I.G., Malygin, A.P., Huang, H.-N., Lee, D., Unidirectional solidification of binary melts from a cooled boundary: Analytical solutions of a nonlinear diffusion-limited problem (2008) J. Phys.: Condens. Matter, 20, p. 114105; Borisov, V.T., Theory of two-phase mushy zone of metallic ingot (1987) Metallurgy, Moscow |