References |
Cahn, J.W., Allen, S.M., A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics (1977) J. Physique, 38, pp. C751-C754; Allen, S.M., Cahn, J.W., A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening (1979) Acta Metall., 27, pp. 1085-1095. , 1085-95; Wheeler, A., Boettinger, W.J., McFadden, G.B., Phase-field model for isothermal phase transitions in binary alloys (1992) Phys. Rev., 45, pp. 7424-7439. , 7424-39; Gouyet, J.F., Generalized Allen-Cahn equations to describe far-from-equilibrium order-disorder dynamics (1995) Phys. Rev., 51, pp. 1695-1710. , 1695-710; Fife, P.C., Lacey, A.A., Motion by curvature in generalized Cahn-Allen models (1994) J. Stat. Phys., 77, pp. 173-181. , 173-81; Benes, M., Chalupecký, V., Mikula, K., Geometrical image segmentation by the Allen-Cahn equation (2004) Appl. Numer. Math., 51, pp. 187-205. , 187-205; Alfaro, M., Hilhorst, D., Generation of interface for an Allen-Cahn equation with nonlinear diffusion (2010) Math. Model. Nat. Phenom., 5, pp. 1-2. , 1-2; Caginalp, G., Chen, X., Phase field equations in the singular limit of sharp interface problems (1992) IMA Vol. Math. Appl., 43, pp. 1-28. , 1-28; Wheeler, A.A., Phase-field theory of edges in an anisotropic crystal (2006) Proc. R. Soc., 462, pp. 3363-3384. , 3363-84; Bates, P.W., Chen, F., Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation (2002) J. Math. Anal. Appl., 273, pp. 45-57. , 45-57; Galenko, P., Jou, D., Diffuse-interface model for rapid phase transformations in nonequilibrium systems (2005) Phys. Rev. E, 71; Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts (2011) Phys. Rev. Lett., 107; Jou, D., Galenko, P., Coarse graining for the phase-field model of fast phase transitions (2013) Phys. Rev. E, 88; Field, R.J., Burger, M., (1985) Oscillations and Traveling Waves in Chemical Systems, , (New York: Wiley); Vladimirov, V.A., Kutafina, E.V., Exact travelling wave solutions of some nonlinear evolutionary equations (2004) Rep. Math. Phys., 54, pp. 261-271. , 261-71; Wazwaz, A.-M., The tanh method for traveling wave solutions of nonlinear equations (2004) Appl. Math. Comput., 154, pp. 713-723. , 713-23; Kim, H., Sakthivel, R., Travelling wave solutions for time-delayed nonlinear evolution equations (2010) Appl. Math. Lett., 23, pp. 527-532. , 527-32; Galenko, P.K., Abramova, E.V., Jou, D., Danilov, D.A., Lebedev, V.G., Herlach, D.M., Solute trapping in rapid solidification of a binary dilute system: A phase-field study (2011) Phys. Rev., 84; Salhoumi, A., Galenko, P.K., Gibbs-Thomson condition for the rapidly moving interface in a binary system (2016) Physica, 447, pp. 161-171. , 161-71; Zh, F., The first-integral method to study the Burgers-Korteweg-de Vries equation (2002) J. Phys. A: Math. Gen., 35 (2), pp. 343-349. , 343-9; Lu, B., Zhang, H.-Q., Xie, F.-D., Traveling wave solutions of nonlinear partial differential equations by using the first integral method (2010) Appl. Math. Comput., 216, pp. 1329-1336. , 1329-36; Feng, Z., Wang, X., The first integral method to the two-dimensional Burgers-Korteweg-de Vries equation (2003) Phys. Lett., 308, pp. 173-178. , 173-8; Fan, E., Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method (2002) J Phys. A: Math Gen., 35 (32), pp. 6853-6872. , 6853-72; Kudryashov, N.A., Seven common errors in finding exact solutions of nonlinear differential equations (2009) Commun. Nonlinear Sci. Numer. Simulat., 14, pp. 3507-3529. , 3507-29; Feng, X., Exploratory approach to explicit solution of nonlinear evolution equations (2000) Int. J. Theor. Phys., 39, pp. 207-222. , 207-22; Hu, J., Zhang, H., A new method for finding exact traveling wave solutions to nonlinear partial differential equations (2001) Phys. Lett., 286, pp. 175-179. , 175-9; Rehman, T., Gambino, G., Choudhury, S.R., Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations (2013) Commun. Nonlinear Sci. Numer. Simul., 19, pp. 1746-1769. , 1746-69; Ahmed Ali, A.H., Raslan, K.R., New solutions for some important partial differential equations (2007) Int. J. Nonlinear Sci., 4, pp. 109-117. , 109-17; Taşcan, F., Bekir, A., Travelling wave solutions of Cahn-Allen equation by using first integral method (2009) Appl. Math. Comput., 207, pp. 279-282. , 279-82; Bourbaki, N., (1972) Commutative Algebra, , (Paris: Addison-Wesley); Hilhorst, D., Nara, M., Singular limit of a damped wave equation with a bistable nonlinearity (2014) SIAM J. Math. Anal., 46, pp. 1701-1730. , 1701-30; Provatas, N., Elder, K., (2010) Phase-Field Methods in Materials Science and Engineering, , (Weinheim: Wiley-VCH); Choi, J.-W., Lee, H.G., Jeong, D., Kim, J., An unconditionally gradient stable numerical method for solving the Allen-Cahn equuation (2009) Physica, 388, pp. 1791-1803. , 1791-803; Vladimorov, V.A., Kutafina, E.V., Pudelko, A., Constructing soliton and kink solutions of PDE models in transport and biology (2006) Symmetry, Integrability Geom.: Methods Appl., 2, pp. 1-5. , 1-5; Galenko, P.K., Sanches, F.I., Elder, K.R., Traveling wave profiles for a crystaline front invading liquid states (2015) Physica D, 308, pp. 1-2. , 1-0; Emmerich, H., Löwen, H., Wittkowski, R., Gruhn, T., Toth, G.I., Tegze, G., Gránásy, L., Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview (2012) Adv. Phys., 61, pp. 665-743. , 665-743 |