Influence of convective flow on the growth of pure and alloyed dendrite / Kazak O.V., Galenko P.K., Alexandrov D.V. // Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki. - 2016. - V. 26, l. 3. - P. 299-311.

ISSN:
19949197
Type:
Article
Abstract:
The paper presents the model of anisotropic growth of dendritic crystallization of chemically pure and binary liquid (solution or melt) based on forced convection of the liquid phase. The dependencies of the growth rate and the radius of the top of a dendrite from under-cooling fluid in cases of a chemically pure material and alloys are presented. A comparative analysis of the influence of forced convection on the dendrite growth kinetics is carried out. Evaluation of growth rate and morphology of dendrite by high-speed crystal growth model was done. The contribution of convective flow and the anisotropic properties of the liquid-crystal boundary were taking into account. The model is also used hyperbolic diffusion equation to describe the non-equilibrium impurity capture by crystal surface, which occurs under the rapid crystals growth.
Author keywords:
Convection; Crystallization; Dendrite growth; Numerical simulation
Index keywords:
нет данных
DOI:
10.20537/vm160301
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009738250&doi=10.20537%2fvm160301&partnerID=40&md5=7173107d9753ea373291a3be374633c5
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009738250&doi=10.20537%2fvm160301&partnerID=40&md5=7173107d9753ea373291a3be374633c5
Affiliations Department of Mathematical Physics, Ural Federal University, pr. Lenina, 51, Yekaterinburg, Russian Federation; Faculty of Physics and Astronomy, Friedrich Schiller University, Jena, Germany; Department of Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, pr. Lenina, 51, Yekaterinburg, Russian Federation
Author Keywords Convection; Crystallization; Dendrite growth; Numerical simulation
References Flemings, M.C., (1974) Solidification Processing, , New York: McGraw-Hill; Chernov, A.A., (1984) Modern Crystallography III. Crystal Growth, , Berlin-Heidelberg: Springer; Kurz, W., Fisher, D.J., Dendrite growth at the limit of stability: Tip radius and spacing (1981) Acta Metallurgica, 29 (1), pp. 11-20; Lipton, J., Glicksman, M.E., Kurz, W., Dendritic growth into undercooled alloy metals (1984) Materials Science and Engineering, 65 (1), pp. 57-63; Boettinger, W.J., Coriell, S.R., Microstructure formation in rapidly solidified alloys (1986) Science and Technology of the Undercooled Melt, pp. 81-109. , Eds.: Sahm P. R., Jones H., Adam CM. Springer; Lipton, J., Kurz, W., Trivedi, R., Rapid dendrite growth in undercooled alloys (1987) Acta Metallurgica, 35 (4), pp. 957-964; Trivedi, R., Lipton, J., Kurz, W., Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts (1987) Acta Metallurgica, 35 (4), pp. 965-970; Boettinger, W.J., Coriell, S.R., Trivedi, R., Application of dendritic growth theory to the interpretation of rapid solidification microstructures (1988) Rapid Solidification Processing: Principles and Technologies IV, , Eds.: Mehrabian R., Parrish P. A. Claitor; Herlach, D.M., Matson, D.M., (2012) Solidification of Containerless Undercooled Melts, , Wiley; Hoyt, J.J., Asta, M., Karma, A., Atomistic and continuum modeling of dendritic solidification (2003) Materials Science and Engineering: R: Reports, 41 (6), pp. 121-163; Funke, O., Phanikumar, G., Galenko, P.K., Chernova, L., Reutzel, S., Kolbe, M., Herlach, D.M., Dendrite growth velocity in levitated undercooled nickel melts (2006) Journal of Crystal Growth, 297 (1), pp. 211-222; Binder, S., Galenko, P.K., Herlach, D.M., Faceting of a rough solid-liquid interface of a metal induced by forced convection (2013) Philosophical Magazine Letters, 93 (10), pp. 608-617; Langer, J.S., Hong, D.C., Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy (1986) Physical Review A, 34 (2), pp. 1462-1471; Pelće, P., Bensimon, D., Theory of dendrite dynamics (1987) Nuclear Physics B - Proceedings Supplements, 2, pp. 259-270; Ben Amar, M., Pelće, P., Impurity effect on dendritic growth (1989) Physical Review A, 39 (8), pp. 4263-4269; Brener, E.A., Effects of surface energy and kinetics on the growth of needle-like dendrites (1990) Journal of Crystal Growth, 99 (1-4), pp. 165-170; Galenko, P.K., Danilov, D.A., Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt (1997) Physics Letters A, 235 (3), pp. 271-280; Galenko, P.K., Danilov, D.A., Model for free dendritic alloy growth under interfacial and bulk phase nonequilibrium conditions (1999) Journal of Crystal Growth, 197 (4), pp. 992-1002; Yang, Y., Humadi, H., Buta, D., Laird, B.B., Sun, D., Hoyt, J.J., Asta, M., Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts (2011) Physical Review Letters, 107 (2), p. 025505. , 4 p; Jou, D., Galenko, P., Coarse graining for the phase-field model of fast phase transitions (2013) Physical Review E, 88 (4), 8p. , 042151; Herlach, D.M., Non-equilibrium solidification of undercooled metallic metls (1994) Materials Science and Engineering: R: Reports, 12 (4-5), pp. 177-272; Herlach, D., Galenko, P., Holland-Moritz, D., (2007) Metastable Solids from Undercooled Melts, , Amsterdam: Elsevier; Alexandrov, D.V., Danilov, D.A., Galenko, P.K., Selection criterion of a stable dendrite growth in rapid solidification (2016) International Journal of Heat and Mass Transfer, 101, pp. 789-799; Galenko, P.K., Danilov, D.A., Reuther, K., Alexandrov, D.V., Rettenmayr, M., Herlach, D.M., Effect of convective flow on stable dendritic growth in rapid solidification of a binary alloy (2016) Journal of Crystal Growth; Barbieri, A., Langer, J.S., Predictions of dendritic growth rates in the linearized solvability theory (1989) Physical Review A, 39 (10), pp. 5314-5325; Alexandrov, D.V., Galenko, P.K., Selection criterion of stable dendritic growth at arbitrary Peclét numbers with convection (2013) Physical Review E, 87, 5p. , 062403; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: Analysis methods and experimental tests (2014) Physics-uspekhi, 57 (8), pp. 771-786; Galenko, P., Solute trapping and diffusionless solidification in a binary system (2007) Physical Review E, 76 (3), p. 031606. , 9 p; Galenko, P., Extended thermodynamical analysis of a motion of the solid-liquid interface in a rapidly solidifying alloy (2002) Physical Review B, 65 (14), 11p. , 144103; Hartmann, H., Galenko, P.K., Holland-Moritz, D., Kolbe, M., Herlach, D.M., Shuleshova, O., Nonequilibrium solidification in undercooled Ti45Al55 melts (2008) Journal of Applied Physics, 103 (7), p. 073509; Alexandrov, D.V., Galenko, P.K., Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow (2015) Physical Chemistry Chemical Physics, 17, pp. 19149-19161; Ben Amar, M., Theory of needle-crystal (1988) Physica D: Nonlinear Phenomena, 31 (3), pp. 409-423; Brener, E., Melnikov, V.I., Velocity selection and instability spectrum in 3D dendritic growth (1995) Journal of Experimental and Theoretical Physics, 80 (2), pp. 341-345. , http://www.jetp.ac.ru/cgi-bin/dn/e_080_02_0341.pdf; Bouissou, P., Pelće, P., Effect of a forced flow on dendritic growth (1989) Physical Review A, 40 (11), pp. 6673-6680; Müller-Krumbhaar, H., Abel, T., Brener, E., Hartmann, M., Eissfeldt, N., Temkin, D., Growth-morphologies in solidification and hydrodynamics (2002) JSME International Journal Series B, 45 (1), pp. 129-132
Publisher Udmurt State University
Language of Original Document Russian
Abbreviated Source Title Vestn. Udmurt. Univ., Matematika, Mekhanika, Kompyuternye Nauki
Source Scopus