References |
Langer, J.S., Instabilities and pattern formation in crystal growth (1980) Rev. Mod. Phys., 52, pp. 1-28; Trivedi, R., Kurz, W., Dendritic growth (1994) Inter. Mater. Rev., 39, pp. 49-74; Hoyt, J.J., Asta, M., Karma, A., Atomistic and continuum modeling of dendritic solidification (2003) Mater. Sci. Eng. R, 41, pp. 121-163; Gao, J., Zhang, Z.N., Zhang, Y.K., Yang, C., Measurements of crystal growth dynamics in glass-fluxed melts (2012) Solidification of Undercooled Melts, pp. 281-303. , D.M. Herlach D.M. Matson Wiely VCH Weinheim; Müller-Krumbhaar, H., Langer, J.S., Theory of dendritic growth-III. Effects of surface tension (1978) Acta Metall., 26, pp. 1697-1708; Brener, E.A., Effects of surface energy and kinetics on the growth of needle-like dendrites (1990) J. Cryst. Growth, 99, pp. 165-170; Alexandrov, D.V., Galenko, P.K., Dendrite growth under forced convection: analysis methods and experimental tests (2014) Phys.-Uspekhi, 57, pp. 771-786; Funke, O., Phanikumar, G., Galenko, P.K., Chernova, L., Reutzel, S., Kolbe, M., Herlach, D.M., Dendrite growth velocity in levitated undercooled nickel melts (2006) J. Cryst. Growth, 297, pp. 211-222; Huang, S.-C., Glicksman, M.E., Overview 12: fundamentals of dendritic solidification - I. steady-state tip growth (1985) Acta Metall., 29, pp. 701-715; Gao, J., Han, M.K., Kao, A., Pericleous, K., Alexandrov, D.V., Galenko, P.K., Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: a test of theory with convection (2016) Acta Mater., 103, pp. 184-191; Bojarevics, V., Pericleous, K., Modeling electromagnetically levitated liquid droplet oscillations (2003) ISIJ Inter, 43, pp. 890-898; Hyers, R.W., Fluid flow effects in levitated droplets (2005) Meas. Sci. Technol., 16, pp. 391-401; Lee, J.H., Matson, D.M., Binder, S., Kolbe, M., Herlach, D., Hyers, R.W., Magnetohydrodynamic modeling and experimental validation of convection inside electromagnetically levitated Co-Cu droplets (2014) Metall. Mater. Trans. B, 45, pp. 1018-1023; Rulison, A.J., Rhim, W.-K., A noncontact measurement technique for the specific heat and total hemispherical emissivity of undercooled refractory materials (1994) Rev. Sci. Instrum., 65, pp. 695-700; Kao, A., Pericleous, K., A numerical model coupling thermoelectricity, magnetohydrodynamics and dendritic growth (2012) J. Alog. Comput. Technol., 6, pp. 173-201; Gao, J., Zhang, Z.N., Zhang, Y.J., Hyers, R., Bojarevics, V., Downey, J., Henein, H., San Soucie, M., Measurements of dendritic growth velocities in undercooled melts of pure nickel under static magnetic fields (2012), pp. 72-79. , (Eds.), Proceedings of a Symposium on Materials Research in Microgravity 2012 Held at the 141st TMS Annual Meeting and Exhibition, Orlando () pp; Nishi, T., Shibata, H., Ohta, H., Waseda, Y., Thermal conductivities of molten iron, cobalt, and nickel by laser flash method (2003) Metall. Mater. Trans. A, 34, pp. 2801-2807; Monk, J., Yang, Y., Mendelev, M.I., Asta, M., Hoyt, J.J., Sun, D.Y., Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations (2010) Model. Simul. Mater. Sci. Eng., 18, p. 015004 |