References |
Zeng, N., Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release (2007) Clim. Past, 3, pp. 135-153; Prescott, C.L., Haywood, A.M., Dolan, A.M., Hunter, S.J., Pope, J.O., Pickering, S.J., Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period (2014) Earth Planet. Sci. Lett., 400, pp. 261-271; Ashkenazy, Y., Baker, D.R., Gildor, H., Simple stochastic models for glacial dynamics (2005) J. Geophys. Res., 110, p. C02005; Matteucci, G., Orbital forcing in a stochastic resonance model of the Late-Pleistocene climatic variations (1989) Clim. Dynam., 3, pp. 179-190; Wunsch, C., Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change (2004) Quat. Sci. Rev., 23, pp. 1001-1012; Ridgwell, A.J., Watso, A.J., Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin? (1999) Paleoclimatology, 14, pp. 437-440; Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Stievenard, M., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica (1999) Nature, 399, pp. 429-436; Saltzman, B., (2002), Dynamical Paleoclimatology, San Diego; Ledley, T.S., Chu, S., The initiation of ice sheet growth, Milankovitch solar radiation variations, and the 100 ky ice age cycle (1995) Clim. Dynam., 11, pp. 439-445; Crowley, J.W., Katz, R.F., Huybers, P., Langmuir, C.H., Park, S.-H., Glacial cycles drive variations in the production of oceanic crust (2015) Science, 347, pp. 1237-1240; Cramer, B.S., Wright, J.D., Kent, D.V., Aubry, M.-P., Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24nC25n) (2003) Paleoceanography, 18, p. 1097; Pollard, D., Muszynski, I., Schneider, S.H., Thompson, S.L., Asynchronous coupling of ice-sheet and atmospheric forcing models (1990) Ann. Glaciol., 14, pp. 247-251; Saltzman, B., Sutera, A., A model of the internal feedback system involved in late Quaternary climatic variations (1984) J. Atmospheric Sci., 41, pp. 736-745; Lee, S.-Y., Poulsen, C.J., Obliquity and precessional forcing of continental snow fall and melt: implications for orbital forcing of Pleistocene ice ages (2009) Quat. Sci. Rev., 28, pp. 2663-2674; Tziperman, E., Raymo, M.E., Huybers, P., Wunsch, C., Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing (2006) Paleoceanography, 21, p. PA4206; Michael, J., Thompson, T., Sieber, J., Predicting Climate Tipping as a noisy bifurcation: A Review (2011) Int. J. Bifurcation Chaos, 21, pp. 399-423; Thompson, T., Sieber, J., Climate tipping as a noisy bifurcation: a predictive technique (2011) IMA J. Appl. Math., 76, pp. 27-46; Michael, J., Thompson, T., Sieber, J., Climate predictions: the influence of nonlinearity and randomness (2012) Phil. Trans. R. Soc. A, 370, pp. 1007-1011; Crucifix, M., Oscillators and relaxation phenomena in Pleistocene climate theory (2012) Phil. Trans. R. Soc. A, 370, pp. 1140-1165; Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P., Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system (2012) Phil. Trans. R. Soc. A, 370, pp. 1166-1184; Dijkstra, H., A normal mode perspective of intrinsic ocean-climate variability (2016) Annu. Rev. Fluid Mech., 48, pp. 341-363; Nicolis, C., Stochastic aspects of climatic transitions - response to a periodic forcing (1982) Tellus, 34, pp. 1-9; Nicolis, C., Long-term climatic transitions and stochastic resonance (1993) J. Stat. Phys., 70, pp. 3-14; Imkeller, P., Von Storch, J.-S., Stochastic Climate Models (2001), Birkhauser Berlin; Selvam, A.M., Chaotic Climate Dynamics (2007), Luniver Press Frome; Chekroun, M.D., Simonnet, E., Ghil, M., Stochastic climate dynamics: random attractors and time-dependent invariant measures (2011) Physica D, 240, pp. 1685-1700; Saltzman, B., Sutera, A., Evenson, A., Structural stochastic stability of a simole auto-oscillatory climate feedback system (1981) J. Atmospheric Sci., 38, pp. 494-503; Saltzman, B., Sutera, A., Hansen, A., A possible marine mechanism for internally generated long-period climate cycles (1982) J. Atmospheric Sci., 39, pp. 2634-2637; Saltzman, B., Stochastically-driven climatic fluctuations in the sea-ice, ocean temperature, CO2 feedback system (1982) Tellus, 34, pp. 97-112; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., Stochastically driven transitions between climate attractors (2014) Tellus A, 66, p. 23454; Alexandrov, D.V., Bashkirtseva, I.A., Fedotov, S.P., Ryashko, L.B., Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise (2014) Eur. Phys. J. B, 87, p. 227; Horsthemke, W., Lefever, R., Noise-Induced Transitions (1984), Springer Berlin; Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (2007), Springer-Verlag Berlin; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., How a small noise generates large-amplitude oscillations of volcanic plug and provides high seismicity (2015) Eur. Phys. J. B, 88, p. 106; Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., Stochastic resonance (1998) Rev. Modern Phys., 70, pp. 223-287; McDonnell, M.D., Stocks, N.G., Pearce, C.E.M., Abbott, D., Stochastic Resonance: from Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (2008), Cambridge University Press Cambridge; Lai, Y.C., Tél, T., Transient Chaos: Complex Dynamics on Finite Time Scales (2011), Springer Berlin; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., Analysis of stochastic model for nonlinear volcanic dynamics (2015) Nonlinear Processes Geophys., 22, pp. 197-204; Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L., Effects of noise in excitable systems (2004) Phys. Rep., 392, pp. 321-424; Muratov, C.B., Vanden-Eijnden, E., Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle (2008) Chaos, 18; Roberts, A., Widiasih, E., Wechselberger, M., Jones, C.K.R.T., Mixed mode oscillations in a conceptual climate model (2015) Physica D, 292-293, pp. 70-83; Crucifix, M., How can a glacial inception be predicted? (2011) Holocene, 21, pp. 831-842; Pikovsky, A.S., Kurths, J., Coherence resonance in a noise-driven excitable system (1997) Phys. Rev. Lett., 78, pp. 775-778; Martin, O., Lyapunov exponents of stochastic dynamical systems (1985) J. Stat. Phys., 41, pp. 249-261 |