Excitability, mixed-mode oscillations and transition to chaos in a stochastic ice ages model / Alexandrov D.V., Bashkirtseva I.A., Ryashko L.B. // Physica D: Nonlinear Phenomena. - 2017. - V. 343, l. . - P. 28-37.

ISSN:
01672789
Type:
Article
Abstract:
Motivated by an important geophysical significance, we consider the influence of stochastic forcing on a simple three-dimensional climate model previously derived by Saltzman and Sutera. A nonlinear dynamical system governing three physical variables, the bulk ocean temperature, continental and marine ice masses, is analyzed in deterministic and stochastic cases. It is shown that the attractor of deterministic model is either a stable equilibrium or a limit cycle. We demonstrate that the process of continental ice melting occurs with a noise-dependent time delay as compared with marine ice melting. The paleoclimate cyclicity which is near 100 ky in a wide range of model parameters abruptly increases in the vicinity of a bifurcation point and depends on the noise intensity. In a zone of stable equilibria, the 3D climate model under consideration is extremely excitable. Even for a weak random noise, the stochastic trajectories demonstrate a transition from small- to large-amplitude stochastic oscillations (SLASO). In a zone of stable cycles, SLASO transitions are analyzed too. We show that such stochastic transitions play an important role in the formation of a mixed-mode paleoclimate scenario. This mixed-mode dynamics with the intermittency of large- and small-amplitude stochastic oscillations and coherence resonance are investigated via analysis of interspike intervals. A tendency of dynamic paleoclimate to abrupt and rapid glaciations and deglaciations as well as its transition from order to chaos with increasing noise are shown. © 2016 Elsevier B.V.
Author keywords:
Chaos; Climatic model; Noise-induced transitions; Stochastic disturbances
Index keywords:
Chaos theory; Climate models; Dynamical systems; Glacial geology; Ice; Nonlinear dynamical systems; Oscillators (mechanical); Stochastic models; Time delay; Climatic models; Deterministic modeling; Mi
DOI:
10.1016/j.physd.2016.11.007
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008352494&doi=10.1016%2fj.physd.2016.11.007&partnerID=40&md5=b8fd52ddb6224bca3ace293f4e83ca98
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008352494&doi=10.1016%2fj.physd.2016.11.007&partnerID=40&md5=b8fd52ddb6224bca3ace293f4e83ca98
Affiliations Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Lenin ave., 51, Ekaterinburg, Russian Federation
Author Keywords Chaos; Climatic model; Noise-induced transitions; Stochastic disturbances
Funding Details 1.849.2017, Minobrnauka, Ministry of Education and Science of the Russian Federation
Funding Text This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 1.849.2017). We are grateful to M. Crucifix for his thoughtful comments which have helped in improving the manuscript.
References Zeng, N., Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release (2007) Clim. Past, 3, pp. 135-153; Prescott, C.L., Haywood, A.M., Dolan, A.M., Hunter, S.J., Pope, J.O., Pickering, S.J., Assessing orbitally-forced interglacial climate variability during the mid-Pliocene Warm Period (2014) Earth Planet. Sci. Lett., 400, pp. 261-271; Ashkenazy, Y., Baker, D.R., Gildor, H., Simple stochastic models for glacial dynamics (2005) J. Geophys. Res., 110, p. C02005; Matteucci, G., Orbital forcing in a stochastic resonance model of the Late-Pleistocene climatic variations (1989) Clim. Dynam., 3, pp. 179-190; Wunsch, C., Quantitative estimate of the Milankovitch-forced contribution to observed Quaternary climate change (2004) Quat. Sci. Rev., 23, pp. 1001-1012; Ridgwell, A.J., Watso, A.J., Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin? (1999) Paleoclimatology, 14, pp. 437-440; Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Stievenard, M., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica (1999) Nature, 399, pp. 429-436; Saltzman, B., (2002), Dynamical Paleoclimatology, San Diego; Ledley, T.S., Chu, S., The initiation of ice sheet growth, Milankovitch solar radiation variations, and the 100 ky ice age cycle (1995) Clim. Dynam., 11, pp. 439-445; Crowley, J.W., Katz, R.F., Huybers, P., Langmuir, C.H., Park, S.-H., Glacial cycles drive variations in the production of oceanic crust (2015) Science, 347, pp. 1237-1240; Cramer, B.S., Wright, J.D., Kent, D.V., Aubry, M.-P., Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24nC25n) (2003) Paleoceanography, 18, p. 1097; Pollard, D., Muszynski, I., Schneider, S.H., Thompson, S.L., Asynchronous coupling of ice-sheet and atmospheric forcing models (1990) Ann. Glaciol., 14, pp. 247-251; Saltzman, B., Sutera, A., A model of the internal feedback system involved in late Quaternary climatic variations (1984) J. Atmospheric Sci., 41, pp. 736-745; Lee, S.-Y., Poulsen, C.J., Obliquity and precessional forcing of continental snow fall and melt: implications for orbital forcing of Pleistocene ice ages (2009) Quat. Sci. Rev., 28, pp. 2663-2674; Tziperman, E., Raymo, M.E., Huybers, P., Wunsch, C., Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing (2006) Paleoceanography, 21, p. PA4206; Michael, J., Thompson, T., Sieber, J., Predicting Climate Tipping as a noisy bifurcation: A Review (2011) Int. J. Bifurcation Chaos, 21, pp. 399-423; Thompson, T., Sieber, J., Climate tipping as a noisy bifurcation: a predictive technique (2011) IMA J. Appl. Math., 76, pp. 27-46; Michael, J., Thompson, T., Sieber, J., Climate predictions: the influence of nonlinearity and randomness (2012) Phil. Trans. R. Soc. A, 370, pp. 1007-1011; Crucifix, M., Oscillators and relaxation phenomena in Pleistocene climate theory (2012) Phil. Trans. R. Soc. A, 370, pp. 1140-1165; Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P., Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system (2012) Phil. Trans. R. Soc. A, 370, pp. 1166-1184; Dijkstra, H., A normal mode perspective of intrinsic ocean-climate variability (2016) Annu. Rev. Fluid Mech., 48, pp. 341-363; Nicolis, C., Stochastic aspects of climatic transitions - response to a periodic forcing (1982) Tellus, 34, pp. 1-9; Nicolis, C., Long-term climatic transitions and stochastic resonance (1993) J. Stat. Phys., 70, pp. 3-14; Imkeller, P., Von Storch, J.-S., Stochastic Climate Models (2001), Birkhauser Berlin; Selvam, A.M., Chaotic Climate Dynamics (2007), Luniver Press Frome; Chekroun, M.D., Simonnet, E., Ghil, M., Stochastic climate dynamics: random attractors and time-dependent invariant measures (2011) Physica D, 240, pp. 1685-1700; Saltzman, B., Sutera, A., Evenson, A., Structural stochastic stability of a simole auto-oscillatory climate feedback system (1981) J. Atmospheric Sci., 38, pp. 494-503; Saltzman, B., Sutera, A., Hansen, A., A possible marine mechanism for internally generated long-period climate cycles (1982) J. Atmospheric Sci., 39, pp. 2634-2637; Saltzman, B., Stochastically-driven climatic fluctuations in the sea-ice, ocean temperature, CO2 feedback system (1982) Tellus, 34, pp. 97-112; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., Stochastically driven transitions between climate attractors (2014) Tellus A, 66, p. 23454; Alexandrov, D.V., Bashkirtseva, I.A., Fedotov, S.P., Ryashko, L.B., Regular and chaotic regimes in Saltzman model of glacial climate dynamics under the influence of additive and parametric noise (2014) Eur. Phys. J. B, 87, p. 227; Horsthemke, W., Lefever, R., Noise-Induced Transitions (1984), Springer Berlin; Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (2007), Springer-Verlag Berlin; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., How a small noise generates large-amplitude oscillations of volcanic plug and provides high seismicity (2015) Eur. Phys. J. B, 88, p. 106; Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F., Stochastic resonance (1998) Rev. Modern Phys., 70, pp. 223-287; McDonnell, M.D., Stocks, N.G., Pearce, C.E.M., Abbott, D., Stochastic Resonance: from Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (2008), Cambridge University Press Cambridge; Lai, Y.C., Tél, T., Transient Chaos: Complex Dynamics on Finite Time Scales (2011), Springer Berlin; Alexandrov, D.V., Bashkirtseva, I.A., Ryashko, L.B., Analysis of stochastic model for nonlinear volcanic dynamics (2015) Nonlinear Processes Geophys., 22, pp. 197-204; Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L., Effects of noise in excitable systems (2004) Phys. Rep., 392, pp. 321-424; Muratov, C.B., Vanden-Eijnden, E., Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle (2008) Chaos, 18; Roberts, A., Widiasih, E., Wechselberger, M., Jones, C.K.R.T., Mixed mode oscillations in a conceptual climate model (2015) Physica D, 292-293, pp. 70-83; Crucifix, M., How can a glacial inception be predicted? (2011) Holocene, 21, pp. 831-842; Pikovsky, A.S., Kurths, J., Coherence resonance in a noise-driven excitable system (1997) Phys. Rev. Lett., 78, pp. 775-778; Martin, O., Lyapunov exponents of stochastic dynamical systems (1985) J. Stat. Phys., 41, pp. 249-261
Correspondence Address Alexandrov, D.V.; Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Lenin ave., 51, Russian Federation; email: Dmitri.Alexandrov@urfu.ru
Publisher Elsevier B.V.
CODEN PDNPD
Language of Original Document English
Abbreviated Source Title Phys D Nonlinear Phenom
Source Scopus