References |
Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys. Stat. Sol., 32, pp. 69-78; Shur, V.Y., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Ye Z.G., (ed), Woodhead Publishing Ltd, Cambridge:; Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett., 75, pp. 1673-1675; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, pp. 549-592; Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., Wada, S., Enhancement in the piezoelectric properties of BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 system ceramics by nanodomain, Ceram (2013) Int., 39, pp. S695-S699; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Shur, V.Y., Domain nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals (2008) Ferroelectrics, 373, pp. 1-10; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Shur, V.Y., Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family (2013) Ferroelectrics, 443, pp. 71-82; Shur, V.Y., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics, 111, pp. 123-131; Shur, V.Y., Fast polarization reversal process: evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties. Ferroelectricity and Related Phenomena, 10, pp. 153-192. , Paz de Araujo C.A., Scott J.F., Taylor G.W., (eds), Gordon & Breach Science Publ., Amsterdam:; Shur, V.Y., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory Applications, pp. 178-214. , Schmelzer J.W.P., (ed), WILEY-VCH, Weinheim:; Shur, V.Y., Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sci., 41, pp. 199-210; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett., 76, pp. 143-154; Shur, V.Y., Shishkin, E.I., Rumyantsev, E.L., Nikolaeva, E.V., Shur, A.G., Batchko, R.G., Fejer, M.M., Kitamura, K., Self-organization in LiNbO3 and LiTaO3: Formation of micro- and nano-scale domain patterns (2004) Ferroelectrics, 304, pp. 111-116; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Shur, V.Y., Rumyantsev, E.L., Shur, A.G., Lobov, A.I., Kuznetsov, D.K., Shishkin, E.I., Nikolaeva, E.V., De Micheli, M.P., Nanoscale domain effects in ferroelectrics. Formation and evolution of self-assembled structures in LiNbO3 and LiTaO3 (2007) Ferroelectrics, 354, pp. 145-157; Hum, D.S., Fejer, M.M., Quasi-Phasematching (2007) Comptes Rendus Phys., 8, pp. 180-198; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., Electric-field poling in Mg-doped LiNbO3 (2004) J. Appl. Phys., 96, pp. 6585-6590; Canalias, C., Pasiskevicius, V., Mirrorless optical parametric oscillator (2007) Nat. Photonics, 1, pp. 459-462; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys. B, 81, pp. 729-751; Shur, V.Y., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Shur, V.Y., Lobov, A.I., Shur, A.G., Rumyantsev, E.L., Gallo, K., Shape evolution of isolated micro-domains in lithium niobate (2007) Ferroelectrics, 360, pp. 111-119; Lobov, A.I., Shur, V.Y., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Shur, V.Y., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99; Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Shur, V.Y., Investigation of jerky domain wall motion in lithium niobate (2008) Ferroelectrics, 374, pp. 136-143; Shur, V.Y., Akhmatkhanov, A.R., Chezganov, D.S., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl. Phys. Lett., 103; Wong, K.K., (2002) Properties of Lithium Niobate, pp. 91-96. , Institution of Engineering and Technology; Shur, V.Y., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J. Appl. Phys., 112; Yu, H., Randall, C.A., Dendritic domain configurations in Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals (1999) J. Appl. Phys., 86, pp. 5733-5738; Shur, V., Shikhova, V., Ievlev, A., Zelenovskiy, P., Neradovskiy, M., Pelegov, D., Ivleva, L., Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals (2012) J. Appl. Phys., 112; Tian, L., Scrymgeour, D.A., Gopalan, V., Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6 (2005) J. Appl. Phys., 97; Shur, V.Y., Shikhova, V.A., Pelegov, D.V., Ievlev, A.V., Ivleva, L.I., Formation of nanodomain ensembles during polarization reversal in Sr0.61Ba0.39Nb2O6 :Ce single crystals (2011) Phys. Solid State, 53, pp. 2311-2315; Shur, V.Y., Mingaliev, E.A., Kuznetsov, D.K., Kosobokov, M.S., Micro- and nanodomain structures produced by pulse laser heating in congruent lithium tantalate (2013) Ferroelectrics, 443, pp. 95-102; Kosobokov, M.S., Shur, V.Y., Mingaliev, E.A., Avdoshin, S.V., Kuznetsov, D.K., Self-organized nanodomain structures arising in lithium tantalate and lithium niobate after pulse heating by infrared laser (2015) Ferroelectrics, 476, pp. 134-145; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J. Mater. Sci., 41, pp. 107-116; Shishkin, E.I., Ievlev, A.V., Nikolaeva, E.V., Nebogatikov, M.S., Shur, V.Y., Local study of polarization reversal kinetics in ferroelectric crystals using scanning probe microscopy (2008) Ferroelectrics, 374, pp. 26-32; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J. Appl. Phys., 110 (5); Zelenovskiy, P.S., Shur, V.Y., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., Raman study of neutral and charged domain walls in lithium niobate (2010) Ferroelectrics, 398, pp. 34-41; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Y., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl. Phys. A., 99, pp. 741-744; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys., 110; Caccavale, F., Callejo, D., Dragoni, C., Morbiato, A., Musolino, M., Properzi, M., Microdomains control in quasi-stoichiometric LiNbO3 wafers (2004) Proc. SPIE, 5621, p. 77; Shur, V.Y., Kosobokov, M.S., Mingaliev, E.A., Kuznetsov, D.K., Zelenovskiy, P.S., Formation of snowflake domains during fast cooling of lithium tantalate crystals (2016) J. Appl. Phys., 119; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , Consultants Bureau, New York:; Dolbilov, M.A., Shishkin, E.I., Shur, V.Y., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398, pp. 108-114; Dolbilov, M.A., Shur, V.Y., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange (2013) Ferroelectrics, 442, pp. 82-91; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Tonkachyova, N.A., Change of domain structure of lead germanate in strong electric field (1992) Ferroelectrics, 126, pp. 371-376; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Rumyantsev, E.L., Tonkachyova, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Letters, 53, pp. 615-619; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Rumyantsev, E.L., Shishkin, E.I., Shur, V.Y., Kalinin, S.V., Screening and retardation effect on 180°-domain wall motion in ferroelectrics: wall velocity and non-linear dynamics due to polarization-screening charge interactions (2008) Phys. Rev. B, 78; Shur, V.Y., Kosobokov, M.S., Mingaliev, E.A., Karpov, V.R., Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating (2015) AIP Advances, 5; Shur, V.Y., Lobov, A.I., Rumyantsev, E.L., Kuznetsov, D.K., 3D modeling of domain structure evolution during discrete switching in lithium niobate (2010) Ferroelectrics, 399, pp. 68-75 |