Self-organizing formation of dendrite domain structures in lithium niobate and lithium tantalate crystals / Shur V.Y., Akhmatkhanov A.R., Pelegova E.V. // Ferroelectrics. - 2016. - V. 500, l. 1. - P. 76-89.

ISSN:
00150193
Type:
Article
Abstract:
In the paper we review the self-organized formation of exotic dendrite-shape domain structures in ferroelectric single crystals. The main attention is paid to our recent detail experimental study of the dendrite domain growth during polarization reversal in stoichiometric lithium niobate LiNbO3 at elevated temperature and in congruent lithium tantalate LiTaO3 after pulse laser heating. Optical, confocal Raman, scanning electron, and piezoelectric force microscopy have been used for domain visualization at the surface and in the bulk. The key roles of isotropic domain growth at elevated temperature, correlated nucleation effect, and ineffective screening of the depolarization field have been revealed. © 2016 Taylor & Francis Group, LLC.
Author keywords:
charged domain walls; correlated nucleation; Domain shape; domain wall engineering; ineffective screening
Index keywords:
Lithium; Lithium compounds; Niobium compounds; Nucleation; Single crystals; Charged domain wall; Depolarization fields; Domain shape; Ferroelectric single crystals; Piezoelectric force microscopy; Pol
DOI:
10.1080/00150193.2016.1229114
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991492395&doi=10.1080%2f00150193.2016.1229114&partnerID=40&md5=df64dd49cf481aea1d1d0834820f54ac
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991492395&doi=10.1080%2f00150193.2016.1229114&partnerID=40&md5=df64dd49cf481aea1d1d0834820f54ac
Affiliations Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
Author Keywords charged domain walls; correlated nucleation; Domain shape; domain wall engineering; ineffective screening
References Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys. Stat. Sol., 32, pp. 69-78; Shur, V.Y., Nano- and micro-domain engineering in normal and relaxor ferroelectrics (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Ye Z.G., (ed), Woodhead Publishing Ltd, Cambridge:; Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett., 75, pp. 1673-1675; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, pp. 129-144; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, pp. 549-592; Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., Wada, S., Enhancement in the piezoelectric properties of BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 system ceramics by nanodomain, Ceram (2013) Int., 39, pp. S695-S699; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Fejer, M.M., Byer, R.L., Recent achievements in domain engineering in lithium niobate and lithium tantalate (2001) Ferroelectrics, 257, pp. 191-202; Shur, V.Y., Domain nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals (2008) Ferroelectrics, 373, pp. 1-10; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, pp. 97-106; Shur, V.Y., Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family (2013) Ferroelectrics, 443, pp. 71-82; Shur, V.Y., Gruverman, A.L., Rumyantsev, E.L., Dynamics of domain structure in uniaxial ferroelectrics (1990) Ferroelectrics, 111, pp. 123-131; Shur, V.Y., Fast polarization reversal process: evolution of ferroelectric domain structure in thin films (1996) Ferroelectric Thin Films: Synthesis and Basic Properties. Ferroelectricity and Related Phenomena, 10, pp. 153-192. , Paz de Araujo C.A., Scott J.F., Taylor G.W., (eds), Gordon & Breach Science Publ., Amsterdam:; Shur, V.Y., Correlated nucleation and self-organized kinetics of ferroelectric domains (2005) Nucleation Theory Applications, pp. 178-214. , Schmelzer J.W.P., (ed), WILEY-VCH, Weinheim:; Shur, V.Y., Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sci., 41, pp. 199-210; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett., 76, pp. 143-154; Shur, V.Y., Shishkin, E.I., Rumyantsev, E.L., Nikolaeva, E.V., Shur, A.G., Batchko, R.G., Fejer, M.M., Kitamura, K., Self-organization in LiNbO3 and LiTaO3: Formation of micro- and nano-scale domain patterns (2004) Ferroelectrics, 304, pp. 111-116; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, pp. 105-114; Shur, V.Y., Rumyantsev, E.L., Shur, A.G., Lobov, A.I., Kuznetsov, D.K., Shishkin, E.I., Nikolaeva, E.V., De Micheli, M.P., Nanoscale domain effects in ferroelectrics. Formation and evolution of self-assembled structures in LiNbO3 and LiTaO3 (2007) Ferroelectrics, 354, pp. 145-157; Hum, D.S., Fejer, M.M., Quasi-Phasematching (2007) Comptes Rendus Phys., 8, pp. 180-198; Mizuuchi, K., Morikawa, A., Sugita, T., Yamamoto, K., Electric-field poling in Mg-doped LiNbO3 (2004) J. Appl. Phys., 96, pp. 6585-6590; Canalias, C., Pasiskevicius, V., Mirrorless optical parametric oscillator (2007) Nat. Photonics, 1, pp. 459-462; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys. B, 81, pp. 729-751; Shur, V.Y., Nikolaeva, E.V., Shishkin, E.I., Chernykh, A.P., Terabe, K., Kitamura, K., Ito, H., Nakamura, K., Domain shape in congruent and stoichiometric lithium tantalate (2002) Ferroelectrics, 269, pp. 195-200; Shur, V.Y., Lobov, A.I., Shur, A.G., Rumyantsev, E.L., Gallo, K., Shape evolution of isolated micro-domains in lithium niobate (2007) Ferroelectrics, 360, pp. 111-119; Lobov, A.I., Shur, V.Y., Baturin, I.S., Shishkin, E.I., Kuznetsov, D.K., Shur, A.G., Dolbilov, M.A., Gallo, K., Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3 (2006) Ferroelectrics, 341, pp. 109-116; Shur, V.Y., Kuznetsov, D.K., Mingaliev, E.A., Yakunina, E.M., Lobov, A.I., Ievlev, A.V., In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation (2011) Appl. Phys. Lett., 99; Baturin, I.S., Konev, M.V., Akhmatkhanov, A.R., Lobov, A.I., Shur, V.Y., Investigation of jerky domain wall motion in lithium niobate (2008) Ferroelectrics, 374, pp. 136-143; Shur, V.Y., Akhmatkhanov, A.R., Chezganov, D.S., Baturin, I.S., Smirnov, M.M., Shape of isolated domains in lithium tantalate single crystals at elevated temperatures (2013) Appl. Phys. Lett., 103; Wong, K.K., (2002) Properties of Lithium Niobate, pp. 91-96. , Institution of Engineering and Technology; Shur, V.Y., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J. Appl. Phys., 112; Yu, H., Randall, C.A., Dendritic domain configurations in Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals (1999) J. Appl. Phys., 86, pp. 5733-5738; Shur, V., Shikhova, V., Ievlev, A., Zelenovskiy, P., Neradovskiy, M., Pelegov, D., Ivleva, L., Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals (2012) J. Appl. Phys., 112; Tian, L., Scrymgeour, D.A., Gopalan, V., Real-time study of domain dynamics in ferroelectric Sr0.61Ba0.39Nb2O6 (2005) J. Appl. Phys., 97; Shur, V.Y., Shikhova, V.A., Pelegov, D.V., Ievlev, A.V., Ivleva, L.I., Formation of nanodomain ensembles during polarization reversal in Sr0.61Ba0.39Nb2O6 :Ce single crystals (2011) Phys. Solid State, 53, pp. 2311-2315; Shur, V.Y., Mingaliev, E.A., Kuznetsov, D.K., Kosobokov, M.S., Micro- and nanodomain structures produced by pulse laser heating in congruent lithium tantalate (2013) Ferroelectrics, 443, pp. 95-102; Kosobokov, M.S., Shur, V.Y., Mingaliev, E.A., Avdoshin, S.V., Kuznetsov, D.K., Self-organized nanodomain structures arising in lithium tantalate and lithium niobate after pulse heating by infrared laser (2015) Ferroelectrics, 476, pp. 134-145; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J. Mater. Sci., 41, pp. 107-116; Shishkin, E.I., Ievlev, A.V., Nikolaeva, E.V., Nebogatikov, M.S., Shur, V.Y., Local study of polarization reversal kinetics in ferroelectric crystals using scanning probe microscopy (2008) Ferroelectrics, 374, pp. 26-32; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J. Appl. Phys., 110 (5); Zelenovskiy, P.S., Shur, V.Y., Bourson, P., Fontana, M.D., Kuznetsov, D.K., Mingaliev, E.A., Raman study of neutral and charged domain walls in lithium niobate (2010) Ferroelectrics, 398, pp. 34-41; Zelenovskiy, P.S., Fontana, M.D., Shur, V.Y., Bourson, P., Kuznetsov, D.K., Raman visualization of micro- and nanoscale domain structures in lithium niobate (2010) Appl. Phys. A., 99, pp. 741-744; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys., 110; Caccavale, F., Callejo, D., Dragoni, C., Morbiato, A., Musolino, M., Properzi, M., Microdomains control in quasi-stoichiometric LiNbO3 wafers (2004) Proc. SPIE, 5621, p. 77; Shur, V.Y., Kosobokov, M.S., Mingaliev, E.A., Kuznetsov, D.K., Zelenovskiy, P.S., Formation of snowflake domains during fast cooling of lithium tantalate crystals (2016) J. Appl. Phys., 119; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , Consultants Bureau, New York:; Dolbilov, M.A., Shishkin, E.I., Shur, V.Y., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398, pp. 108-114; Dolbilov, M.A., Shur, V.Y., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange (2013) Ferroelectrics, 442, pp. 82-91; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Tonkachyova, N.A., Change of domain structure of lead germanate in strong electric field (1992) Ferroelectrics, 126, pp. 371-376; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Rumyantsev, E.L., Tonkachyova, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Letters, 53, pp. 615-619; Eliseev, E.A., Morozovska, A.N., Svechnikov, G.S., Rumyantsev, E.L., Shishkin, E.I., Shur, V.Y., Kalinin, S.V., Screening and retardation effect on 180°-domain wall motion in ferroelectrics: wall velocity and non-linear dynamics due to polarization-screening charge interactions (2008) Phys. Rev. B, 78; Shur, V.Y., Kosobokov, M.S., Mingaliev, E.A., Karpov, V.R., Formation of the domain structure in CLN under the pyroelectric field induced by pulse infrared laser heating (2015) AIP Advances, 5; Shur, V.Y., Lobov, A.I., Rumyantsev, E.L., Kuznetsov, D.K., 3D modeling of domain structure evolution during discrete switching in lithium niobate (2010) Ferroelectrics, 399, pp. 68-75
Correspondence Address Shur, V.Y.; Institute of Natural Sciences, Ural Federal UniversityRussian Federation; email: vladimir.shur@urfu.ru
Publisher Taylor and Francis Inc.
CODEN FEROA
Language of Original Document English
Abbreviated Source Title Ferroelectrics
Source Scopus