References |
Shur, V.Y., (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Z.-G. Ye, Chapter 21, Woodhead Publishing Ltd; Shur, V.Y., Domain nanotechnology in ferroelectrics: Nano-domain engineering in lithium niobate crystals (2008) Ferroelectrics, 373, p. 1; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, p. 97; Shur, V.Y., (2005) Nucleation Theory and Applications, pp. 178-214. , J.W.P. Schmelzer, Chapter 6, WILEY-VCH, Weinheim; Shur, V.Y., Kinetics of polarization reversal in normal and relaxor ferroelectrics: Relaxation effects (1998) Phase Transit, 65, p. 49; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, p. 105; Fousek, J., Cross, L.E., Open issues in application aspects of domains in ferroic materials (2003) Ferroelectrics, 293, p. 43; Wada, S., (2008) Handbook of Advanced Dielectrics Piezoelectric Ferroelectric Materials, pp. 266-303. , Z-G. Ye, Chapter 10, Woodhead Publishing; Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.-E., Shrout, T.R., Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations (1999) Jpn. J. Appl. Phys, 38, p. 5505; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., (1993) Appl. Phys. Lett, 62, p. 435; Webjorn, J., Pruneri, V., Russell, P.S.J., Barr, J.R.M., Hanna, D.C., (1994) Electron. Lett, 30, p. 894; Myers, L.E., Bosenberg, W.R., Miller, G.D., Eckardt, R.C., Fejer, M.M., Byer, R.L., (1995) Opt. Lett, 20, p. 52; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., (1995) J. Opt. Soc. Am. B, 12, p. 2102; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett, 76, p. 143; Shur, V.Y., Shishkin, E., Rumyantsev, E., Nikolaeva, E., Shur, A., Batchko, R., Fejer, M., Kitamura, K., Self-Organization in LiNbO3 and LiTaO3: Formation of micro- and nano-scale domain patterns (2004) Ferroelectrics, 304, p. 111; Shur, V.Y., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sci, 41, p. 199; Canalias, C., Pasiskevicius, V., Fokine, M., Laurell, F., Back- ward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4 (2005) Appl. Phys. Lett, 86; Shur, V.Y., Domain nanotechnology in ferroelectric single crystals: Lithium niobate and lithium tantalate family (2013) Ferroelectrics, 443, p. 71; Boes, A., Yudistira, D., Crasto, T., Steigerwald, H., Sivan, V., Limboeck, T., Friend, J., Mitchell, A., Ultraviolet laser induced domain inversion on chromium coated lithium niobate crystals (2014) Opt. Mater. Express, 4, p. 241; Ying, C.Y.J., Muir, A.C., Valdivia, C.E., Steigerwald, H., Sones, C.L., Eason, R.W., Soergel, E., Mailis, S., Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals (2012) Laser Photon. Rev, 6, p. 526; Kuz’Minov, Y.S., (1997) Lithium Niobate Crystals, , Cambridge International Science Publishing, Cambridge; Wong, K.K., (2002) Properties of Lithium Niobate, , The Institution of Engineering and Technology, London; Volk, T., Wohlecke, M., Lithium Niobate (Springer Berlin Heidelberg, Berlin (2008) Heidelberg; Shur, V.Y., (2010) Advanced Piezoelectric Materials: Science and Technology, pp. 204-238. , K. Uchino, Chapter 6, Woodhead Publishing Ltd; Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys. Status Solidi A, 32, p. 69; Batchko, R.G., Ya Shur, V., Fejer, M.M., Byer, R.L., Back-switch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett, 75, p. 1673; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, p. 129; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., Wada, S., Enhancement in the piezoelectric properties of BaTiO3-Bi(Mg1=2Ti1=2)O3-BiFeO3 system ceramics by nanodomain (2013) Ceram. Int, 39, p. S695; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys. B, 81, p. 729; Shur, V.Y., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman and piezoelectric force icroscopy (2014) J. Appl. Phys, 116; Shur, V.Y., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett, 87; Sones, C.L., Mailis, S., Brocklesby, W.S., Eason, R.W., Owen, J.R., Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations (2002) J. Mater. Chem, 12, p. 295; Alexe, M., Gruverman, A.L., (2004) Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach, , Springer-Verlag, Berlin; Kalinin, S.V., Gruverman, A.L., (2007) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, , Springer Science+Business Media, LLC; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J. Mater. Sci, 41, p. 107; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys, 73; Kalinin, S., Rar, A., Jesse, S., A decade of piezoresponse force microscopy: Progress, challenges and opportunities (2006) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, p. 2226; Kalinin, S.V., Bonnell, D.A., Imaging mechanism of piezo-response force microscopy of ferroelectric surfaces (2002) Phys. Rev. B, 65; Shur, V.Y., Shikhova, V.A., Ievlev, A.V., Zelenovskiy, P.S., Neradovskiy, M.M., Pelegov, D.V., Ivleva, L.I., Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals (2012) J. Appl. Phys, 112; Shur, V.Y., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., Study of nanoscale domain structure formation using raman confocal microscopy (2010) Ferroelectrics, 398, p. 91; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys, 110; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, , North-Holland, Amsterdam; Miller, R., Weinreich, G., Mechanism for the sidewise motion of 180 domain walls in barium titanate (1960) Phys. Rev, 117, p. 1460; Shur, V.Y., Ferroelectric Thin Films: Synthesis and Basic Properties (1996) Ferroelectricity and Related Phenomena Series, 10, pp. 153-192. , C. A. Paz de Araujo, J. F. Scott and G. W. Taylor, Chapter 6, Gordon & Breach Science Publ; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family (2010) Phys. Solid State, 52, p. 2147; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Y., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, p. 1; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , Consultants Bureau, New York; Lambeck, P.V., Jonker, G.H., The nature of domain stabilization in ferroelectric perovskites (1986) J. Phys. Chem. Solids, 47, p. 453; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features (2001) J. Appl. Phys, 90, p. 1387; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, , Springer New York, New York, NY; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Tonkachyova, N.A., Change of domain structure of lead germanate in strong electric field (1992) Ferroelectrics, 126, p. 371; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Rumyantsev, E.L., Tonkachyova, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Lett, 53, p. 615; Dolbilov, M.A., Shishkin, E.I., Shur, V.Y., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398, p. 108; Dolbilov, M.A., Shur, V.Y., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange (2013) Ferroelectrics, 442, p. 82; Eliseev, E., Morozovska, A., Svechnikov, G., Rumyantsev, E., Shishkin, E., Shur, V., Kalinin, S., Screening and retardation effects on 180 -domain wall motion in ferroelectrics: Wall velocity and nonlinear dynamics due to polarization-screening charge interactions (2008) Phys. Rev. B, 78; Gruverman, A., Kholkin, A., Nanoscale ferroelectrics: Processing, characterization and future trends (2006) Rep. Prog. Phys, 69, p. 2443; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett, p. 86; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2013) Nat. Phys, 10, p. 59; Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett, 41, p. 1673; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics, 221, p. 157; Dolbilov, M.A., Shur, V.Y., Shishkin, E.I., Sarmanova, M.F., Nikolaeva, E.V., Tascu, S., Baldi, P., De Micheli, M.P., Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate (2008) Ferroelectrics, 374, p. 14; De Micheli, M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate (2006) Ferroelectrics, 340, p. 49; Nikolaeva, E.V., Shur, V.Y., Dolbilov, M.A., Shishkin, E.I., Kuznetsov, D.K., Sarmanova, M.F., Plaksin, O.A., Gavrilov, N.V., Formation of nanoscale domain structures and abnormal switching kinetics in lithium niobate with surface layer modified by implantation of copper ions (2008) Ferroelectrics, 374, p. 73; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions (2006) Ferroelectrics, 341, p. 85; Kuznetsov, D.K., Shur, V.Y., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation (2008) Ferroelectrics, 373, p. 133; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Pelegov, D.V., Pelegova, E.V., Osipov, V.V., Ivanov, M.G., Orlov, A.N., Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate (2008) Phys. Solid State, 50, p. 717; Kuznetsov, D.K., Shur, V.Y., Mingaliev, E.A., Negashev, S.A., Lobov, A.I., Rumyantsev, E.L., Novikov, P.A., Nanoscale domain structuring in lithium niobate single crystals by pulse laser heating (2010) Ferroelectrics, 398, p. 49; Mingaliev, E.A., Shur, V.Y., Kuznetsov, D.K., Negashev, S.A., Lobov, A.I., Formation of stripe domain structures by pulse laser irradiation of LiNbO3 crystals (2010) Ferroelectrics, 399, p. 7; Lobov, A.I., Shur, V.Y., Kuznetsov, D.K., Negashev, S.A., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Discrete switching by growth of nano-scale domain rays under highlynonequilibrium conditions in lithium niobate single crystals (2008) Ferroelectrics, 373, p. 99; Akhmatkhanov, A.R., Shur, V.Y., Baturin, I.S., Zorikhin, D.V., Lukmanova, A.M., Zelenovskiy, P.S., Neradovskiy, M.M., Domain kinetics in lithium niobate single crystals with photoresist dielectric layer (2012) Ferroelectrics, 439, p. 3; Feder, J., (1988) Fractals, , Plenum, New York; Shur, V.Y., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J. Appl. Phys, 112; Akhmatkhanov, A.R., Chuvakova, M.A., Baturin, I.S., Shur, V.Y., Formation of self-assembled domain structures in MgOSLT (2015) Ferroelectrics, 476, p. 76; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in ferroelectric crystals: Growth of the frozen domains (2012) J. Appl. Phys, 111; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in stoichiometric LiTaO3 crystals produced by vapor transport equilibration (2012) Ferroelectrics, 426, p. 142; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett, 77, p. 3636; Shur, V.Y., Lobov, A.I., Rumyantsev, E.L., Kuznetsov, D.K., 3D modeling of domain structure evolution during discrete switching in lithium niobate (2010) Ferroelectrics, 399, p. 68; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., Interactions between light waves in a nonlinear dielectric (1962) Phys. Rev, 127, p. 1918; Hum, D.S., Fejer, M.M., (2007) Quasi-Phasematching, C. R. Phys, 8, p. 180; Harris, S.E., Proposed backward wave oscillation in the infrared (1966) Appl. Phys. Lett, 9, p. 114 |