Self-assembled domain structures: From micro- to nanoscale / Shur V., Akhmatkhanov A., Lobov A., Turygin A. // Journal of Advanced Dielectrics. - 2015. - V. 5, l. 2.

ISSN:
2010135X
Type:
Article
Abstract:
The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain-domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group. © The Authors.
Author keywords:
Lithium niobate; Lithium tantalate; Nanodomain engineering; Nanodomain structures; Self-assembling
Index keywords:
нет данных
DOI:
10.1142/S2010135X15500150
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009412722&doi=10.1142%2fS2010135X15500150&partnerID=40&md5=7291b0ca078ee735298125805808e197
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 1550015
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009412722&doi=10.1142%2fS2010135X15500150&partnerID=40&md5=7291b0ca078ee735298125805808e197
Affiliations Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, Ekaterinburg, Russian Federation
Author Keywords Lithium niobate; Lithium tantalate; Nanodomain engineering; Nanodomain structures; Self-assembling
Funding Details RFMEFI59414X0011, Minobrnauka, Ministry of Education and Science of the Russian Federation
Funding Text The equipment of the Ural Center for Shared Use “Modern Nanotechnology” Ural Federal University has been used. The research was made possible by Russian Scientific Foundation (Grant 14-12-00826) and in part by Ministry of Education and Science of the Russian Federation (UID RFMEFI59414X0011).
References Shur, V.Y., (2008) Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and Applications, pp. 622-669. , Z.-G. Ye, Chapter 21, Woodhead Publishing Ltd; Shur, V.Y., Domain nanotechnology in ferroelectrics: Nano-domain engineering in lithium niobate crystals (2008) Ferroelectrics, 373, p. 1; Shur, V.Y., Domain nanotechnology in lithium niobate and lithium tantalate crystals (2010) Ferroelectrics, 399, p. 97; Shur, V.Y., (2005) Nucleation Theory and Applications, pp. 178-214. , J.W.P. Schmelzer, Chapter 6, WILEY-VCH, Weinheim; Shur, V.Y., Kinetics of polarization reversal in normal and relaxor ferroelectrics: Relaxation effects (1998) Phase Transit, 65, p. 49; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Sindel, J., Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate (2001) Ferroelectrics, 253, p. 105; Fousek, J., Cross, L.E., Open issues in application aspects of domains in ferroic materials (2003) Ferroelectrics, 293, p. 43; Wada, S., (2008) Handbook of Advanced Dielectrics Piezoelectric Ferroelectric Materials, pp. 266-303. , Z-G. Ye, Chapter 10, Woodhead Publishing; Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.-E., Shrout, T.R., Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations (1999) Jpn. J. Appl. Phys, 38, p. 5505; Yamada, M., Nada, N., Saitoh, M., Watanabe, K., (1993) Appl. Phys. Lett, 62, p. 435; Webjorn, J., Pruneri, V., Russell, P.S.J., Barr, J.R.M., Hanna, D.C., (1994) Electron. Lett, 30, p. 894; Myers, L.E., Bosenberg, W.R., Miller, G.D., Eckardt, R.C., Fejer, M.M., Byer, R.L., (1995) Opt. Lett, 20, p. 52; Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., Pierce, J.W., (1995) J. Opt. Soc. Am. B, 12, p. 2102; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Fursov, D.V., Batchko, R.G., Eyres, L.A., Byer, R.L., Nanoscale backswitched domain patterning in lithium niobate (2000) Appl. Phys. Lett, 76, p. 143; Shur, V.Y., Shishkin, E., Rumyantsev, E., Nikolaeva, E., Shur, A., Batchko, R., Fejer, M., Kitamura, K., Self-Organization in LiNbO3 and LiTaO3: Formation of micro- and nano-scale domain patterns (2004) Ferroelectrics, 304, p. 111; Shur, V.Y., Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 (2006) J. Mater. Sci, 41, p. 199; Canalias, C., Pasiskevicius, V., Fokine, M., Laurell, F., Back- ward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4 (2005) Appl. Phys. Lett, 86; Shur, V.Y., Domain nanotechnology in ferroelectric single crystals: Lithium niobate and lithium tantalate family (2013) Ferroelectrics, 443, p. 71; Boes, A., Yudistira, D., Crasto, T., Steigerwald, H., Sivan, V., Limboeck, T., Friend, J., Mitchell, A., Ultraviolet laser induced domain inversion on chromium coated lithium niobate crystals (2014) Opt. Mater. Express, 4, p. 241; Ying, C.Y.J., Muir, A.C., Valdivia, C.E., Steigerwald, H., Sones, C.L., Eason, R.W., Soergel, E., Mailis, S., Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals (2012) Laser Photon. Rev, 6, p. 526; Kuz’Minov, Y.S., (1997) Lithium Niobate Crystals, , Cambridge International Science Publishing, Cambridge; Wong, K.K., (2002) Properties of Lithium Niobate, , The Institution of Engineering and Technology, London; Volk, T., Wohlecke, M., Lithium Niobate (Springer Berlin Heidelberg, Berlin (2008) Heidelberg; Shur, V.Y., (2010) Advanced Piezoelectric Materials: Science and Technology, pp. 204-238. , K. Uchino, Chapter 6, Woodhead Publishing Ltd; Newnham, R.E., Miller, C.S., Cross, L.E., Cline, T.W., Tailored domain patterns in piezoelectric crystals (1975) Phys. Status Solidi A, 32, p. 69; Batchko, R.G., Ya Shur, V., Fejer, M.M., Byer, R.L., Back-switch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett, 75, p. 1673; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Batchko, R.G., Miller, G.D., Fejer, M.M., Byer, R.L., Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications (2000) Ferroelectrics, 236, p. 129; Byer, R.L., Quasi-phasematched nonlinear interactions and devices (1997) J. Nonlinear Opt. Phys. Mater., 6, p. 549; Mitsui, R., Fujii, I., Nakashima, K., Kumada, N., Kuroiwa, Y., Wada, S., Enhancement in the piezoelectric properties of BaTiO3-Bi(Mg1=2Ti1=2)O3-BiFeO3 system ceramics by nanodomain (2013) Ceram. Int, 39, p. S695; Soergel, E., Visualization of ferroelectric domains in bulk single crystals (2005) Appl. Phys. B, 81, p. 729; Shur, V.Y., Zelenovskiy, P.S., Micro-and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman and piezoelectric force icroscopy (2014) J. Appl. Phys, 116; Shur, V.Y., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett, 87; Sones, C.L., Mailis, S., Brocklesby, W.S., Eason, R.W., Owen, J.R., Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations (2002) J. Mater. Chem, 12, p. 295; Alexe, M., Gruverman, A.L., (2004) Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach, , Springer-Verlag, Berlin; Kalinin, S.V., Gruverman, A.L., (2007) Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, , Springer Science+Business Media, LLC; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J. Mater. Sci, 41, p. 107; Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Local polarization dynamics in ferroelectric materials (2010) Rep. Prog. Phys, 73; Kalinin, S., Rar, A., Jesse, S., A decade of piezoresponse force microscopy: Progress, challenges and opportunities (2006) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, p. 2226; Kalinin, S.V., Bonnell, D.A., Imaging mechanism of piezo-response force microscopy of ferroelectric surfaces (2002) Phys. Rev. B, 65; Shur, V.Y., Shikhova, V.A., Ievlev, A.V., Zelenovskiy, P.S., Neradovskiy, M.M., Pelegov, D.V., Ivleva, L.I., Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals (2012) J. Appl. Phys, 112; Shur, V.Y., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., Study of nanoscale domain structure formation using raman confocal microscopy (2010) Ferroelectrics, 398, p. 91; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys, 110; Fatuzzo, E., Merz, W.J., (1967) Ferroelectricity, , North-Holland, Amsterdam; Miller, R., Weinreich, G., Mechanism for the sidewise motion of 180 domain walls in barium titanate (1960) Phys. Rev, 117, p. 1460; Shur, V.Y., Ferroelectric Thin Films: Synthesis and Basic Properties (1996) Ferroelectricity and Related Phenomena Series, 10, pp. 153-192. , C. A. Paz de Araujo, J. F. Scott and G. W. Taylor, Chapter 6, Gordon & Breach Science Publ; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Nebogatikov, M.S., Dolbilov, M.A., Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family (2010) Phys. Solid State, 52, p. 2147; Baturin, I.S., Akhmatkhanov, A.R., Shur, V.Y., Nebogatikov, M.S., Dolbilov, M.A., Rodina, E.A., Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family (2008) Ferroelectrics, 374, p. 1; Fridkin, V.M., (1980) Ferroelectric Semiconductors, , Consultants Bureau, New York; Lambeck, P.V., Jonker, G.H., The nature of domain stabilization in ferroelectric perovskites (1986) J. Phys. Chem. Solids, 47, p. 453; Tagantsev, A.K., Stolichnov, I., Colla, E.L., Setter, N., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features (2001) J. Appl. Phys, 90, p. 1387; Tagantsev, A.K., Cross, L.E., Fousek, J., (2010) Domains in Ferroic Crystals and Thin Films, , Springer New York, New York, NY; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Tonkachyova, N.A., Change of domain structure of lead germanate in strong electric field (1992) Ferroelectrics, 126, p. 371; Shur, V.Y., Gruverman, A.L., Ponomarev, N.Y., Rumyantsev, E.L., Tonkachyova, N.A., Domain structure kinetics in ultrafast polarization switching in lead germanate (1991) JETP Lett, 53, p. 615; Dolbilov, M.A., Shishkin, E.I., Shur, V.Y., Tascu, S., Baldi, P., De Micheli, M.P., Abnormal domain growth in lithium niobate with surface layer modified by proton exchange (2010) Ferroelectrics, 398, p. 108; Dolbilov, M.A., Shur, V.Y., Shishkina, E.V., Angudovich, E.S., Ushakov, A.D., Baldi, P., De Micheli, M.P., Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange (2013) Ferroelectrics, 442, p. 82; Eliseev, E., Morozovska, A., Svechnikov, G., Rumyantsev, E., Shishkin, E., Shur, V., Kalinin, S., Screening and retardation effects on 180 -domain wall motion in ferroelectrics: Wall velocity and nonlinear dynamics due to polarization-screening charge interactions (2008) Phys. Rev. B, 78; Gruverman, A., Kholkin, A., Nanoscale ferroelectrics: Processing, characterization and future trends (2006) Rep. Prog. Phys, 69, p. 2443; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett, p. 86; Ievlev, A.V., Jesse, S., Morozovska, A.N., Strelcov, E., Eliseev, E.A., Pershin, Y.V., Kumar, A., Kalinin, S.V., Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching (2013) Nat. Phys, 10, p. 59; Batchko, R.G., Shur, V.Y., Fejer, M.M., Byer, R.L., Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation (1999) Appl. Phys. Lett, 41, p. 1673; Shur, V., Rumyantsev, E., Batchko, R., Miller, G., Fejer, M., Byer, R., Physical basis of the domain engineering in the bulk ferroelectrics (1999) Ferroelectrics, 221, p. 157; Dolbilov, M.A., Shur, V.Y., Shishkin, E.I., Sarmanova, M.F., Nikolaeva, E.V., Tascu, S., Baldi, P., De Micheli, M.P., Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate (2008) Ferroelectrics, 374, p. 14; De Micheli, M.P., Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate (2006) Ferroelectrics, 340, p. 49; Nikolaeva, E.V., Shur, V.Y., Dolbilov, M.A., Shishkin, E.I., Kuznetsov, D.K., Sarmanova, M.F., Plaksin, O.A., Gavrilov, N.V., Formation of nanoscale domain structures and abnormal switching kinetics in lithium niobate with surface layer modified by implantation of copper ions (2008) Ferroelectrics, 374, p. 73; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Nikolaeva, E.V., Dolbilov, M.A., Orlov, A.N., Osipov, V.V., Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions (2006) Ferroelectrics, 341, p. 85; Kuznetsov, D.K., Shur, V.Y., Negashev, S.A., Lobov, A.I., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Osipov, V.V., Formation of nano-scale domain structures in lithium niobate using high-intensity laser irradiation (2008) Ferroelectrics, 373, p. 133; Shur, V.Y., Kuznetsov, D.K., Lobov, A.I., Pelegov, D.V., Pelegova, E.V., Osipov, V.V., Ivanov, M.G., Orlov, A.N., Self-similar surface nanodomain structures induced by laser irradiation in lithium niobate (2008) Phys. Solid State, 50, p. 717; Kuznetsov, D.K., Shur, V.Y., Mingaliev, E.A., Negashev, S.A., Lobov, A.I., Rumyantsev, E.L., Novikov, P.A., Nanoscale domain structuring in lithium niobate single crystals by pulse laser heating (2010) Ferroelectrics, 398, p. 49; Mingaliev, E.A., Shur, V.Y., Kuznetsov, D.K., Negashev, S.A., Lobov, A.I., Formation of stripe domain structures by pulse laser irradiation of LiNbO3 crystals (2010) Ferroelectrics, 399, p. 7; Lobov, A.I., Shur, V.Y., Kuznetsov, D.K., Negashev, S.A., Pelegov, D.V., Shishkin, E.I., Zelenovskiy, P.S., Discrete switching by growth of nano-scale domain rays under highlynonequilibrium conditions in lithium niobate single crystals (2008) Ferroelectrics, 373, p. 99; Akhmatkhanov, A.R., Shur, V.Y., Baturin, I.S., Zorikhin, D.V., Lukmanova, A.M., Zelenovskiy, P.S., Neradovskiy, M.M., Domain kinetics in lithium niobate single crystals with photoresist dielectric layer (2012) Ferroelectrics, 439, p. 3; Feder, J., (1988) Fractals, , Plenum, New York; Shur, V.Y., Chezganov, D.S., Nebogatikov, M.S., Baturin, I.S., Neradovskiy, M.M., Formation of dendrite domain structures in stoichiometric lithium niobate at elevated temperatures (2012) J. Appl. Phys, 112; Akhmatkhanov, A.R., Chuvakova, M.A., Baturin, I.S., Shur, V.Y., Formation of self-assembled domain structures in MgOSLT (2015) Ferroelectrics, 476, p. 76; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in ferroelectric crystals: Growth of the frozen domains (2012) J. Appl. Phys, 111; Shur, V.Y., Akhmatkhanov, A.R., Baturin, I.S., Fatigue effect in stoichiometric LiTaO3 crystals produced by vapor transport equilibration (2012) Ferroelectrics, 426, p. 142; Shur, V.Y., Rumyantsev, E.L., Nikolaeva, E.V., Shishkin, E.I., Formation and evolution of charged domain walls in congruent lithium niobate (2000) Appl. Phys. Lett, 77, p. 3636; Shur, V.Y., Lobov, A.I., Rumyantsev, E.L., Kuznetsov, D.K., 3D modeling of domain structure evolution during discrete switching in lithium niobate (2010) Ferroelectrics, 399, p. 68; Armstrong, J., Bloembergen, N., Ducuing, J., Pershan, P., Interactions between light waves in a nonlinear dielectric (1962) Phys. Rev, 127, p. 1918; Hum, D.S., Fejer, M.M., (2007) Quasi-Phasematching, C. R. Phys, 8, p. 180; Harris, S.E., Proposed backward wave oscillation in the infrared (1966) Appl. Phys. Lett, 9, p. 114
Publisher World Scientific Publishing Co. Pte Ltd
Language of Original Document English
Abbreviated Source Title J. Adv. Dielectr.
Source Scopus