Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes / Esin A., Baturin I., Nikitin T., Vasilev S., Salehli F., Shur V.Ya., Kholkin A.L. // Applied Physics Letters. - 2016. - V. 109, l. 14.

ISSN:
00036951
Type:
Article
Abstract:
The natural ability of peptides and proteins to self-assemble into elongated fibrils is associated with several neurogenerative diseases. Diphenylalanine (FF) tubular structures that have the same structural motif as in Aβ-amyloid peptide (involved in Alzheimer's disease) are shown to possess remarkable physical properties ranging from piezoelectricity to electrochemical activities. In this work, we also discover a significant pyroelectric activity and measure the temperature dependence of the pyroelectric coefficient in the temperature range of 20-100 °C. Pyroelectric activity decreases with temperature contrary to most ferroelectric materials and significant relaxation of pyrocurrent is observed on cooling after heating above 50 °C. This unusual behavior is assigned to the temperature-induced disorder of water molecules inside the nanochannels. Pyroelectric coefficient and current and voltage figures of merit are estimated and future applications of pyroelectric peptide nanostructures in biomedical applications are outlined. © 2016 Author(s).
Author keywords:
Index keywords:
Crystallography; Medical applications; Molecules; Neurodegenerative diseases; Peptides; Proteins; Temperature distribution; Biomedical applications; Electrochemical activities; Future applications; Ne
DOI:
10.1063/1.4962652
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990030087&doi=10.1063%2f1.4962652&partnerID=40&md5=9590cb459d44b29beb7b7a2f934c8f2c
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 142902
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-84990030087&doi=10.1063%2f1.4962652&partnerID=40&md5=9590cb459d44b29beb7b7a2f934c8f2c
Affiliations Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Department of Physics Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey; Physics Department, CICECO-Materials Institute of Aveiro, University of Aveiro, Aveiro, Portugal
References Ariga, K., Mori, T., Hill, J.P., (2012) Adv. Mater., 24, p. 158; Valery, C., Artzner, F., Paternostre, M., (2011) Soft Matter, 7, p. 9583; Adler-Abramovich, L., Gazit, E., (2014) Chem. Soc. Rev., 43, p. 6881; Yanlian, Y., Ulung, K., Xiume, W., Horii, A., Yokoi, H., Shuguang, Z., (2009) Nano Today, 4, p. 193; Yemini, M., Reches, M., Rishpon, J., Gazit, E., (2005) Nano Lett., 5, p. 183; Ryu, J., Lim, S.Y., Park, C.B., (2009) Adv. Mater., 21, p. 1577; Cipriano, T., Knotts, G., Laudari, A., Bianchi, R.C., Alves, W.A., Guha, S., (2014) ACS Appl. Mater. Interfaces, 6, p. 21408; Reches, M., Gazit, E., (2003) Science, 300, p. 625; Reches, M., Gazit, E., (2004) Nano Lett., 4, p. 581; Li, Q., Jia, Y., Dai, L., Yang, Y., Li, J., (2015) ACS Nano, 9, p. 2689; Kim, J., Han, T.H., Kim, Y.L., Park, S., Choi, J., Churchill, D.G., Kim, S.O., Ihee, H., (2010) Adv. Mater., 22, p. 583; Adler-Abramovich, L., Kol, N., Yanai, I., Barlam, D., Shneck, R.Z., Gazit, E., Rousso, I., (2010) Angew. Chem. Int. Ed., 49, p. 9939; Wang, M., Du, L., Wu, X., Xiong, S., Chu, P.K., (2011) ACS Nano, 5, p. 4448; Kholkin, A.L., Amdursky, N., Bdikin, I., Rosenman, G., Gazit, E., (2010) ACS Nano, 4, p. 610; Nikitin, T., Kopyl, S., Shur, V.Ya., Kopelevich, Y.V., Kholkin, A.L., (2016) Phys. Lett. A, 380, p. 1658; De La Rica, R., Matsui, H., (2010) Chem. Soc. Rev., 39, p. 3499; Whatmore, R., (1986) Rep. Prog. Phys., 49, p. 1335; Lang, S.B., (1966) Nature, 212, p. 704; Morozovska, A.N., Eliseev, E.A., Svechnikov, G.S., Kalinin, S.V., (2010) J. Appl. Phys., 108; Bowen, C.R., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R., (2014) Energy Environ. Sci., 7, p. 3836; Yang, Y., Guo, W., Pradel, K.C., Zhu, G., Zhou, Y., Hu, Y., Lin, L., Wang, Z.L., (2012) Nano Lett., 12, p. 2833; Nuraeva, A., Vasilev, S., Vasileva, D., Zelenovskiy, P., Chezganov, D., Esin, A., Kopyl, S., Kholkin, A.L., (2016) Cryst. Growth Des., 16, p. 1472; Chynoweth, A.G., (1956) J. Appl. Phys., 27, p. 78; Kopyl, S., (2016), private communication; Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S., (2014) Energy Environ. Sci., 7, p. 25; Gan, Z., Wu, X., Zhu, X., Shen, J., (2013) Angew. Chem. Int. Ed., 52, p. 2055; Heredia, A., Bdikin, I., Kopyl, S., Mishina, E., Semin, S., Sigov, A., German, K., Kholkin, A.L., (2010) J. Phys. D, 43; Vasilev, S., Zelenovskiy, P., Vasileva, D., Nuraeva, A., Shur, V.Y., Kholkin, A.L., (2016) J. Phys. Chem. Sol., 93, p. 68; Ferreira, P.M.G.L., Ishikawa, M.S., Kogikoski, S., Jr., Alves, W.A., Martinho, H., (2015) Phys. Chem. Chem. Phys., 17, p. 32126; Luo, Z., Akerman, B., Zhang, S., Norden, B., (2010) Soft Matter, 6, p. 2260; Brites, C.D.S., Lima, P.P., Silva, N.J.O., Millan, A., Amaral, V.S., Palacio, F., Carlos, L.D., (2012) Nanoscale, 4, p. 4799; Fletcher, P.C., Lee, B., King, W.P., (2012) Nanotechnology, 23; Arai, S., Lee, S.-C., Zhai, D., Suzuki, M., Chang, Y.T., (2014) Sci. Rep., 4, p. 6701; Lopes, R.P., Kholkin, A.L., (2011) Energy Harvesting with Piezoelectric and Pyroelectric Materials, pp. 122-140. , in, edited by N. Muensit (Trans Tech Publications, Switzerland); Adler-Abramovich, L., Aronov, D., Beker, P., Yevnin, M., Stempler, S., Rosenman, G., Gazit, E., (2009) Nat. Nanotechnol., 4, p. 849; Nguyen, V., Jenkins, K., Yang, R., (2015) Nano Energy, 17, p. 323; Moulton, S.E., Higgins, M.J., Kapsa, R.M.I., Wallace, G.G., (2012) Adv. Funct. Mater., 22, p. 2003
Correspondence Address Kholkin, A.L.; Institute of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: kholkin@ua.pt
Publisher American Institute of Physics Inc.
CODEN APPLA
Language of Original Document English
Abbreviated Source Title Appl Phys Lett
Source Scopus