The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics / Alikin D.O., Turygin A.P., Walker J., Bencan A., Malic B., Rojac T., Shur V.Y., Kholkin A.L. // Acta Materialia. - 2017. - V. 125, l. . - P. 265-273.

ISSN:
13596454
Type:
Article
Abstract:
Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi0.88Sm0.12FeO3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics. © 2016
Author keywords:
Bismuth ferrite; Domain kinetics; Domain structure; Local switching; Phase assemblage; Piezoceramics; Topological defects
Index keywords:
Bismuth; Ceramic materials; Defects; Domain walls; Electric fields; Ferrite; Ferroelectric ceramics; Ferroelectric materials; Ferroelectricity; Grain boundaries; High resolution transmission electron
DOI:
10.1016/j.actamat.2016.11.063
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006265690&doi=10.1016%2fj.actamat.2016.11.063&partnerID=40&md5=6a36ba0569a4f385f44d68e10fc3d726
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006265690&doi=10.1016%2fj.actamat.2016.11.063&partnerID=40&md5=6a36ba0569a4f385f44d68e10fc3d726
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Ave., Ekaterinburg, Russian Federation; Electronic Ceramic Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana, Slovenia; Materials Research Institute, Pennsylvania State University, University Park, PA, United States; Department of Physics & CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
Author Keywords Bismuth ferrite; Domain kinetics; Domain structure; Local switching; Phase assemblage; Piezoceramics; Topological defects
Funding Details 16-32-60083-mol_a_dk, RFBR, Russian Foundation for Basic Research; PT2020, FEDER, Federación Española de Enfermedades Raras; UID RFMEFI58715X0022, Minobrnauka, Ministry of Education and Science of the Russian Federation
Funding Text The equipment of the Ural Center for Shared Use “Modern nanotechnology” (UrFU) was used. Samples were prepared at the Jožef Stefan institutie, department of Electronic Ceramics, Slovenia. The research was made possible with the financial support of RFBR (Grants 16-32-60083-mol_a_dk), by the Ministry of Education and Science of the Russian Federation (UID RFMEFI58715X0022). The Slovenian Research Agency is acknowledged for the financial support through Russian-Slovenian bilateral project BI-RU/14-15-032, program P2-0105 and project J2-5483. This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.
References Catalan, G., Scott, J.F., Physics and applications of bismuth ferrite (2009) Adv. Mater., 21, p. 2463; Ramesh, R., Spaldin, N.A., Multiferroics: progress and prospects in thin films (2007) Nat. Mater., 6, pp. 21-29; Martin, L.W., Crane, S.P., Chu, Y.-H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.-H., Ramesh, R., Multiferroics and magnetoelectrics: thin films and nanostructures (2008) J. Phys. Condens. Mater., 20, p. 434220; Gruverman, A., Kalinin, S.V., Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics (2006) J. Mater. Sci., 41, pp. 107-116; Balke, N., Bdikin, I., Kalinin, S.V., Kholkin, A.L., Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future (2009) J. Am. Ceram. Soc., 92, pp. 1629-1647; Hong, S., Ecabart, B., Colla, E.L., Setter, N., Three-dimensional ferroelectric domain imaging of bulk Pb(Zr,Ti)O3 by atomic force microscopy (2004) Appl. Phys. Lett., 84, pp. 2382-2384; Park, M., No, K., Hong, S., Visualization and manipulation of meta-stable polarization variants in multiferroic materials (2013) AIP Adv., 3, p. 042114; Seidel, J., Maksymovych, P., Batra, Y., Katan, A., Yang, S.-Y., He, Q., Baddorf, A.P., Ramesh, R., Domain wall conductivity in La-Doped BiFeO3 (2010) Phys. Rev. Lett., 105, p. 197603; Seidel, J., Martin, L.W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M.E., Ramesh, R., Conduction at domain walls in oxide multiferroics (2009) Nat. Mater., 8, pp. 229-234; Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Ramesh, R., Deterministic switching of ferromagnetism at room temperature using an electric field (2014) Nature, 516, pp. 370-373; Fujino, S., Murakami, M., Anbusathaiah, V., Lim, S.-H., Nagarajan, V., Fennie, C.J., Wuttig, M., Takeuchi, I., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite (2008) Appl. Phys. Lett., 92, p. 202904; Kan, D., Pálová, L., Anbusathaiah, V., Cheng, C.J., Fujino, S., Nagarajan, V., Rabe, K.M., Takeuchi, I., Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3 (2010) Adv. Funct. Mater., 20, pp. 1108-1115; Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M., Lead-free piezoceramics (2004) Nature, 432, pp. 84-87; Cheng, C.-J., Kan, D., Lim, S.-H., McKenzie, W.R., Munroe, P.R., Salamanca-Riba, L.G., Withers, R.L., Nagarajan, V., Structural transitions and complex domain structures across a ferroelectric-to-antiferroelectric phase boundary in epitaxial Sm-Doped BiFeO3 thin films (2009) Phys. Rev. B, 80, p. 014109; Kan, D., Cheng, C.J., Nagarajan, V., Takeuchi, I., Composition and temperature-induced structural evolution in La, Sm, and Dy substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries (2011) J. Appl. Phys., 110, p. 4106; Kan, D., Anhusathaiah, V., Takeuchi, I., Chemical substitution-induced ferroelectric polaraization rotation in BiFeO3 (2011) Adv. Mater., 23, pp. 1765-1769; Vasudevan, R.K., Okatan, M.B., Liu, Y.Y., Jesse, S., Yang, J.-C., Liang, W.-I., Chu, Y.-H., Nagarajan, V., Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite (2013) Phys. Rev. B, 88, p. 020402; Maran, R., Yasui, S., Eliseev, E.A., Glinchuk, M.D., Morozovska, A.N., Funakubo, H., Takeuchi, I., Nagarajan, V., Interface control of a morphotropic phase boundary in epitaxial samarium modified bismuth ferrite superlattices (2014) Phys. Rev. B, 90, p. 245131; Sun, W., Li, J.-F., Yu, Q., Cheng, L.-Q., Phase transition and piezoelectricity of sol-gel-processed Sm-Doped BiFeO3 thin films on Pt(111)/Ti/SiO2/Si substrates (2015) J. Mat. Chem. C, 3, pp. 2115-2122; Sun, W., Zhou, Z., Li, J.-F., Sol-gel-processed (001)-textured BiFeO3 thin films on Pt(111)/Ti/SiO2/Si substrates with PbO seeding nanocrystals (2016) RSC Adv., 6, pp. 489-494; Sun, W., Li, J.-F., Zhu, F., Yu, Q., Cheng, L.-Q., Zhou, Z., Thickness-dependent phase boundary in Sm-doped BiFeO3 piezoelectric thin films on Pt/Ti/SiO2/Si substrates (2015) PCCP, 17, pp. 19759-19765; Walker, J., Simons, H., Alikin, D.O., Turygin, A.P., Shur, V.Y., Kholkin, A.L., Ursic, H., Rojac, T., Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric (2016) Sci. Rep., 6, p. 19630; Khomchenko, V.A., Paixão, J.A., Costa, B.F.O., Karpinsky, D.V., Kholkin, A.L., Troyanchuk, I.O., Shvartsman, V.V., Kleemann, W., Structural, ferroelectric and magnetic properties of Bi0.85Sm0.15FeO3 perovskite (2011) Cryst. Res. Technol., 46, pp. 238-242; Alikin, D.O., Turygin, A.P., Walker, J., Rojac, T., Shvartsman, V.V., Shur, V.Y., Kholkin, A.L., Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy (2015) J. Appl. Phys., 118, p. 072004; Shvartsman, V.V., Kleemann, W., Haumont, R., Kreisel, J., Large bulk polarization and regular domain structure in ceramic BiFeO3 (2007) Appl. Phys. Lett., 90, p. 172115; Khomchenko, V.A., Paixão, J.A., Shvartsman, V.V., Borisov, P., Kleemann, W., Karpinsky, D.V., Kholkin, A.L., Effect of Sm substitution on ferroelectric and magnetic properties of BiFeO3 (2010) Scr. Mater., 62, pp. 238-241; Uchino, K., Piezoelectric Actuators and Ultrasonic Motors (1996), Kluwer accademic publishers; Walker, J., Bryant, P., Kurusingal, V., Sorrell, C., Kuscer, D., Drazic, G., Bencan, A., Rojac, T., Synthesis-Phase–composition relationship and high electric-field-induced electromechanical behavior of samarium-modified BiFeO3 ceramics (2015) Acta Mater., 83, pp. 149-159; Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Shur, V.Y., Shape of local hysteresis loops measured by means of piezoresponse force microscopy (2010) Ferroelectrics, 398, pp. 26-33; Balke, N., Jesse, S., Li, Q., Maksymovych, P., Baris Okatan, M., Strelcov, E., Tselev, A., Kalinin, S.V., Current and Surface Charge Modified hysteresis loops in ferroelectric thin films (2015) J. Appl. Phys., 118, p. 072013; Moreau, J.M., Michel, C., Gerson, R., James, W.J., Ferroelectric BiFeO3 x-ray and neutron diffraction study (1971) J. Phys. Chem. Solids, 32, pp. 1315-1320; Karimi, S., Reaney, I.M., Levin, I., Sterianou, I., Nd-doped BiFeO3 ceramics with antipolar order (2009) Appl. Phys. Lett., 94, p. 112903; Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., Sterianou, I., Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics (2009) J. Mat. Sci., 44, pp. 5102-5112; Kubota, M., Oka, K., Nakamura, Y., Yabuta, H., Miura, K., Shimakawa, Y., Azuma, M., Sequential phase transitions in Sm substituted BiFeO3 (2011) Jpn. J. Appl. Phys., 50, p. 09NE08; Jankowska-Sumara, I., Antiferroelectric phase transitions in single crystals PbZrO3:Sn revisited (2014) Phase Trans., 87, pp. 685-728; Shvartsman, V.V., Kholkin, A.L., Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals (2007) J. Appl. Phys., 101, p. 064108; Cao, W., Randall, C.A., Grain size and domain size relations in bulk ceramic ferroelectric materials (1996) J. Phys. Chem. Solids, 57, pp. 1499-1505; Wu, A., Vilarinho, P.M., Shvartsman, V.V., Suchaneck, G., Kholkin, A.L., Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy (2005) Nanotechnology, 16, pp. 2587-2595; Shvartsman, V.V., Kholkin, A.L., Domain structure of 0.8Pb(Mg1/3Nb2/3)O3−0.2PbTiO3 studied by piezoresponse force microscopy (2004) Phys. Rev. B, 69, p. 014102; Szafraniak, I., Połomska, M., Hilczer, B., Pietraszko, A., Kępiński, L., Characterization of BiFeO3 nanopowder obtained by mechanochemical synthesis (2007) J. Eur. Ceram. Soc., 27, pp. 4399-4402; Rojac, T., Kosec, M., Part II: mechanochemical treatment of different materials (2010) High-energy Ball-milling: Mechanochemical Processing of Nanopowders, p. 440. , M. Sopricka-Lizer CRC Press, Woodhead Publishing USA; Kong, L.B., Zhang, T.S., Ma, J., Boey, F., Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique (2008) Prog. Mater Sci., 53, pp. 207-322; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain, H., Gruverman, A., Vector piezoresponse force microscopy (2006) Microsc. Microanal, 12, pp. 206-220; Maksymovych, P., Seidel, J., Chu, Y.H., Wu, P., Baddorf, A.P., Chen, L.-Q., Kalinin, S.V., Ramesh, R., Dynamic conductivity of ferroelectric domain walls in BiFeO3 (2011) Nano Lett., 11, pp. 1906-1912; Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.J., Melville, A., Adamo, C., Folkman, C.M., Pan, X., Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces (2011) Nano Lett., 11, pp. 828-834; Balke, N., Winchester, B., Ren, W., Chu, Y.H., Morozovska, A.N., Eliseev, E.A., Huijben, M., Kalinin, S.V., Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 (2011) Nat. Phys., 8, pp. 81-88; Winchester, B., Balke, N., Cheng, X.X., Morozovska, A.N., Kalinin, S., Chen, L.Q., Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films (2015) Appl. Phys. Lett., 107, p. 052903; Balke, N., Choudhury, S., Jesse, S., Huijben, M., Chu, Y.H., Baddorf, A.P., Chen, L.Q., Kalinin, S.V., Deterministic control of ferroelastic switching in multiferroic materials (2009) Nat. Nanotechnol., 4, pp. 868-875; Park, M., Hong, S., Klug, J.A., Bedzyk, M.J., Auciello, O., No, K., Petford-Long, A., Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy (2010) Appl. Phys. Lett., 97, p. 112907; Marincel, D.M., Zhang, H., Jesse, S., Belianinov, A., Okatan, M.B., Kalinin, S.V., Rainforth, W.M., Trolier-Mckinstry, S., Domain wall motion across various grain boundaries in ferroelectric thin films (2015) J. Am. Ceram. Soc., 98, pp. 1848-1857; Marincel, D.M., Zhang, H., Kumar, A., Jesse, S., Kalinin, S.V., Rainforth, W.M., Reaney, I.M., Trolier-McKinstry, S., Influence of a single grain boundary on domain wall motion in ferroelectrics (2014) Adv. Funct. Mater., 24, pp. 1409-1417; Rodriguez, B.J., Choudhury, S., Chu, Y.H., Bhattacharyya, A., Jesse, S., Seal, K., Baddorf, A.P., Kalinin, S.V., Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in bismuth ferrite (2009) Adv. Funct. Mater., 19, pp. 2053-2063; Choudhury, S., Li, Y.L., Krill, I.C., Chen, L.Q., Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations (2007) Act. Mater., 55, pp. 1415-1426; Gruverman, A., Rodriguez, B.J., Nemanich, R.J., Kingon, A.I., Nanoscale observation of photoinduced domain pinning and investigation of imprint behavior in ferroelectric thin films (2002) J. Appl. Phys., 92, pp. 2734-2739; Miller, S.L., Schwank, J.R., Nasby, R.D., Rodgers, M.S., Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions (1991) J. Appl. Phys., 70, pp. 2849-2860; Woo, J., Hong, S., Setter, N., Shin, H., Jeon, J.-U., Pak, Y.E., No, K., Quantitative analysis of the bit size dependence on the pulse width and pulse voltage in ferroelectric memory devices using atomic force microscopy (2001) J. Vac. Sci. Technol. B Microelectron. Nano. Struct., 19, pp. 818-824; Rodriguez, B.J., Nemanich, R.J., Kingon, A., Gruverman, A., Kalinin, S.V., Terabe, K., Liu, X.Y., Kitamura, K., Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy (2005) Appl. Phys. Lett., 86, p. 012906; Agronin, A., Molotskii, M., Rosenwaks, Y., Rosenman, G., Rodriguez, B.J., Kingon, A.I., Gruverman, A., Dynamics of ferroelectric domain growth in the field of atomic force microscope (2006) J. Appl. Phys., 99, p. 104102; Shur, V.Y., Ievlev, A.V., Nikolaeva, E.V., Shishkin, E.I., Neradovskiy, M.M., Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate (2011) J. Appl. Phys., 110, p. 052017; Eliseev, E., Morozovska, A., Svechnikov, G., Rumyantsev, E., Shishkin, E., Shur, V.Y., Kalinin, S., Screening and retardation effects on 180°-Domain wall motion in ferroelectrics: wall velocity and nonlinear dynamics due to polarization-screening charge interactions (2008) Phys. Rev. B, 78, p. 245409; Pan, W., Zhang, Q., Bhalla, A., Cross, L.E., Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics (1989) J. Am. Ceram. Soc., 72, pp. 571-578; Jaffe, B., Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element (1961) Proc. IRE, 49, pp. 1264-1267
Correspondence Address Alikin, D.O.; School of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Ave., Russian Federation; email: denis.alikin@urfu.ru
Publisher Elsevier Ltd
Language of Original Document English
Abbreviated Source Title Acta Mater
Source Scopus