Review ferroelectric domain structure and local piezoelectric properties of lead-free (ka0.5na0.5)nbo3 and bifeo3-based piezoelectric ceramics / Alikin D., Turygin A., Kholkin A., Shur V. // Materials. - 2017. - V. 10, l. 1.

ISSN:
19961944
Type:
Review
Abstract:
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO3 (BFO) and (Ka0.5Na0.5)NbO3 (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure-property relationship in these technologically important material families. © 2017 by the authors.
Author keywords:
BFO; Domain structure; KNN; Local switching; MPB; Piezoelectric properties; PPB
Index keywords:
Ceramic materials; Characterization; Ferroelectric materials; Ferroelectricity; Niobium oxide; Piezoelectric ceramics; Piezoelectricity; Semiconducting lead compounds; Domain structure; Ferroelectric
DOI:
10.3390/ma10010047
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011406179&doi=10.3390%2fma10010047&partnerID=40&md5=dab7d4e2871d1afedd84bb203a7cbd18
Соавторы в МНС:
Другие поля
Поле Значение
Art. No. 47
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011406179&doi=10.3390%2fma10010047&partnerID=40&md5=dab7d4e2871d1afedd84bb203a7cbd18
Affiliations School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russian Federation; Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
Author Keywords BFO; Domain structure; KNN; Local switching; MPB; Piezoelectric properties; PPB
References Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J.S., Ahn, C.W., Jo, W., Lead-free piezoceramics-Where to move on? J (2016) Materiomics, 2, pp. 1-24; Irschik, H., Krommer, M., Vetyukov, Y., On the use of piezoelectric sensors in structural mechanics: Some novel strategies (2010) Sensors, 10, pp. 5626-5641; Safari, A., Novel piezoelectric ceramics and composites for sensor and actuator applications (1999) Mater. Res. Innov., 52, pp. 263-269; Aksel, E., Jones, J.L., Advances in lead-free piezoelectric materials for sensors and actuators (2010) Sensors, 10, pp. 1935-1954; Spanner, K., Koc, B., Piezoelectric motors, an overview (2016) Actuators, 5, p. 6; Directive 2002/95/EC; European Union (2003), Brussels, Belgium; Rojac, T., Bencan, A., Drazic, G., Sakamoto, N., Ursic, H., Jancar, B., Tavcar, G., Malic, B., Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects (2016) Nat. Mater; Potnis, P.R., Tsou, N.T., Huber, J.E., A review of domain modelling and domain imaging techniques in ferroelectric crystals (2011) Materials, 4, pp. 417-447; Shur, V.Y., Zelenovskiy, P.S., Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy (2014) J. Appl. Phys., 116, p. 066802; Liu, H., Wang, X., Large electric polarization in BiFeO3 film prepared via a simple sol-gel process (2008) J. Sol-Gel Sci. Technol., 47, pp. 154-157; Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., Damjanovic, D., BiFeO3 ceramics: Processing, electrical, and electromechanical properties (2014) J. Am. Ceram. Soc., 97, pp. 1993-2011; Maître, A., François, M., Gachon, J.C., Experimental study of the Bi2O3-Fe2O3 pseudo-binary system (2004) J. Phase Equilibria Diffus., 25, pp. 59-67; Achenbach, G.D., James, W.J., Preparation of single-phase polycrystalline BiFeO3 (1967) J. Am. Ceram. Soc., 50, p. 437; Selbach, S.M., Einarsrud, M.A., Grande, T., On the thermodynamic stability of BiFeO3 (2009) Chem. Mater., 21, pp. 169-173; Selbach, S.M., Tybell, T., Einarsrud, M., Grande, T., Size-dependent properties of multiferroic BiFeO3 nanoparticles (2007) Chem. Mater., 19, pp. 6478-6484; Valant, M., Axelsson, A., Alford, N., Bifeo, P., Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3 (2007) Chem. Mater., 19, pp. 5431-5436; Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Jian, L., Kholkin, A.L., Lopes, A.M.L., Pogorelov, Y.G., Maglione, M., Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite (2008) J. Appl. Phys., 103, p. 024105; Nalwa, K.S., Garg, A., Upadhyaya, A., Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite (2008) Mater. Lett., 62, pp. 878-881; Leist, T., Granzow, T., Jo, W., Rödel, J., Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics (2010) J. Appl. Phys., 108, p. 014103; Ozaki, T., Matsuo, H., Noguchi, Y., Miyayama, M., Mori, S., Microstructures related to ferroelectric properties in (Bi0.5K0.5)TiO3-BiFeO3 (2010) Jpn. J. Appl. Phys., 49; Khomchenko, V.A., Paixão, J.A., Kiselev, D.A., Kholkin, A.L., Intermediate structural phases in rare-earth substituted BiFeO3 (2010) Mater. Res. Bull., 45, pp. 416-419; Fujino, S., Murakami, M., Anbusathaiah, V., Lim, S.H., Nagarajan, V., Fennie, C.J., Wuttig, M., Takeuchi, I., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite (2008) Appl. Phys. Lett., 92, p. 202904; Palai, R., Katiyar, R.S., Schmid, H., Tissot, P., Clark, S.J., Robertson, J., Redfern, S.A.T., Scott, J.F., β phase and gamma;-β metal-insulator transition in multiferroic BiFeO3 (2008) Phys. Rev. B, 77, p. 014110; Jaeger, R.E., Egerton, L., Hot pressing of potassium-sodium niobates (1962) J. Am. Ceram. Soc., 45, pp. 209-213; Ahtee, M., Hewat, A.W., Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction (1978) Acta Crystallogr. A, 34, pp. 309-317; Ahtee, M., Glazer, A.M., Lattice parameters and tilted octahedra in sodium-potassium niobate solid solutions (1976) Acta Crystallogr. A, 32, pp. 434-446; Jaffe, B., Cook, W.R., Jaffe, H.L., Piezoelectric Ceramics (1971) Academic Press: Cambridge, , MA, USA; Birol, H., Damjanovic, D., Setter, N., Preparation and characterization of (K0.5Na0.5)NbO3 ceramics (2006) J. Eur. Ceram. Soc., 26, pp. 861-866; Zhang, B.P., Li, J.F., Wang, K., Zhang, H., Compositional dependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramics prepared by spark plasma sintering (2006) J. Am. Ceram. Soc., 89, pp. 1605-1609; Li, J.F., Wang, K., Zhang, B.P., Zhang, L.M., Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering (2006) J. Am. Ceram. Soc., 89, pp. 706-709; Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M., Lead-free piezoceramics (2004) Nature, 432, pp. 84-87; Baker, D.W., Thomas, P.A., Zhang, N., Glazer, A.M., A comprehensive study of the phase diagram of KxNa1-xNbO3 (2009) Appl. Phys. Lett., 95; Malic, B., Koruza, J., Hreščak, J., Bernard J.;Wang, K., Fisher, J., Benčan, A., Sintering of lead-free piezoelectric sodium potassium niobate ceramics (2015) Materials, 8, pp. 8117-8146; Fuentes, J., Portelles, J., Pérez, A., Durruthy-Rodríguez, M.D., Ostos, C., Raymond, O., Heiras, J., Siqueiros, J.M., Structural and dielectric properties of La- and Ti-modified K0.5Na0.5NbO3 ceramics (2012) Appl. Phys. A, 107, pp. 733-738; Zhou, J.J., Li J.F.;Wan, K., Zhang, X.W., Phase structure and electrical properties of (Li,Ta)-doped (K, Na)NbO3 lead-free piezoceramics in the vicinity of Na/K = 50/50 (2011) J. Mater. Sci., 46, pp. 5111-5116; Malic, B., Bernard, J., Holc, J., Kosec, M., Strontium doped K0.5Na0.5NbO3 based piezoceramics (2005) Ferroelectrics, 314, pp. 149-156; Malic, B., Bernard, J., Holc, J., Jenko, D., Kosec, M., Alkaline-earth doping in (K, Na)NbO3 based piezoceramics (2005) J. Eur. Ceram. Soc., 25, pp. 2707-2711; Guo, Y., Kakimoto, K., Ohsato, H., (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics (2005) Mater. Lett., 59, pp. 241-244; Fang, B., Du, Q., Jiang, N., Wu, J., Effects of the co-addition of LiSbO3-LiTaO3 on the densification of (Na1/2K1/2)NbO3 lead free ceramics by atmosphere sintering (2011) J. Alloys Compd., 509, pp. 2420-2424; Wu, J., Xiao, D., Zhu, J., Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries (2015) Chem. Rev., 115, pp. 2559-2595; Li J.F.;Wang, K., Zhu, F.Y., Cheng, L.Q., Yao, F.Z., (K, Na) NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges (2013) J. Am. Ceram. Soc., 96, pp. 3677-3696; Reichmann, A., Mitsche, S., Zankel, A., Poelt, P., Reichmann, K., In situ mechanical compression of polycrystalline BaTiO3 in the ESEM (2014) J. Eur. Ceram. Soc., 34, pp. 2211-2215; Bradt, R.C., Ansell, G.S., Transmission electron microscopy of ferroelectric domain boundaries in barium titanate (1969) IEEE Trans. Electron Devices, 16, pp. 594-597; Roshchupkin, D.V., Irzhak, D.V., Antipov, V.V., Study of LiNbO3 and LiTaO3 ferroelectric domain structures using high-resolution x-ray diffraction under application of external electric field (2009) J. Appl. Phys., 105, p. 024112; Antipov, V.V., Blistanov, A.A., Roshchupkina, E.D., Tucoulou, R., Ortega, L., Roshchupkin, D.V., High-resolution X-ray topography and diffraction study of bulk regular domain structures in LiNbO3 crystals (2004) Appl. Phys. Lett., 85, p. 5325; Takashige, M., Hamazaki, S.-I., Shimizu, F., Kojima, S., Observation of 90° domains in BaTiO3 by atomic force microscopy (1997) Ferroelectrics, 196, pp. 211-214; Son, J.Y., Kim, B.Q., Kim, C.H., Cho, J.H., Writing polarization bits on the multiferroic BiMnO3 thin film using Kelvin probe force microscope. (2004) Appl Phys. Lett., 84, pp. 4971-4973; Hong, J.W., Park, S., Khim, Z.G., Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope (1999) Rev. Sci. Instrum., 70, pp. 1735-1739; Zeng, H., Shimamura, K., Kannan, C.V., Villora, E.G., Takekawa, S., Kitamura, K., Yin, Q., Acoustic imaging of ferroelectric domains in BaTiO3 single crystals using atomic force microscope (2007) Jpn. J. Appl. Phys., 46, pp. 286-288; Soergel, E., Piezoresponse force microscopy (PFM) (2011) J. Phys. D Appl. Phys., 44, p. 464003; Shur, V.Y., Zelenovskiy, P.S., Nebogatikov, M.S., Alikin, D.O., Sarmanova, M.F., Ievlev, A.V., Mingaliev, E.A., Kuznetsov, D.K., Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals (2011) J. Appl. Phys., 110; Hooton, J.A., Merz, W.J., Etch patterns and ferroelectric domains in BaTiO3 single crystals (1955) Phys. Rev., 98, pp. 409-413; Cook, W.R., Domain twinning in barium titanate ceramics (1956) J. Am. Ceram. Soc., 1201, pp. 17-19; Nassau, K., Levinstein, H.J., Loiacono, G.M., The domain structure and etching of ferroelectric lithium niobate (1965) Appl. Phys. Lett., 6, pp. 228-229; Kubel, F., Schmid, H., Growth, twinning and etch figures of ferroelectric/ferroelastic dendritic BiFeO3 single domain crystals (1993) J. Cryst. Growth, 129, pp. 515-524; Nassau, K., Levinstein, H.J., Loiacono, G.M., Ferroelectric lithium niobate (1966) 1. Growth, domain structure, dislocations and etching. J. Phys. Chem. Solids, 27, pp. 983-988; Belitz, R.K., Differential etching of BaTiO3 by H3PO4 (1962) J. Am. Ceram. Soc., 45, pp. 617-618; Johann, F., Morelli, A., Vrejoiu, I., Epitaxial BiFeO3 nanostructures fabricated by differential etching of BiFeO3 films (2011) Appl. Phys. Lett., 99, p. 082904; Rubio-Marcos, F., del Campo, A., López-Juárez, R., Romero, J.J., Fernández, J.F., High spatial resolution structure of (K, Na)NbO3 lead-free ferroelectric domains (2012) J. Mater. Chem., 22, pp. 9714-9720; Arlt, G., Sasko, P., Domain configuration and equilibrium size of domains in BaTiO3 ceramics (1980) J. Appl. Phys., 51, pp. 4956-4960; Ohnishi, N., Iizuka, T., Etching study of microdomains in LiNbO3 single crystals (1975) J. Appl. Phys., 46, pp. 1063-1067; Iwata, M., Katsuraya, K., Suzuki, I., Maeda, M., Yasuda, N., Ishibashi, Y., Domain observation of Pb(Zn1/3Nb2/3)O3-PbTiO3 mixed crystals by scanning probe microscopy (2003) Jpn. J. Appl. Phys., 42, pp. 6201-6204; Shur, V.Y., Lobov, A.I., Shur, A.G., Kurimura, S., Nomura, Y., Terabe, K., Liu, X.Y., Kitamura, K., Rearrangement of ferroelectric domain structure induced by chemical etching (2005) Appl. Phys. Lett., 87, p. 022905; Fu, Z., Yang, J., Yu H.;Wang, Y., Lu, P., Yang, Q., Xu, F., Li, Y., Periodic configuration of °-boundaries and ferroelectric domains in Li-modified (K, Na)NbO3 lead-free piezoelectric single crystals by solid state crystal growth (2017) J. Eur. Ceram. Soc., 37, pp. 593-598; Faryna, M., Sztwiertnia, K., Sikorski, K., Simultaneous WDXS and EBSD investigations of dense PLZT ceramics (2006) J. Eur. Ceram. Soc., 26, pp. 2967-2971; Uetsuji, Y., Kuramae, H., Tsuchiya, K., Kamlah, M., Electron backscatter diffraction crystal morphology analysis and multiscale simulation of piezoelectric materials (2013) Int. J. Comput. Methods Exp. Meas., 1, pp. 199-211; Qin, Y., Zhang, J., Gao, Y., Tan, Y., Wang, C., Study of domain structure of poled (K,Na)NbO3 ceramics (2013) J. Appl. Phys., 113; Ayache, J., Beaunier, L., Boumendil, J., Ehret, G., Laub, D., Sample Preparation Handbook for Transmission Electron Microscopy (2010), Springer: Berlin, Germany; Walker, J., Ursic, H., Bencan, A., Malic, B., Simons, H., Reaney, I., Viola, G., Rojac, T., Temperature dependent piezoelectric response and strain-electric-field hysteresis of rare-earth modified bismuth ferrite ceramics (2016) J. Mater. Chem. C, 4, pp. 7859-7868; Guo, H., Zhang, S., Beckman, S.P., Tan, X., Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics (2013) J. Appl. Phys., 114, p. 154102; Fultz, B., Howe, J., Transmission Electron Microscopy and Diffractometry of Materials (2013), 4th ed.; Springer: New York, NY, USA; Tsai, F., Khiznichenko, V., Cowley, J.M., High-resolution electron microscopy of 90° ferroelectric domain boundaries in BaTiO3 and Pb(ZrO0.52Ti0.48)O3 (1992) Ultramicroscopy, 45, pp. 55-63; Gao, P., Britson, J., Nelson, C.T., Jokisaari, J.R., Duan, C., Trassin, M., Baek, S.-H., Li L.;Wang, Y., Ferroelastic domain switching dynamics under electrical and mechanical excitations (2014) Nat. Commun., 5, p. 3801; Winkler, C.R., Damodaran, A.R., Karthik, J., Martin, L.W., Taheri, M.L., Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM (2012) Micron, 43, pp. 1121-1126; Kholkin, A., Kalinin, S., Roelofs, A., Gruverman, A., (2007) Review of ferroelectric domain imaging by piezoresponse force microscopy. In Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, pp. 173-214. , Kalinin, S., Gruverman, A., Eds.; Springer Science & Business Media: New York, NY, USA; Li, J., Li, J.-F., Yu, Q., Chen, Q.N., Xie, S., Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems (2015) J. Mater., 1, pp. 3-21; Kholkin, A.L., Bdikin, I.K., Kiselev, D.A., Shvartsman, V.V., Kim, S.H., Nanoscale characterization of polycrystalline ferroelectric materials for piezoelectric applications (2007) J. Electroceram., 19, pp. 81-94; Jungk, T., Hoffmann, A., Soergel, E., Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy (2006) Appl. Phys. Lett., 89, p. 163507; Kalinin, S., Bonnell, D., Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces (2002) Phys. Rev. B, 65, p. 125408; Kalinin, S.V., Rodriguez, B.J., Jesse, S., Shin, J., Baddorf, A.P., Gupta, P., Jain H.;Williams, D.B., Gruverman, A., Vector piezoresponse force microscopy (2006) Microsc. Microanal., 12, pp. 206-220; Kim, K.L., Huber, J.E., Mapping of ferroelectric domain structure using angle-resolved piezoresponse force microscopy (2015) Rev. Sci. Instrum., 86, p. 013705; Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K., Hiranaga, Y., Nanodomain manipulation for ultrahigh density ferroelectric data storage (2006) Nanotechnology, 17, pp. 137-141; Pertsev, N.A., Kiselev, D.A., Bdikin, I.K., Kosec, M., Kholkin, A.L., Quasi-one-dimensional domain walls in ferroelectric ceramics: Evidence from domain dynamics and wall roughness measurements (2011) J. Appl. Phys., 110, p. 052001; Shur, V.Y., Shishkin, E.I., Nikolaeva, E.V., Nebogatikov, M.S., Alikin, D.O., Zelenovskiy, P.S., Sarmanova, M.F., Dolbilov, M.A., Study of nanoscale domain structure formation using Raman confocal microscopy (2010) Ferroelectrics, 398, pp. 91-97; DeWolf, I., Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits (1996) Semicond. Sci. Technol., 11, pp. 139-154; Myers, G.A., Hazra, S.S., de Boer, M.P., Michaels, C.A., Stranick, S.J., Koseski, R.P., Cook, R.F., Delrio, F.W., Stress mapping of micromachined polycrystalline silicon devices via confocal Raman microscopy (2014) Appl. Phys. Lett., 104; Borodavka, F., Pokorny, J., Hlinka, J., Combined piezoresponse force microscopy and Raman scattering investigation of domain boundaries in BiFeO3 ceramics (2016) Phase Transit., 89, pp. 746-751; Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Spaldin, N.A., Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature (2006) Nat. Mater., 5, pp. 823-829; Shvartsman, V.V., Kleemann, W., Haumont, R., Kreisel, J., Large bulk polarization and regular domain structure in ceramic BiFeO3 (2007) Appl. Phys. Lett., 90, p. 172115; Tu, C.S., Chen, C.S., Chen P.Y.;Wei, H.H., Schmidt, V.H., Lin, C.Y., Anthoniappen, J., Lee, J.M., Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: The roles of domain structure and electronic state (2016) J. Eur. Ceram. Soc., 36, pp. 1149-1157; Alikin, D.O., Turygin A.P.;Walker, J., Bencan, A., Malic, B., Rojac, T., Shur, V.Y., Kholkin, A.L., The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics (2017) Acta Mater., 125, pp. 265-273; Walker, J., Simons, H., Alikin, D.O., Turygin, A.P., Shur, V.Y., Kholkin, A.L., Ursic, H., Nagarajan, V., Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric (2016) Sci. Rep., 6; Alikin, D.O., Turygin, A.P., Walker, J., Rojac, T., Shvartsman, V.V., Shur, V.Y., Kholkin, A.L., Quantitative phase separation in multiferroic Bi0.88Sm0.12FeO3 ceramics via piezoresponse force microscopy (2015) J. Appl. Phys, p. 118; Karimi, S., Reaney, I.M., Levin, I., Sterianou, I., Nd-doped BiFeO3 ceramics with antipolar order (2009) Appl. Phys. Lett., 94; Karimi, S., Reaney, I.M., Han, Y., Pokorny, J., Sterianou, I., Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics (2009) J. Mater. Sci., 44, pp. 5102-5112; Khomchenko, V.A., Karpinsky, D.V., Kholkin, A.L., Sobolev, N.A., Kakazei, G.N., Araujo, J.P., Troyanchuk, I.O., Paixão, J.A., Rhombohedral-to-orthorhombic transition and multiferroic properties of Dy-substituted BiFeO3 (2010) J. Appl. Phys., 108; Khomchenko, V.A., Kiselev, D.A., Bdikin, I.K., Shvartsman, V.V., Borisov, P., Kleemann, W., Vieira, J.M., Kholkin, A.L., Crystal structure and multiferroic properties of Gd-substituted BiFeO3 (2008) Appl. Phys. Lett., 93; Yan, F., Xing G.;Wang, R., Li, L., Tailoring surface phase transition and magnetic behaviors in BiFeO3 via doping engineering (2015) Sci. Rep., 5, p. 9128; Coondoo, I., Panwar, N., Bdikin, I., Puli, V.S., Katiyar, R.S., Kholkim, A.L., Structural, morphological and piezoresponse studies of Pr and Sc co-substituted BiFeO3 ceramics (2012) J. Phys. D Appl. Phys., 45; Azough, F., Freer, R., Thrall, M., Cernik, R., Tuna, F., Collison, D., Microstructure and properties of Co-, Ni-, Zn-, Nb- and W-modified multiferroic BiFeO3 ceramics (2010) J. Eur. Ceram. Soc., 30, pp. 727-736; Khesro, A., Boston, R., Sterianou, I., Sinclair, D.C., Reaney, I.M., Phase transitions, domain structure, and pseudosymmetry in La- and Ti-doped BiFeO3 (2016) J. Appl. Phys., 119; Chen, J., Cheng, J., Dong, S., Review on high temperature piezoelectric ceramics and actuators based on BiScO3-PbTiO3 solid solutions (2014) J. Adv. Dielectr., 4; De, U., Sahu, K.R., De, A., Ferroelectric materials for high temperature piezoelectric applications (2015) Solid State Phenom., 232, pp. 235-278; Rojac, T., Makarovic, M., Walker, J., Ursic, H., Damjanovic, D., Kos, T., Piezoelectric response of BiFeO3 ceramics at elevated temperatures (2016) Appl. Phys. Lett., 109; Martirena, H.T., Burfoot, J.C., Grain-size effects on properties of some ferroelectric ceramics (1974) J. Phys. C Solid State Phys., 7, pp. 3182-3192; Pertsev, N.A., Arlt, G., Theory of the banded domain structure in coarse-grained ferroelectric ceramics (1992) Ferroelectrics, 132, pp. 27-40; Arlt, G., Hennings, D., deWith, G., Dielectric properties of fine-grained barium titanate ceramics (1985) J. Appl. Phys., 58, pp. 1619-1625; Arlt, G., Dederichs, H., Complex elastic, dielectric and piezoelectric constants by domain wall damping in ferroelectric ceramics (1980) Ferroelectrics, 29, pp. 47-50; Escobar Castillo, M., Shvartsman, V.V., Gobeljic, D., Gao, Y., Landers, J., Wende, H., Lupascu, D.C., Effect of particle size on ferroelectric and magnetic properties of BiFeO3 nanopowders (2013) Nanotechnology, 24, p. 355701; López, R., González, F., Cruz, M.P., Villafuerte-Castrejon, M.E., Piezoelectric and ferroelectric properties of K0.5Na0.5NbO3 ceramics synthesized by spray drying method (2011) Mater. Res. Bull., 46, pp. 70-74; Qin, Y., Zhang, J., Yao, W., Wang, C., Zhang, S., Domain structure of potassium-sodium niobate ceramics before and after poling (2015) J. Am. Ceram. Soc., 98, pp. 1027-1033; Fousek, J., Janovec, V., The orientation of domain walls in twinned ferroelectric crystals (1969) J. Appl. Phys., 40, pp. 135-142; Hirohashi, J., Yamada, K., Kamio, H., Uchida, M., Shichijyo, S., Control of specific domain structure in KNbO3 single crystals by differential vector poling method (2005) J. Appl. Phys., 98; Zhang, J., Tian, X., Gao, Y., Yao, W., Qin, Y., Su, W., Domain structure of poled (K0.50Na0.50)1-xLixNbO3 ceramics with different stabilities (2015) J. Am. Ceram. Soc., 98, pp. 990-995; Cho, J., Lee, Y., Han, K., Chun, M., Nam, J., Kim, B., Effect of domain size on the coercive field of orthorhombic (Li, K, Na)NbO3 ceramics (2010) J. Korean Phys. Soc., 57, pp. 971-974; Arlt, G., Twinning in ferroelectric and ferroelastic ceramics: Stress relief (1990) J. Mater. Sci., 25, pp. 2655-2666; Rossetti, G.A., Khachaturyan, A.G., Akcay, G., Ni, Y., Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states (2008) J. Appl. Phys., 103, p. 114113; Cho, J., Lee, Y., Kim, B., Domain structure of orthorhombic (Li,K,Na)NbO3 ceramics (2010) J. Ceram. Process. Res., 11, pp. 237-240; Rai, R., Coondoo, I., Rani, R., Bdikin, I., Sharma, S., Kholkin, A.L., Impedance spectroscopy and piezoresponse force microscopy analysis of lead-free (1-x) K0.5Na0.5NbO3 ?? xLiNbO3 ceramics (2013) Curr. Appl. Phys., 13, pp. 430-440; Qin, Y., Zhang, J., Tan, Y., Yao, W., Wang, C., Zhang, S., Domain configuration and piezoelectric properties of (K0.50Na0.50)1??xLix(Nb0.80Ta0.20)O3 ceramics (2014) J. Eur. Ceram. Soc., 34, pp. 4177-4184; Fu, J., Zuo, R., Xu, Z., Fu, J., Zuo, R., Xu, Z., High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: Contribution of nanodomains (2011) Appl. Phys. Lett., 99, pp. 21-24; Gobeljic, D., Shvartsman, V.V., Wang, K., Yao, F., Li, J.F., Jo, W., Rödel, J., Lupascu, D.C., Temperature dependence of the local piezoresponse in (K,Na)NbO3-based ceramics with large electromechanical strain (2014) J. Appl. Phys., 116, p. 066811; Zhou, J., Wang, K., Yao, F., Zheng, T., Wu, J., Lead-free piezoceramics with large piezoelectricity (2015) J. Mater. Chem. C, 3, pp. 8780-8787; Hunpratub, S., Yamwong, T., Srilomsak, S., Maensiri, S., Chindaprasirt, P., Effect of particle size on the dielectric and piezoelectric properties of 0-3BCTZO/cement composites (2015) Ceram. Int., 40, pp. 1209-1213; Taylor, D.V., Damjanovic, D., Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields (1997) J. Appl. Phys., 82, pp. 1973-1975; Rayleigh, L., XXV (1887) Notes on electricity and magnetism.-III. On the behaviour of iron and steel under the operation of feeble magnetic forces. Philos. Mag. Ser. 5, 23, pp. 225-245; Pertsev, N.A., Arlt, G., Forced translational vibrations of 90-degrees domain-walls and the dielectric-dispersion in ferroelectric ceramics (1993) J. Appl. Phys., 74, pp. 4105-4112; Buixaderas, E., Bovtun, V., Kempa, M., Savinov, M., Nuzhnyy, D., Kadlec, F., Vaněk, P., Shen, Z., Broadband dielectric response and grain-size effect in K0.5Na0.5NbO3 ceramics (2010) J. Appl. Phys., 107, p. 014111; Zhang, J., Hao, W., Gao, Y., Qin, Y., Tan, Y., Wang, C., Large decrease of characteristic frequency of dielectric relaxation associated with domain-wall motion in Sb5+-modified (K, Na)NbO3-based ceramics (2012) Appl. Phys. Lett., 101, p. 252905; Huan Y.;Wang, X., Li, L., Koruza, J., Strong domain configuration dependence of the nonlinear dielectric response in (K, Na)NbO3-based ceramics (2015) Appl. Phys. Lett., 107, p. 202903; Arlt, G., Böttger, U., Witte, S., Dielectric dispersion of ferroelectric ceramics and single crystals at microwave frequencies (1994) Ann. Phys., 506, pp. 578-588; Arlt, G., Böttger, U., Witte, S., Emission of GHz shear waves by ferroelastic domain walls in ferroelectrics (1993) Appl. Phys. Lett., 63, pp. 602-604; Arlt, G., Böttger, U., Witte, S., Dielectric dispersion of ferroelectric ceramics and single crystals by sound generation in piezoelectric domains (1995) J. Am. Ceram. Soc., 78, pp. 1097-1100; Arlt, G., Strong ultrasonic microwaves in ferroelectric ceramics (1998) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 45, pp. 4-10; Arlt, G., Ferroelastic domain walls as powerful shear wave emitters at microwaves (1995) Ferroelectrics, 172, pp. 95-104; Rojac, T., Ursic, H., Bencan, A., Malic, B., Damjanovic, D., Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response (2015) Adv. Funct. Mater., 25, pp. 2099-2108; Peng, B., Yue, Z., Li, L., Peng, B., Yue, Z., Li, L., Evaluation of domain wall motion during polymorphic phase transition in (K, Na)NbO3-Based piezoelectric ceramics by nonlinear response measurements (2016) J. Appl. Phys., 109, p. 54107; Morozov, M.I., Hoffmann, M.J., Benkert, K., Schuh, C., Influence of the A/B nonstoichiometry, composition modifiers, and preparation methods on properties of Li- and Ta-modified (K, Na)NbO3 ceramics (2012) J. Appl. Phys., 112, p. 114107; Ge, J., Qi, Y., Wan, Y., Tang Y.;Wang, F., Pan, Y., Jiang, B., Sun, D., Relationship between dielectric property and shrinkage in ferroelectric KNN-based ceramics (2014) Ferroelectrics, 458, pp. 37-41; Huan, Y., Wang, X., Koruza, J., Wang, K., Webber, K.G., Hao, Y., Li, L., Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K, Na)NbO3-Based ceramics (2016) Sci. Rep., 6, p. 22053; Huan Y.;Wang, X., Shen, Z., Kim, J., Zhou, H., Li, L., Nanodomains in KNN-based lead-free piezoelectric ceramics: Origin of strong piezoelectric properties (2014) J. Am. Ceram. Soc., 97, pp. 701-703; Hayati, R., Barzegar, A., Microstructure and electrical properties of lead free potassium sodium niobate piezoceramics with nano ZnO additive (2010) Mater. Sci. Eng. B, 172, pp. 121-126
Correspondence Address Shur, V.; School of Natural Sciences and Mathematics, Ural Federal UniversityRussian Federation; email: vladimir.shur@urfu.ru
Publisher MDPI AG
Language of Original Document English
Abbreviated Source Title Mater.
Source Scopus