Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization / Zatsepin D.A., Boukhvalov D.W., Gavrilov N.V., Zatsepin A.F., Shur V.Y., Esin A.A., Kim S.S., Kurmaev E.Z. // Applied Surface Science. - 2017. - V. 400, l. . - P. 110-117.

ISSN:
01694332
Type:
Article
Abstract:
The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO2-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO2 host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO2:Pb, whereas in thin-film morphology the PbO2-like structure becomes dominating, essentially contributing weak O/Pb bonding (PbxOy defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity “insertion” into the structure of bulk TiO2 was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO2 because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up. © 2016 Elsevier B.V.
Author keywords:
Bandgap; DFT modeling; Ion implantation; Lead; Titanium dioxide
Index keywords:
Ceramic materials; Chemical bonds; Density functional theory; Electronic structure; Energy gap; Ion implantation; Ions; Lead; Lead oxide; Modulation; Morphology; Oxides; Semiconductor doping; Titanium
DOI:
10.1016/j.apsusc.2016.12.154
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007494944&doi=10.1016%2fj.apsusc.2016.12.154&partnerID=40&md5=06f40996035c7df9a365486cb600c633
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007494944&doi=10.1016%2fj.apsusc.2016.12.154&partnerID=40&md5=06f40996035c7df9a365486cb600c633
Affiliations M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation; Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation; Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, South Korea; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Yekaterinburg, Russian Federation; Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russian Federation; Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, Yekaterinburg, Russian Federation; School of Materials Science and Engineering, Inha UniversityIncheon, South Korea
Author Keywords Bandgap; DFT modeling; Ion implantation; Lead; Titanium dioxide
References Yin, W.-J., Chen, S., Yang, J.-H., Gong, X.-G., Yan, Y., Wei, S.H., Effects of cathode buffer layers on the efficiency of bulk-heterojunction solar cells (2010) Appl. Phys. Lett., 96, p. 221901; Yalçin, Y., Kiliç, M., Çinar, Z., Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity (2010) Appl. Catal. B: Environ., 99, p. 469; Stepanov, A.L., Xiao, X., Ren, F., Kavetskyy, T., Osin, Y.N., Catalytic and biological sensitivity of TiO2 and SiO2 matrices with silver nanoparticles created by ion implantation: a review (2013) Rev. Adv. Mater. Sci., 34, p. 107; Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W., Understanding TiO2 photocatalysis: mechanisms and materials (2014) Chem. Rev., 114, p. 9919; Ugwu, L.O., Ozuomba, J.O., Ekwo, P.I., Ekpunobi, A.J., The optical properties of anthocyanin −doped nanocrystalline-TiO2 and the photovoltaic efficiency on DSSC (2015) Der Chem. Sin., 6, p. 42; Wei, S.H., Zunger, A., Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: chemical trends (1999) Phys. Rev. B, 60, p. 5404; Kamei, M., Miyagi, T., Ishigaki, T., Strain-induced charge separation in the photocatalytic single crystalline anatase TiO2 film (2005) Chem. Phys. Lett., 407, p. 209; Tavares, C.J., Marques, S.M., Lanceros-Mendez, S., Sencadas, V., Teixeria, V., Carneiro, J.O., Martins, A.J., Fernandes, A.J., Strain analysis of photocatalytic TiO2 thin films on polymer substrates (2008) Thin Solid Films, 516, p. 1434; Butler, K.T., Hendon, C.H., Walsh, A., Electronic structure modulation of metal–organic frameworks for hybrid devices (2014) ACS Appl. Mater. Interfaces, 6, p. 22044; Samsudin, E.M., Abd Hamid, S.B., Effect of band-gap engineering in anionic-doped TiO2 photocatalyst (2017) Appl. Surf. Sci., 391, p. 326; Xu, T., Kamat, P.V., Joshi, S., Mebel, A.M., Cai, Y., O'shea, K.E., Hydroxyl radical mediated degradation of phenylarsonic acid (2007) J. Phys. Chem. A, 111, p. 7819; Siidra, O.I., Krivovichev, S.V., Turner, R.W., Rumsey, M.S., Spratt, J., Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures: part I. Crystal structure of hereroite, [Pb32O20(O,C),](AsO4)2[(Si,As,V,Mo)O4]2Cl10 (2013) Am. Mineral., 98, p. 248; Watson, G.W., Parker, S.C., Kresse, G., Ab initio calculation of the origin of the distortion of α-PbO (1999) Phys. Rev. B, 59, p. 8481; Walsh, A., Watson, G.W., Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory (2004) Phys. Rev. B, 70, p. 235114; Katoch, A., Kim, H., Hwang, T., Kim, S.S., Preparation of highly stable TiO2 sols and nanocrystalline TiO2 films via a low temperature sol–gel route (2012) J. Sol-Gel Sci. Technol., 61, p. 77; Zatsepin, D.A., Boukhvalov, D.W., Kurmaev, E.Z., Gavrilov, N.V., Kim, S.S., Zhidkov, I.S., Pleomorphic structural imperfections caused by pulsed Bi-implantation in the bulk and thin-film morphologies of TiO2 (2016) Appl. Surf. Sci., 379, p. 223; Gavrilov, N.V., Men'shakov, A.I., Generation of a pulsed high-current low-energy beam in a plasma electron source with a self-heated cathode (2016) Tech. Phys., 61, p. 669; Standard Guide for Selection of Calibrations Needed for X-ray Photoelectron Spectroscopy Experiments, Active Standard ASTM 2735-14, reference decision of US Standard Subcommittee No. E42.03,., , http://www.astm.org/Standards/E2735.htm; NIST XPS Database (Web-version), rev. 4.1, (called 2016-07-21)., , http://srdata.nist.gov/xps/; Thermo Scientific XPS: Knowledge Base (Web-version), (2013), (called 2016-07-22)., , http://xpssimplified.com/knowledgebase.php; Crist, B.V., The PDF Handbooks of Monochromatic XPS Spectra (Web-version, Vol. 2) (2005), p. 956. , http://www.xpsdata.com, XPS International LLC USA (called 2016-07-23); Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA method for ab initio order-N materials simulation (2002) J. Phys.: Condens. Matter, 14, p. 2745; Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 77, p. 3865; Troullier, O.N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys. Rev. B, 43, p. 1993; Ziemniak, S.E., Palmer, D.A., Bénézeth, P., Anovitz, L.M., Solubility of litharge (α-PbO) in alkaline media at elevated temperatures (2005) J. Sol. Chem., 34, p. 1407; Beyer, V., von Borany, J., Elemental redistribution and Ge loss during ion-beam synthesis of Ge nanocrystals in SiO2 films (2008) Phys. Rev. B, 77, p. 014107; Zatsepin, D.A., Zatsepin, A.F., Boukhvalov, D.W., Kurmaev, E.Z., Gavrilov, N.V., Sn-loss effect in a Sn-implanted a-SiO2 host-matrix after thermal annealing: a combined XPS, PL, and DFT study (2016) Appl. Surf. Sci., 367, p. 320; Pederson, L.R., Two-dimensional chemical-state plot for lead using XPS (1982) J. Electron Spectrosc. Relat. Phenom., 28, p. 203; ChemTube 3D: Interactive 3D Structures and Animations (Web-version), (2008–2015) University of Liverpool, England; (called 2016-07-26)., , www.chemtube3d.com/solidstate/_anatase(final).html; Zatsepin, D.A., Mack, P., Wright, A.E., Schmidt, B., Fitting, H.-J., XPS analysis and valence band structure of a low‐dimensional SiO2/Si system after Si+ ion implantation (2011) Phys. Status Solidi A, 208, p. 1658; Kurmaev, E.Z., Galakhov, V.R., Zatsepin, D.A., Trofimova, V.A., Stadler, S., Ederer, D.L., Moewes, A., Nagata, S., X-ray emission spectra and electronic structure of CuIr2S4 and CuIr2Se4 (1998) Solid State Commun., 108, p. 235; Zatsepin, D.A., Galakhov, V.R., Korotin, M.A., Fedorenko, V.V., Kurmaev, E.Z., Bartkowski, S., Neumann, M., Berger, R., Valence states of copper ions and electronic structure of LiCu2O2 (1998) Phys. Rev. B, 57, p. 4377; Kurmaev, E.Z., Postnikov, A.V., Palmer, H.M., Greaves, C., Bartkowski, S., Tsurkan, V., Demetr, M., Trofimova, V.A., Electronic structure of FeCr2S4 and Fe0.5Cu05Cr2S4 (2000) J. Phys.: Condens. Matter, 12, p. 5411; Galakhov, V.R., Finkelstein, L.D., Zatsepin, D.A., Kurmaev, E.Z., Samokhvalov, A.A., Naumov, S.V., Tatarinova, G.K., Moewes, A., Interaction of Cu 3d and O 2p states in Mg1-xCuxO solid solutions with NaCl structure: x-ray photoelectron and x-ray emission study (2000) Phys. Rev. B, 62, p. 4922; Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters (Web-version), Elettra, Italy; (called 2016-07-29)., , https://vuo.elettra.eu/services/elements/WebElements.html
Correspondence Address Boukhvalov, D.W.; Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, South Korea; email: danil@hanyang.ac.kr
Publisher Elsevier B.V.
CODEN ASUSE
Language of Original Document English
Abbreviated Source Title Appl Surf Sci
Source Scopus