Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties / Oshtrakh M.I., Klencsár Z., Petrova E.V., Grokhovsky V.I., Chukin A.V., Shtoltz A.K., Maksimova A.A., Felner I., Kuzmann E., Homonnay Z., Semionkin V.A. // Materials Chemistry and Physics. - 2016. - V. 174, l. . - P. 100-111.

ISSN:
02540584
Type:
Article
Abstract:
Iron sulfide (troilite) inclusion extracted from Sikhote-Alin IIAB iron meteorite was examined for its composition, structure and magnetic properties by means of several complementary analytical techniques such as: powder X-ray diffractometry, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, magnetization measurements, ferromagnetic resonance spectroscopy and 57Fe Mössbauer spectroscopy with a high velocity resolution. The applied techniques consistently indicated the presence of daubréelite (FeCr2S4) as a minority phase beside troilite proper (FeS). As revealed by 57Fe Mössbauer spectroscopy, the Fe atoms in troilite were in different microenvironments associated with either the ideal FeS structure or that of a slightly iron deficient Fe1-xS. Phase transitions of troilite were detected above room temperature by ferromagnetic resonance spectroscopy. A novel analysis of 295 and 90 K 57Fe Mössbauer spectra was carried out and the hyperfine parameters associated with the ideal structure of troilite were determined by considering the orientation of the hyperfine magnetic field in the eigensystem of the electric field gradient at the 57Fe nucleus. © 2016 Elsevier B.V. All rights reserved.
Author keywords:
Electron paramagnetic resonance; Inorganic compounds; Mössbauer spectroscopy; X-ray diffraction
Index keywords:
Electric fields; Energy dispersive spectroscopy; Ferromagnetic materials; Ferromagnetic resonance; Ferromagnetism; Inorganic compounds; Iron; Magnetic properties; Magnetic resonance; Magnetism; Meteor
DOI:
10.1016/j.matchemphys.2016.02.
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006637458&doi=10.1016%2fj.matchemphys.2016.02.056&partnerID=40&md5=562b03ab91aaa084f877c244eeb6b56b
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006637458&doi=10.1016%2fj.matchemphys.2016.02.056&partnerID=40&md5=562b03ab91aaa084f877c244eeb6b56b
Affiliations Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation; Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation; Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, Hungary; Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation; Department of Electrophysics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation; Racah Institute of Physics, Hebrew University, Jerusalem, Israel; Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
Author Keywords Electron paramagnetic resonance; Inorganic compounds; Mössbauer spectroscopy; X-ray diffraction
References Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C., (1990) Handbook of Mineralogy, 1. , Elements, Sulfides, Sulfosalts. Mineral Data Publishing Tucson, Arizona; Brearley, A.J., Jones, R.H., Chondritic meteorites (1998) Planetary Materials, 36, pp. 31-3398. , J.J. Papike, Reviews in Mineralogy, Mineralogical Society of America Chantilly, Virginia; Buchwald, V.F., (1975) Handbook of Iron Meteorites, 1. , Iron Meteorites in General, University of California Press Berkeley; Rietmeijer, F.J.M., Interplanetary dust particles (1998) Planetary Materials, 36, pp. 229-295. , J.J. Papike, Reviews in Mineralogy, Mineralogical Society of America Chantilly, Virginia; Garcia-Guinea, J., Tormo, L., Ordoñez, A.R., Garcia-Moreno, O., Non-destructive analyses on a meteorite fragment that fell in the Madrid city centre in 1896 (2013) Talanta, 114, pp. 152-159; Goldstein, J.I., Scott, E.R.D., Chabot, N.L., Iron meteorites: Crystallization, thermal history, parent bodies, and origin (2009) Chem. Erde, 69, pp. 293-325; Hafner, S., Kalvius, M., The Mössbauer resonance of 57Fe in troilite (FeS) and pyrrhotite (Fe0.88S) (1966) Z. Kristal., 123, pp. 443-458; Kruse, O., Ericsson, T., A Mössbauer investigation of natural troilite from the Agpalilik meteorite (1988) Phys. Chem. Miner., 15, pp. 509-513; Kruse, O., Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites (1990) Am. Mineral., 75, pp. 755-763; Kruse, O., Phase transitions and kinetics in natural FeS measured by X-ray diffraction and Mössbauer spectroscopy at elevated temperatures (1992) Am. Mineral., 77, pp. 391-398; Skála, R., Císařová, I., Drábek, M., Inversion twinning in troilite (2006) Am. Mineral., 91, pp. 917-921; Dunlap, R.A., A Mössbauer effect investigation of the enstatite chondrite from Abee, Canada (1997) Hyperfine Interact., 110, pp. 209-215; Grandjean, F., Long, G.J., Hautot, D., Whitney, D.L., A Mössbauer spectral study of the Jilin meteorite (1998) Hyperfine Interact., 116, pp. 105-115; Paliwal, B.S., Tripathi, R.P., Verma, H.C., Sharma, S.K., Classification of the Didwana-Rajod meteorite: A Mössbauer spectroscopic study (2000) Meteorit. Planet. Sci., 35, pp. 639-642; Verma, H.C., Rawat, A., Paliwal, B.S., Tripathi, R.P., Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji, India (2002) Hyperfine Interact., 142, pp. 643-652; Forder, S.D., Bland, P.A., Galazka-Friedman, J., Urbanski, M., Gontarz, Z., Milczarek, M., Bakun-Czubarow, N., A Mössbauer study of meteorites - A possible criterion to identify meteorites from the same parent body? (2002) Hyperfine Interact. C, 5, pp. 405-408; Gismelseed, A.M., Bashir, S., Worthing, M.A., Yousif, A.A., Elzain, M.E., Al-Rawas, A.D., Widatallah, H.M., Studies and characterizations of the Al Zarnkh meteorite (2005) Meteorit. Planet. Sci., 40, pp. 255-259; Al-Rawas, A.D., Gismelseed, A.M., Yousif, A.A., Elzain, M.E., Worthing, M.A., Al-Kathiri, A., Gnos, E., Steele, D.A., Studies on Uruq al Hadd meteorite (2007) Planet. Space Sci., 55, pp. 859-863; Al-Rawas, A.D., Gismelseed, A.M., Al-Kathiri, A.F., Elzain, M.E., Yousif, A.A., Al-Kathiri, S.B., Widatallah, H.M., Abdalla, S.B., Characterization of Maghsail meteorite from Oman by Mössbauer spectroscopy, X-ray diffraction and petrographic microscopy (2008) Hyperfine Interact., 186, pp. 105-111; Oshtrakh, M.I., Petrova, E.V., Grokhovsky, V.I., Semionkin, V.A., A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution (2008) Meteorit. Planet. Sci., 43, pp. 941-958; Cadogan, J.M., Rebbouh, L., Mills, J.V.J., Bland, P.A., An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: Dating Kinclaven-001 (2013) Hyperfine Interact., 222 (2), pp. S91-S98; Oshtrakh, M.I., Larionov, M.Y., Grokhovsky, V.I., Semionkin, V.A., Temperature dependent high velocity resolution Mössbauer spectroscopic study of iron nickel phosphide microcrystals (rhabdites) extracted from Sikhote-Alin iron meteorite (2011) J. Alloys Comp., 509, pp. 1781-1784; Oshtrakh, M.I., Larionov, M.Y., Grokhovsky, V.I., Semionkin, V.A., An analysis of Fe and Ni distribution in M1, M2 and M3 sites of iron nickel phosphides extracted from Sikhote-Alin meteorite using Mössbauer spectroscopy with a high velocity resolution (2011) J. Mol. Struct., 993, pp. 38-42; Oshtrakh, M.I., Larionov, M.Y., Grokhovsky, V.I., Semionkin, V.A., Study of rhabdite (iron nickel phosphide) microcrystals extracted from Sikhote-Alin iron meteorite by magnetization measurements and Mössbauer spectroscopy (2011) Mat. Chem. Phys., 130, pp. 373-380; Oshtrakh, M.I., Semionkin, V.A., Grokhovsky, V.I., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: New possibilities of chemical analysis in material science and biomedical research (2009) J. Radioanal. Nucl. Chem., 279, pp. 833-846; Grokhovsky, V.I., Oshtrakh, M.I., Petrova, E.V., Larionov, M.Y., Uymina, K.A., Semionkin, V.A., Mössbauer spectroscopy with high velocity resolution in the study of iron-bearing minerals in meteorites (2009) Eur. J. Mineral., 21, pp. 51-63; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: New possibilities in biomedical research (2009) J. Mol. Struct., 924-926, pp. 20-26; Oshtrakh, M.I., Semionkin, V.A., Milder, O.B., Novikov, E.G., Mössbauer spectroscopy with high velocity resolution: An increase of analytical possibilities in biomedical research (2009) J. Radioanal. Nucl. Chem., 281, pp. 63-67; Oshtrakh, M.I., Semionkin, V.A., Mössbauer spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research (2013) Spectrochim. Acta, Part A Mol. Biomol. Spectrosc., 100, pp. 78-87; Semionkin, V.A., Oshtrakh, M.I., Milder, O.B., Novikov, E.G., A high velocity resolution Mössbauer spectrometric system for biomedical research (2010) Bull. Rus. Acad. Sci. Phys., 74, pp. 416-420; Gütlich, P., Bill, E., Trautwein, A.X., (2011) Mössbauer Spectroscopy and Transition Metal Chemistry, , Springer-Verlag Berlin - Heidelberg; Cuda, J., Kohout, T., Tucek, J., Filip, J., Medrík, I., Mashlan, M., Zboril, R., Mössbauer study and magnetic measurement of troilite extract from Natan iron meteorite (2012) Mössbauer Spectroscopy in Materials Science - 2012. AIP Conf. Proc., 1489, pp. 145-153; Horwood, J.L., Townsend, M.G., Webster, A.H., Magnetic susceptibility of single-crystal Fe1-xS (1976) J. Solid State Chem., 17, pp. 35-42; Park, J.Y., Kim, K.J., Magnetotransport and magnetic properties of sulfospinels ZnxFe1-xCr2S4 (2006) Hyperfine Interact., 169 (1), pp. 1267-1272; Tsurkan, V., Groza, J., Bocelli, G., Samusi, D., Petrenco, P., Zestrea, V., Baran, M., Tidecks, R., Influence of cation substitution on the magnetic properties of the FeCr2S4 ferrimagnet (2005) J. Phys. Chem. Sol., 66, pp. 2040-2043; Tong, R., Yang, Z., Shen, C., Zhu, X., Sun, Y., Li, L., Zhang, S., Zhang, Y., Disorder-induced orbital glass state in FeCr2S4 (2010) EPL, 89, p. 57002; Shen, C., Yang, Z., Tong, R., Zi, Z., Song, W., Sun, Y., Pi, L., Zhang, Y., Magnetic anomaly around orbital ordering in FeCr2S4 (2011) J. Appl. Phys., 109, p. 07E144; Kohout, T., Kosterov, A., Jackson, M., Pesonen, L.J., Kletetschka, G., Lehtinen, M., Low-temperature magnetic properties of the Neuschwanstein EL6 meteorite (2007) Earth Planet. Sci. Let., 261, pp. 143-151; Kohout, T., Kosterov, A., Haloda, J., Tycova, P., Zboril, R., Low-temperature magnetic properties of iron-bearing sulfides and their contribution to magnetism of cometary bodies (2010) Icarus, 208, pp. 955-962; Cuda, J., Kohout, T., Tucek, J., Haloda, J., Filip, J., Prucek, R., Zboril, R., Low-temperature magnetic transition in troilite: A simple marker for highly stoichiometric FeS systems (2011) J. Geophys. Res., 116, p. B11205; Tsurkan, V., Lohmann, M., Von Nidda, H.-A.K., Loidl, A., Horn, S., Tidecks, R., Electron-spin-resonance studies of the ferrimagnetic semiconductor FeCr2S4 (2001) Phys. Rev. B, 63, p. 125209; Klencsár, Z., Kuzmann, E., Homonnay, Z., Vértes, A., Simopoulos, A., Devlin, E., Kallias, G., Interplay between magnetic order and the vibrational state of Fe in FeCr2S4 (2003) J. Phys. Chem. Solids, 64, pp. 325-331; Biasi, E., Ramos, C.A., Zysler, R.D., Size and anisotropy determination by ferromagnetic resonance in dispersed magnetic nanoparticle systems (2003) J. Magn. Magn. Mater, 262, pp. 235-241; Kopp, R.E., Weiss, B.P., Maloof, A.C., Vali, H., Nash, C.Z., Kirschvink, J.L., Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy (2006) Earth Planet. Sci. Lett., 247, pp. 10-25; Griscom, D.L., Ferromagnetic resonance condition and powder pattern analysis for dilute, spherical, single-domain particles of cubic crystal structure (1981) J. Mag. Res., 45, pp. 81-87; Nowok, J., Stenberg, V.I., ESR study of pyrrhotite iron vacancies and the adsorption of CO and H2S (1987) Appl. Surf. Sci., 29, pp. 463-473; Nowok, J., Stenberg, V.I., Fe(III) ESR-signal splitting in unoxidized and oxidized semimagnetic pyrrhotite, Fe7S8 (1988) Solid State Commun., 66, pp. 835-840; Kündig, W., Evaluation of Mössbauer spectra for 57Fe (1967) Nucl. Instr. Method., 48, pp. 219-228; Morice, J.A., Rees, L.V.C., Rickard, D.T., Mössbauer studies of iron sulphides (1969) J. Inorg. Nucl. Chem., 3, pp. 3797-3802; Coey, J.M.D., Spender, M.R., Morrish, A.H., The magnetic structure of the spinel Fe3S4 (1970) Solid State Comm., 8, pp. 1605-1608; Riedel, E., Karl, R., Mössbauer studies of thiospinels. III. The system FeCr2S4-FeIn2S4 (1981) J. Solid State Chem., 38, pp. 40-47; Stanjek, H., Murad, E., Comparison of pedogenic and sedimentary greigite by X-ray diffraction and Mössbauer spectroscopy (1994) Clays Clay Min., 42, pp. 451-454; Lyubutin, I.S., Starchikov, S.S., Lin, C.-R., Lu, S.-Z., Shaikh, M.O., Funtov, K.O., Dmitrieva, T.V., Ivantsov, R., Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process (2013) J. Nanopart. Res., 15, p. 1397; Satuła, D., Szymański, K., Dobrzyński, L., Tran, V.H., Troć, R., Mössbauer data analysis based on invariants and application to UFe5Sn (2008) Phys. Rev. B, 78, p. 014411; Szymański, K., Satuła, D., Dobrzyński, L., Rećko, K., Olszewski, W., Brzózka, K., Jankowska-Kisielińska, J., The method of invariants in 57Fe Mössbauer spectroscopy on selected examples (2010) J. Phys. Conf. Ser., 217, p. 012010; Klencsár, Z., (2014) MossWinn Manual, , http://www.mosswinn.com/downloads/mosswinn.pdf; Skinner, W.M., Nesbitt, H.W., Pratt, A.R., XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS) (2004) Geochim. Cosmochim. Acta, 68, pp. 2259-2263
Correspondence Address Oshtrakh, M.I.; Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal UniversityRussian Federation; email: oshtrakh@gmail.com
Publisher Elsevier Ltd
CODEN MCHPD
Language of Original Document English
Abbreviated Source Title Mater Chem Phys
Source Scopus