References |
Duboshin, G.N., (1961) Theory of Attraction, , Fizmatlit, Moscow; Kaula, W., (1970) Theory of satellite geodesy, , Blaisdell, Waltham, MA; Burša, M., (1970) Fundamentals of Space Geodesy, Vol. 2: Dynamic Cosmic Geodesy, , Minist. Nár. Obrany, Prague; Grushinskii, N.P., (1976) Theory of the Earth Figure, , Nauka, Moscow; Kondrat’ev, B.P., (2003) Theory of Potential and Figures of Equilibrium, , Inst. Komp. Issled., Moscow; Vatrt, V., Truncation error due to geopotential model EGM96 (1999) Stud. Geophys. Geod., 43, pp. 223-227; Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., An Earth gravitational model to degree 2160: EGM2008 (2008) General Assembly of the European Geosciences Union, Vienna, Apr. 13–18; Petrovskaya, M.S., Vershkov, A.N., The construction of gravitational field models on the basis of satellite measurements of gravitational potential derivatives (2014) Cosmic Res., 52, pp. 166-174; Natanson, I.P., Constructive Function Theory (1964) Uniform approximation, , GITTL, Moscow; Hobson, E.W., (1931) The Theory of Spherical and Ellipsoidal Harmonics, , Cambridge Univ. Press, Cambridge; Szegö, G., Orthogonal Polynomials (1959) Ser. AMS Colloquium Publications, , Am. Math. Soc., New York; Antonov, V.A., Timoshkova, E.I., Kholshevnikov, K.V., (1988) Introduction to the Theory of Newtonian Potential, , Nauka, Moscow; Yarov-Yarovoi, M.S., On the force-function of the attraction of a planet and its satellite (1963) Problems of Motion of Artificial Celestial Bodies, , Akad. Nauk SSSR, Moscow; Kholshevnikov, K.V., Shaidulin, V.S., On the gravitational potential of a spherical segment (2015) Vestn. St. Petersburg Univ.: Math., 48, pp. 49-54; Antonov, V.A., Kholshevnikov, K.V., Shaidulin, V.S., Estimating the derivative of the Legendre polynomial (2010) Vestn. St. Petersburg Univ.: Math., 43, pp. 191-197; Kholshevnikov, K.V., Shaidulin, V.S., On properties of integrals of the Legendre polynomial (2014) Vestn. St. Petersburg Univ.: Math., 47, pp. 28-38 |