An exact algorithm with linear complexity for a problem of visiting megalopolises / Chentsov A.G., Khachai M.Y., Khachai D.M. // Proceedings of the Steklov Institute of Mathematics. - 2016. - V. 295, l. . - P. 38-46.

ISSN:
00815438
Type:
Article
Abstract:
A problem of visiting megalopolises with a fixed number of “entrances” and precedence relations defined in a special way is studied. The problem is a natural generalization of the classical traveling salesman problem. For finding an optimal solution, we give a dynamic programming scheme, which is equivalent to a method of finding a shortest path in an appropriate acyclic oriented weighted graph. We justify conditions under which the complexity of the algorithm depends on the number of megalopolises polynomially, in particular, linearly. © 2016, Pleiades Publishing, Ltd.
Author keywords:
dynamic programming; NP-hard problem; precedence relations; traveling salesman problem
Index keywords:
нет данных
DOI:
10.1134/S0081543816090054
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010430812&doi=10.1134%2fS0081543816090054&partnerID=40&md5=b4aa039110b5ad91ba3fb65aa086fc55
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010430812&doi=10.1134%2fS0081543816090054&partnerID=40&md5=b4aa039110b5ad91ba3fb65aa086fc55
Affiliations Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation; Ural Federal University, Yekaterinburg, Russian Federation
Author Keywords dynamic programming; NP-hard problem; precedence relations; traveling salesman problem
References Korobkin, V.V., Sesekin, A.N., Tashlykov, O.L., Chentsov, A.G., (2012) Routing Methods and Their Applications in Problems of the Enhancement of Safety and Efficiency of Nuclear Plant Operation, , Novye Tekhnologii, Moscow; Chentsov, A.G., On routing of task complexes (2013) Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No., 1, pp. 59-82; Chentsov, A.G., Chentsov, A.A., Chentsov, P.A., Elements of dynamic programming in extremal routing problems (2013) Problemy Upravl., No., 5, pp. 12-21; Chentsov, A.G., Problem of successive megalopolis traversal with the precedence conditions (2014) Autom. Remote Control, 75 (4), pp. 728-744; Karp, R., Reducibility among combinatorial problems (1972) Complexity of Computer Computations, pp. 85-103. , Miller R. E., Thatcher J. W., (eds), Plenum, New York; Garey, M.R., Johnson, D.S., (1982) Computers and Intractability: A Guide to the Theory of NP-Completeness; Christofides, N., Worst-case analysis of a new heuristic for the traveling salesman problem (1976) Algorithms and Complexity: New Directions and Recent Results, p. 441. , Academic, New York; Arora, S., Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems (1998) J. Assoc. Comput. Mach., 45 (5), pp. 753-782; Kh. Gimadi, E., Perepelitsa, V.A., An asymptotic approach to solving the traveling salesman problem (1974) Control Systems: Collection of Papers, pp. 35-45. , Inst. Mat. SO AN SSSR, Novosibirsk; Khachai, M.Y., Neznakhina, E.D., Approximability of the problem about a minimum-weight cycle cover of a graph (2015) Dokl. Math., 91 (2), pp. 240-245; Khachai, M.Y., Neznakhina, E.D., A polynomial-time approximation scheme for the Euclidean problem on a cycle cover of a graph (2014) Tr. Inst. Mat. Mekh., 20 (4), pp. 297-311; Bellman, R., Dynamic programming treatment of the traveling salesman problem (1962) J. Assoc. Comput. Mach., 9, pp. 61-63; Held, M., Karp, R., A dynamic programming approach to sequencing problems (1962) J. Soc. Indust. Appl. Math., 10 (1), pp. 196-210; Balas, E., New classes of efficiently solvable generalized traveling salesman problems (1999) Ann. Oper. Res., 86, pp. 529-558; Balas, E., Simonetti, N., Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study (2001) INFORMS J. Comput., 13 (1), pp. 56-75; Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., (2009) Introduction to Algorithms; Melamed, I.I., Sergeev, S.I., Sigal, I.K., The traveling salesman problem. Exact methods (1989) Automat. Remote Control, 50 (10), pp. 1303-1324; The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Ed. by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys (Wiley, Chichester, 1985); Steiner, G., On the complexity of dynamic programming for sequencing problems with precedence constraints (1990) Ann. Oper. Res., 26 (1-4), pp. 103-123; Grigor’ev, A.M., Ivanko, E.E., Knyazev, S.T., Chentsov, A.G., Dynamic programming in a generalized courier problem with inner tasks (2012) Mekhatr. Avtomat. Upravl., No., 7, pp. 14-21
Correspondence Address Chentsov, A.G.; Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of SciencesRussian Federation; email: chentsov@imm.uran.ru
Publisher Maik Nauka-Interperiodica Publishing
Language of Original Document English
Abbreviated Source Title Proc. Steklov Inst. Math.
Source Scopus