References |
Korobkin, V.V., Sesekin, A.N., Tashlykov, O.L., Chentsov, A.G., (2012) Routing Methods and Their Applications in Problems of the Enhancement of Safety and Efficiency of Nuclear Plant Operation, , Novye Tekhnologii, Moscow; Chentsov, A.G., On routing of task complexes (2013) Vestn. Udmurt. Univ., Ser. Mat. Mekh. Komp. Nauki, No., 1, pp. 59-82; Chentsov, A.G., Chentsov, A.A., Chentsov, P.A., Elements of dynamic programming in extremal routing problems (2013) Problemy Upravl., No., 5, pp. 12-21; Chentsov, A.G., Problem of successive megalopolis traversal with the precedence conditions (2014) Autom. Remote Control, 75 (4), pp. 728-744; Karp, R., Reducibility among combinatorial problems (1972) Complexity of Computer Computations, pp. 85-103. , Miller R. E., Thatcher J. W., (eds), Plenum, New York; Garey, M.R., Johnson, D.S., (1982) Computers and Intractability: A Guide to the Theory of NP-Completeness; Christofides, N., Worst-case analysis of a new heuristic for the traveling salesman problem (1976) Algorithms and Complexity: New Directions and Recent Results, p. 441. , Academic, New York; Arora, S., Polynomial-time approximation schemes for Euclidean traveling salesman and other geometric problems (1998) J. Assoc. Comput. Mach., 45 (5), pp. 753-782; Kh. Gimadi, E., Perepelitsa, V.A., An asymptotic approach to solving the traveling salesman problem (1974) Control Systems: Collection of Papers, pp. 35-45. , Inst. Mat. SO AN SSSR, Novosibirsk; Khachai, M.Y., Neznakhina, E.D., Approximability of the problem about a minimum-weight cycle cover of a graph (2015) Dokl. Math., 91 (2), pp. 240-245; Khachai, M.Y., Neznakhina, E.D., A polynomial-time approximation scheme for the Euclidean problem on a cycle cover of a graph (2014) Tr. Inst. Mat. Mekh., 20 (4), pp. 297-311; Bellman, R., Dynamic programming treatment of the traveling salesman problem (1962) J. Assoc. Comput. Mach., 9, pp. 61-63; Held, M., Karp, R., A dynamic programming approach to sequencing problems (1962) J. Soc. Indust. Appl. Math., 10 (1), pp. 196-210; Balas, E., New classes of efficiently solvable generalized traveling salesman problems (1999) Ann. Oper. Res., 86, pp. 529-558; Balas, E., Simonetti, N., Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study (2001) INFORMS J. Comput., 13 (1), pp. 56-75; Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., (2009) Introduction to Algorithms; Melamed, I.I., Sergeev, S.I., Sigal, I.K., The traveling salesman problem. Exact methods (1989) Automat. Remote Control, 50 (10), pp. 1303-1324; The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Ed. by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. Shmoys (Wiley, Chichester, 1985); Steiner, G., On the complexity of dynamic programming for sequencing problems with precedence constraints (1990) Ann. Oper. Res., 26 (1-4), pp. 103-123; Grigor’ev, A.M., Ivanko, E.E., Knyazev, S.T., Chentsov, A.G., Dynamic programming in a generalized courier problem with inner tasks (2012) Mekhatr. Avtomat. Upravl., No., 7, pp. 14-21 |