Transmission electron microscopical study of teenage crown dentin on the nanometer scale / Panfilov P., Kabanova A., Guo J., Zhang Z. // Materials Science and Engineering C. - 2017. - V. 71, l. . - P. 994-998.

ISSN:
09284931
Type:
Article
Abstract:
This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30°) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. © 2016 Elsevier B.V.
Author keywords:
Collagen fibers; Dentin; Hydroxyapatite; Structure; TEM
Index keywords:
Chemical mechanical polishing; Collagen; Crack tips; Cracks; Ductile fracture; Fracture mechanics; Hydroxyapatite; Structure (composition); Transmission electron microscopy; Cellular structure; Collag
DOI:
10.1016/j.msec.2016.11.016
Смотреть в Scopus:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006123435&doi=10.1016%2fj.msec.2016.11.016&partnerID=40&md5=a3badfaf9422282384b800bf494ea22f
Соавторы в МНС:
Другие поля
Поле Значение
Link https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006123435&doi=10.1016%2fj.msec.2016.11.016&partnerID=40&md5=a3badfaf9422282384b800bf494ea22f
Affiliations Ural Federal University, Ekaterinburg, Russian Federation; Erich Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben, Austria
Author Keywords Collagen fibers; Dentin; Hydroxyapatite; Structure; TEM
Chemicals/CAS collagen, 9007-34-5; Collagen
Funding Details 15-08-04073a, RFBR, Russian Foundation for Basic Research; 15-19-10007, RSF, Russian Science Foundation
Funding Text This research is partially supported by the Russian Science Foundation, #15-19-10007 (PP) and the Russian Foundation for Basic Research, # 15-08-04073a (AK).
References Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O., Bioinspired structural materials (2014) Nat. Mater., 14, pp. 23-36; Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., Marshall, G.W., In situ atomic force microscopy of partially demineralized human dentin collagen fibrils (2002) J. Struct. Biol., 138, pp. 227-236; Hirsch, P.B., Electron Microscopy of Thin Crystals (1977), Krieger Publishing Company; Sezen, M., Sadighikiaab, S., 3D electron microscopy investigations of human dentin at the micro/nano-scale using focused ion beam based nanostructuring (2015) RSC Adv., 5, pp. 7196-7199; Panfilov, P., Zaytsev, D., Antonova, O.V., Alpatova, V., Kiselnikova, L.P., The difference of structural state and deformation behavior between teenage and mature human dentin (2016) Int. J. Biomaterial., 2016. , (7 pages); Argon, A.S., The Physics of Deformation and Fracture of Polymers (2013), Cambridge University Press; Volynskii, A.L., Bakeev, N.F., Solvent Crazing of Polymers (1995), Elsevier Amsterdam; Volynskii, A.L., Yarysheva, L.M., Bakeev, N.F., Crazing of polymers in liquid media – a universal, continuous method of adding modifiers to polymer fibers (2006) Fibre Chem., 28 (2), pp. 138-141; Lyles, R.L., Wilsdorf, H.G.G.R., Microcrack nucleation and fracture in silver crystals (1975) Acta Metall., 23 (2), pp. 269-277; Robertson, I.M., Birnbaum, H.K., An HVEM study of hydrogen effects on the deformation and fracture of nickel (1986) Acta Metall., 34 (3), pp. 353-366; Arana-Chavez, V.E., Massa, L.F., Odontoblasts: the cells forming and maintaining dentine (2004) Int. J. Biochem. Cell Biol., 36, pp. 1367-1373; Porter, A.E., Nalla, R.K., Minor, A., Jinschek, J.R., Kisielowski, C., Radmilovic, V., Kinney, J.H., Ritchie, R.O., A transmission electron microscopy study of mineralization in age-induced transparent dentin (2005) Biomaterials, 26, pp. 7650-7660; Tsuji, T., Onumac, K., Yamamotod, A., Iijimae, M., Shiba, K., Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins (2008) Proc. Natl. Acad. Sci. U. S. A., 105 (44), pp. 16866-16870; Habelitz, S., Hsu, T., Hsiao, P., Saeki, K., Yung-Ching, C., Marshall, S.J., Marshall, G.W., The natural process of biomineralization and in-vitro remineralization of dentin lesion (2014) Advances in Bioceramics and Biotechnologies II. Ceramic Transactions, a Collection of Papers Presented at the 10th Pacific Rim Conference on Ceramic and Glass Technology, June 2–6, 2013, Coronado, California, 247; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of root dentin under Sjögren's syndrome (2011) Mater. Lett., 65, pp. 2435-2438
Correspondence Address Panfilov, P.; Ural Federal UniversityRussian Federation; email: peter.panfilov@urfu.ru
Publisher Elsevier Ltd
PubMed ID 27987798
Language of Original Document English
Abbreviated Source Title Mater. Sci. Eng. C
Source Scopus