References |
Balooch, M., Wu-Magidi, I.C., Balazs, A., Lundkvist, A.S., Marshall, S.J., Marshall, G.W., Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation (1998) Journal of Biomedical Materials Research, 40 (4), pp. 539-544; Black, G.V., An investigation of the physical characters of the human teeth in relation to their disease, and to practical dental operations, together with the physical characters of filling materials (1895) Dental Cosmos, 37, pp. 353-421. , 469-84, 553-71, 637-61, 737-57; Bo, H., Quanshui, Z., Qing, Z., Jiade, W., Effect of dentin tubules to the mechanical properties of dentin. Part II: Experimental study (2000) Acta Mechanica Sinica, 16 (1), pp. 75-82; Brauer, D.S., Hilton, J.F., Marshall, G.W., Marshall, S.J., Nano-and micromechanical properties of dentine: Investigation of differences with tooth side (2011) Journal of Biomechanics, 44, pp. 1626-1629; Christensen, R.M., Theory of viscoelasticity: An introduction (1971), Academic Press New York and London; Chuang, S.F., Lin, S.Y., Wei, P.J., Han, C.F., Lin, J.F., Chang, H.C., Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test (2015) Journal of Biomechanics, 48 (10), pp. 2155-2161; Cui, Y.H., Wang, X., Zhang, Y.X., He, F.J., Poro-viscoelastic properties of anisotropic cylindrical composite materials (2010) Philosophical Magazine, 90, pp. 1197-1212; Currey, J.D., The relation between the stiffness and the mineral content of bone (1969) Journal of Biomechanics, 2, pp. 477-480; Duncanson, M.G., snd Korostoff, E., Compressive viscoelastic properties of human dentin: I. Stress-relaxation behavior (1975) Journal of dental research, 54 (6), pp. 1207-1212; Gilmore, R.S., Katz, J.L., Elastic properties of apatites (1982) Journal of Material Science, 17, pp. 1131-1141; Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V., Mittag-leffler functions, related topics and applications: Theory and applications (2014) Springer monographs in mathematics, , Springer; Halgaš, R., Dusza, J., Kaiferova, J., Kovacsova, L., Markovska, N., Nanoindentation testing of human enamel and dentin (2013) Ceramics–Silikáty, 57 (2), pp. 92-99; Hashin, Z., Shtrikman, S., A variational approach to the theory of the elastic behavior of multiphase materials (1963) Journal of the Mechanics and Physics of Solids, 11, pp. 127-140; Hill, R., Elastic properties of reinforced solids: Some theoretical principles (1963) Journal of the Mechanics and Physics of Solids, 11, pp. 357-362; Jafarzadeh, T., Erfan, M., Watts, D.C., Creep and viscoelastic behaviour of human dentin (2004) Journal of Dentistry of Tehran University of Medical Sciences, 1 (1), pp. 5-14; Jantarat, J., Palamara, J.E.A., Linder, C., Messer, H.H., Time-dependent properties of human root dentin (2002) Dental Materials, 18, pp. 486-493; Kinney, J.H., Marshall, S.J., Marshall, G.W., The mechanical properties of human dentin: A critical review and re-evaluation of the dental literature (2003) Critical Reviews in Oral Biology & Medicine, 14 (1), pp. 13-29; Pashley, D.H., Agee, K.A., Wataha, J.C., Rueggeberg, F., Ceballos, L., Itou, K., Viscoelastic properties of demineralized dentin matrix (2003) Dental materials, 19 (8), pp. 700-706; Petrovic, L.M., Spasic, D.T., Atanackovic, T.M., On a mathematical model of a human root dentin (2008) Dental Materials, 21 (2), pp. 125-128; Peyton, F., Mahler, D.B., Hershenov, B., Physical properties of dentin (1952) Journal of Dental Research, 31 (3), pp. 366-370; Podlubny, I., Fractional differential equations (1998), Academic Press New York and London; Rabotnov, Y.N., Equilibrium of an elastic medium with after-effects. (in Russian) (1948) Journal of Applied Mathematics and Mechanics (PMM), 12, pp. 53-62; Rabotnov, Y.N., Elements of hereditary solid mechanics (1977), Mir Moscow 1977; Scott Blair, G.W., Coppen, F.M.V., The subjective judgement of the elastic and plastic properties of soft bodies: The differential thresholds for viscosities and compression moduli (1939) Proceedings of the Royal Society B, 128, pp. 109-125; Scott Blair, G.W., Coppen, F.M.V., The estimation of firmness in soft materials (1943) American Journal of Psychology, 56, pp. 234-246; Sevostianov, I., Levin, V., Creep and relaxation contribution tensors for spheroidal pores in hereditary solids: Fraction-exponential operators approach (2016) Acta Mechanica, 227, pp. 217-227; Sevostianov, I., Levin, V., Radi, E., Effective viscoelastic properties of short-fiber reinforced composites (2016) International Journal of Engineering Science, 100, pp. 61-73; Shahmoradi, M., Bertassoni, L.E., Elfallah, H.M., Swain, M., Fundamental structure and properties of enamel, dentin and cementum (2014) Advances in calcium phosphate biomaterials, pp. 511-547. , Ben-Nissan Besim Springer Berlin Heidelberg; Singh, V., Misra, A., Parthasarathy, R., Ye, Q., Spencer, P., Viscoelastic properties of collagen–adhesive composites under water‐saturated and dry conditions (2015) Journal of Biomedical Materials Research Part A, 103 (2), pp. 646-657; Singh, V., Viscoelastic and fatigue properties of dental adhesives and their impact on dentin-adhesive interface durability (2009), http://hdl.handle.net/1808/5661, University of Kansas Master dissertation, Retrieved from; Stanford, J.W., Paffenbarger, G.C., Kumpula, J.W., Sweeney, W.T., Determination of some compressive properties of human enamel and dentin (1958) The Journal of the American Dental Association, 57 (4), pp. 487-495; Tanioka, A., Tazawa, T., Miyasaka, K., Ishikawa, K., Effects of water on the mechanical properties of gelatin films (1974) Biopolymers, 13, pp. 735-746; Viidik, A., Function and structure of collagenous tissue (1968), Elanders Boktryckeri Goteborg; Zaytsev, D., Grigoriev, S., Panfilov, P., Deformation behavior of human dentin under uniaxial compression (2012) International Journal of Biomaterials, 2012, p. 8. , Article ID 854539 |